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An Essay on the Geometrical Calculus. By BE. Lasker. Received
July 15th, 1896, Communicated November 12th, 1896, by
Mvr. Tucker.

Introduction.

In 1844 a remarkable book was published, entitled Dic Ansdehnungs-
lelre, by H. Grassmann. It deals with a new species of magnitudes
—snch as have a number of extensions, and which are composed of a
number of independent units—and teaches how to interpret their
addition and multiplication. ‘

The book did not excite much interest, probably because its author
omibted to demonstrate that his caleulus, although quite difflerent from
ordinary algebra, was nevertheless, if properly interpreted, nothing hut
a way of writing algebraical identities. Had he done so, he might
have considerably reduced the volume of his book, enlarged its
sphere, and would probably have found the keystone to modern
algebra.

In 1847 an-essay of his, on the geometrical calculus of Leibnitz,
took the prize of the Jablonowsky Society at Leipzig. And, in 1862,
prompted by some of the few mathematicians of renown who had stndied
his writings, he brought out a second edition of his Ausdehnungslehre.
This second edition was far superior to the former, and gained o
small, but select, circle of friends. Since that timec the literature
of the snbject has grown to a considerable extent, and it is yet con-
tinnally ou the increase.

It is to be regretted that Grassmann made very little practical use
of his calculus. It is surprising that, though he had been for many
years in the possession of a new and powerful calculus, he failed to
contribute in any way to the development of the mathematical ideas
which interested his contemporaries. Yet the time was full of
mathematical life and vigour, under the influence of such men ay
Hesse, Clebsch, Riemann, Sylvester, Cayley, not to mention the older
generation of which Gauss and Cauchy were still alive.

The "author’s essay attempts to demonstrate that Grassmann’s
Ausdehnungslehre is a shape into which projective geowectry or
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modern algebra may be thrown; that it is coextensive with these
two branches of mathematics, and that its symbolism embodies
probably the shortest and clearest and most snggestive manner of
cxpressing the truths of these sciences. The manner of deduction
is purely geometrical, based on a few assumptions concerning the
nature of plane spaces of any manifoldness.

1. We shall assume in the following an abstract universe, & space
S which shall contain any kind of space whose definition is faultless.
S itself will have no property to distinguish it in any way. The
Euclidean properties of our space of three manifoldness are consistent
with each other. S will therefore contain the straight line joining
any two of its points, the plane determined by any three, and the
space of three dimensions determined by any four of its points.

If, now, any point P outside of a space of three dimensions S, is
joined by straight lines with all the points of the S, then aspace will
be originated which we shall call a 8,, a plane space of four dimen-
sions, or of four manifoldness. Let 4, B be any two points of the S,,
and 4°, B’ any other two points upon the lines PA, PB. Then the
line A’B’" will be contained by the plane PAB; which, in accordance
with its generation, must itself be contained by the S, The S, will
therefore contain the line joining any two of its points, the plane
joining any three and the S, joining any four of the points of the S,.
A 8, is determined by any S, contained by it, and any point P besides,

not belonging to the S,. It follows that it is uniquely determined
by auy five of its points not situated in one 8;. Continuing the

process by which the possibility of the geometrical existence of
a 8, was evolved, we demonstrate in the same way the (abstract)
existence of a S,, a plane space of n manifoldness. Its fundamental
properties will be or are assumed to be—

(1) That it is uniquely determined by any n+1 of its points not
belonging to any S, where % is smaller than »; '

(2) That it contains any S, with which it can be shown to have
1.+1 points in common not situated in a S; where [ is smaller than & ;

(3) That it is continuous everywhere;

(4) That no part of it is distinguished by itself from any other’
part of it which is identically constructed ; and

(5) That any S,_; cuts a S, into two compartments 4, B which are
identically constructed, and such that any point moving in a con-
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tinuous line (for instance, a straight one) from A into B must of
necessity pass the §,_,.

Let 4, B, 0, D, E be any five points fixing the position of a S,
Join AB and construct all the lines passing through 4 and perpen-
dicular to 4B. Then the totality of these lines form a plane space
S;, which will be said to be perpendicular to AB. In S; ABCD
construct the plane e, containing A, perpendicular to AB; and
similarly the plane ¢ inthe S; ABDE and d in the S; ABEQ. 4BOD
and ABDE have the plane ABD in common; consequently ¢ and ¢
the perpendicular § on AB in A contained by ABD; similarly cand d
the perpendicular ¢ in ABF; and d and e the perpendicular y in
ADBC. § and e determine, in accordance with Kuclid’s axioms in
space S, the plane ¢ uniquely; and so € and y the plane d; y and 0
the plane e. ¢, d, ¢ are therefore contained in a space 3Z; of three
manifoldness, fixed by A and one point each of v, &, &. ¢, d, e divide
3; into altogether four compartments connected in .4, in such wise
that any point moving in the 3; would have to pass one of the planes
¢, d, e, in order to move from one compartment into another. Let us
only consider two of these compartments L, 3 which are opposite to
each other, but are otherwise idéntically constructed. Move one of
the bordering planes ¢, d, ¢, say e, through one of the border lines,
say 6,in L (and M) continuously. In its initial position e was per-
pendicular to AB. If the angle that e forms with AB should vary,
if, for instance, the angle eADB should be larger than R, as far as L
was concerned, and therefore smaller than I if its value is measured
in M, until e comes in the course of its movement to coincide with a
plane € in L, M—when again the angle ¢’4B may be R—then the
spaces I, M’ described by the moving plane will again be opposite
corners, like L, M, and identically constructed.

But any plane through & in I/, M’ will make with AB an angle
larger than B in I/, smaller than R in M. This would be equi-
valent to a permanent property distinguishing L’ from M’ and must
therefore be rejected. It follows, then, that all lines through 4 con-
tained by th)y 2, must be perpendicular to AB. Let us assume any
line ! through 4 perpendicular to 4B, but not belonging to £;. Any
one of the points of ! not coinciding with 4 may be called P. The S,
in which we operate may be regarded as generated by the ¥, and
point B in the manner originally described. B and P will therefore
be collinear with some point @ of the S, AP, AQ, AB being all
contained in the plane ABP, the two lines AP and A() perpendicular
to AB must coincide. The proposition to be demonstrated is therefore
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verified. In exactly the same manner we may prove by induction
the more general theorem that the aggregate of lines ! through 4
perpendicular to some line AB in space S, constitute a plane space
S\, called perpendicular to 41

Spaces perpendicular to the same line [ ave called parallel. They
cannot have any point in common. For, were P any such point, A
and I} the points which the two spaces have in common with I, then
PAB would be a triangle with two right angles A and B.

Any plane space may be moved into coincidence with any other
plane space of the same manifoldness. This is a direct consequence
of the fandamental properties (1), (2), (3), (4) of plane spaces.

Through any point P belonging to a S;, itself contained in a S;),
a line ! may be drawn in that S;,,, perpendicular to the S,. And
only one such line is possible. To find [, draw any line ' in S,, any-
where; and at any one of its points I" erect the perpendicular S
After that move the figure conceived to be rigid, so that I coincides
with P, S; with Si. The position which I” assumes will indicate 1.

Trom any point P a perpendicular can be let fall on any space 3,
outside of it. T'o construct it erect the perpendicular at any point
Q of 3, in space %.I; and draw in the planc of P and this per-
pendicnlar the parallel through P to it.  Only one such perpendicular
is possible, according to Juclid’s parallel axiom.

n +1 points not situated in a S,, where & is smaller than », form a
figure which will licre be called a pyramid of % manifoldness. The
poiuts 4,,... 4, will be called the covner-points, the lines 4, 4,,4, 4, ...
A Ay, ... the edges, the plancs A, 4,4, ... 4,4, Ay ... the border-planes,
the spaces S, 4,4,454,, A, A; 434, .. the border S of the pyramid ;
and so on generally. A pyramid of 2 manifoldness will thus have
n+1 corner-points, Zz_tl.._n edges, "-+1‘7-2—“:—-l~ border-planes ...

2 1.2.3
(n+1),,, border S,.

Of any limited part of the space S, we shall assume that it possesses
magnitude. And we shall fnrther assume that our ordinary con-
ceptions concerning the addition and the measurement of geometrical
magnitudes in space 8, ave applicable to them. Oue of our
assumptions is thercfore that magnitude in space S, is expressible by
a number multiplied by the ™ power ¢* of the unit of length.

Let 1T and I be two spaces of manifoldness n—1 conlained in a
8,5 both perpendicular to some line Lawd therefore parvallel to cach
other. In I draw any figure I, and by lines parallel to I project it
on to K into the position M. Then the figure bordered by I, M,
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and the lines parallel to ! is measured by the length I of the per-
pendicular bordered by the two spaces H, K multiplied by the
measure of the magnitude L (= M). This may be proved by a
most elementary process of integration, in conformity with the
assumption that our conception of the addition of pavts of spaces
should be applicable to parts of spaces in the S,

If P be any point, 4 and I' any two parallel S, ;ina §,, and we
draw froin ‘P a continuous aggregate of lines, which ent out of A
(supposed to be nearer to P than 13) o figuve 4, out of B a figuve 1,
then the geometrical body of » mauifoldness hordered by A°, I, and
the lines emanating from P is larger than 4.k and smaller than
Bk & being the distance of A" fromn 17,

1t migl:t be diflicult to prove this when the foot of the perpendicular
let fall from P on 4 and B fulls outside the figures A" and 1. Tt is,
however, sufficient for the present purpose to suppose that thesc
points fall inside these two figures. Then, indeed, it is casily seen
that the perpendicular projection of the figure A’ on I is totally
enclosed by I¥, and that the projection of B" on A’ encloses the figuro
A4’ on all sides. So, then, in conjunction with our last proposition,
the truth of the theorem is at olice scen to follow from this.

We are now enabled to prove the fundamental theovem: If A be the
magnitude of any pyramid of » manifoldness and D be the magnitnde
of any one of its border pyramids of n—1 manifolduess, b the dis-
tance of that border S,_, from the opposite corner, then

_D.I

n

A

It will not detract from the generality of the theovem, if we prove
it to be true only when the foot of the perpendicular from the vertex
on the §,_, is cnclosed by the figure whose magnitude is D. Yo, it
it be truc under this restriction, it 1s easily seen that it must he’
gencrally true.  We make thevefore that assumption.

Cut % into any number m of equal parts, the points of intersection
being 4 (the corner-point or vertex) and H,, II,, ... H,, (which last is the
foot of the perpendicular let fall from 4 on the S, ;). Through each
H; draw the space of »—1 manifoldness §%  perpendicular to 7,
therefore parallel to the S,.,. Then the whole pyramid is divided
into m parts; each contained betwceen two parallel spaces of n—1
manifoldness $%  and 8%:).

Now the pyramid of n—1 manifoldness in the 8% is in all



222 . Mr. E. Lasker on the Geometrical Calculus. [Nov. 12,

proportions similar to the S,., (as can be easily proved from the
corresponding figure in plano). If the unit of length in the S,_, is ¢,

then the unit of length in the 8% will be e L. 1If therefore D is the
m

n-1
cy n=l
measure of the pyramid in the S,_,, then D (_z_) is the measure of
m

the pyramid in the S

n-1

(applying supposition 4). It follows that, a
being equal to the sum of the slices between S, and Si*!, A is

| larger than D 7—%2 ( ) "

7
m

is smaller than D iz (1>
- m m

H

-] \
, the ¢ ranging from 0 up to m—1, and A

"

-1
, the 7 ranging from 1 up to m.

If m now becomes indefinitely large, this becomes equivalent to the
equation to be demonstrated, A = ? .

2. Let 4, C, D, ... L be the corner-points of a p&ramid ; and let B be
any point collinear with and intermediate between A and C. Then,
from our conception of geometrical magnitade, the pyramid ABD ... L
+ the pyramid BCD ... L is equal to the pyramid ACD ... L. This
equation we shall agree to write in an abbreviated form, thus,

AB+BC = 04,
implying the above.

The equation written down may now be understood to be quite
generally true, whether B be intermediate between 4 and C or not,
as long as B is collinear with 4 and C. This implies that the
magnitude of a pyramid must ulso be capable of assuming negative
values ; that, to be definite,

AB = —BA,
-and AA=0

In words: Iftwo corner-points of a pyramid are transposed, its ab-
solute valuc does not change; but in as far as the above theorem of
addition is general it must change itssign. And, if two corner-points
of a pyramid coincide, its value is = 0.

For the objects that we are attempting to attain the true values of
the volumes of pyramids are not somuch wanted as their proportions.
We shall therefore, for the sake of brevity, designate by the words—
“ volume of the pyramid 4,4, ... 4,.,” and denote by [4, ... 4,,,] the
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n! fold of its true volume. 'We then obtain the following equation : —
[4;...4,.] = [4, ... 4,] multiplied by the distunce from 4,_,
to the space 4, ... 4,.

[AB...L] may be calculated by multiplying [4B], the perpen-
dicular from O on line ADB, the perpendicular from D on plane
ADCU, &c. by each other. The perpendicular from a point upon a
plane space, in which it is itself situated, is ‘of course 0. We see
therefore that [AD..L]=0

whenever any one of the corner-points of the pyramid is situated in
the space of the others. If, conversely,

[4BC ... KL] =0,
then either [4BO...K] =0,

or else I, must belong to the space ABC ... K. TFrom this it could be
shown by induction that, whenever

[4BC ... KL] =0,

any one of the corner-points of the pyramid must be situated in tho
space of the others. If therefore n+1 is the number of the points
4,..L

[4...L]=0

is the necessary and sufficient condition that the A4...L may be
situated in plane space of less than #» manifoldness.

If § n are two border-spaces of the pyramid A4 ... L that contain
all of its points together but have between themselves no corner-
points in common, and if we denote by [¢] and [5] the pyramids of
the corner-points situuted in § and n respectively, then, from the
manner of forming the magnitude [41 ... L], it is clear that

[AB...L]) = [£].[n].[én],

where [£5] is some factor that is only dependent on the relative
situation of the two spaces § and n to each other and not on the
special position that the corner-points occupy within ¢ and y.  In the
same manner, if §, ... § are k border-spaces of 4 ... L comprising all
of these points, but of which none hus any corner-point in common
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with any other, thep
-[AB L] = [61] . [él:] [éleg --‘ék],

where [£;] denotes the volume of the pyramid of the corner-points
situated in & and [§ ;... &] a certain nnmber determined only by
the position of the spaces ¢ relatively to each other.

If [A... L] isdifferent from zero, then also [én] is different from
zero; and & and n will have no point in common with each other. 1f
the point P belonged to both £ and », we might move the corner-points
in £ and », so that one of them in either spaco £ and » coincides with
P, while the value of [¢] and [7] remains unchanged. The value of
the pyramid would not be altered by this process; but, two of its
covner-points coinciding (in P), it must be zero. The necessary and
suflicient condition that any two spaces & and y have any one point
in common is consequently

&] = 0.

1f [£n] is different from zevo, the space composed by the two (e,
the space of the 4 ... L) will be dcnoted by &y In the same manner,
EE, ... & denotes the space composed by &, &, ... &, e, the space
containing all the points of £, &, ... & We may easily verify that
[& ... &] 1is obtained by multiplying [£&] into the magnitudo
that & forms with space &£, this again into the maguitude
that & forms with space & &£, &c.; and that the noecessary and
suflicient condition that any & should have any point in common with
the spuce composed by the other £ is

(4. 8] =0,

T'o define our terms: The space & ... & will be culled the composed
space, the £ the different components. If [{] =1, & will be said to
be in its normal form. 1f [&] = ¢, different from 1, ¢ will be called
the weight of & And [§ ... &] will be called the factor of the
composition. We thus may say: Tho weight cof the composed spuce
is equal to the product of the weights of the different components
multlphed by the factor of the composition.

3. If we fix a point O on any straight line L and Tay down a unit
of length, all the points of the line may be determined by their dis-
tance fiom 0. If, then, ¢ is the measure of 04, ¢ that of OB, then
[AB] =c¢~a. Positive and ncgative sign are distinguished in
accordance with the law

[4B1+[BC] = [4C).
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From the algebraical identity
(b=a)(d—c) + (c—b)(d—~a) + (a—c)(d—b) = 0,

we conclude
(4B].{OD]+[BO].[AD]+[04].[BD] = O,
where also [(4B]+{B0]+{04)=0.
Let us denote by k, I, m the values of
(48], [BC], [04];
then k[CD]+1[AD]+m [BD} = 0.

D denotes here any point of L whatever. Tt is therefore natural to
write the equation between [CD], [AD], [BD] as an equation
between the points O, A, B themselves, leaving D to be determined
until the moment when the requirements of the work make it con-
venicent.

The equation may be translated into words as follows:—Between
any three points of a straight line a linear equation must exist. Or
else any point C of a line may be expressed as a linear form of any
two others 4 and B,

0 =ud+B,
s0 that a+3=1
(on account of k414-m = 0).

By such an equation O is uniquely determined. For it must imply,
according to the meaning of such an equation, that

(CD] =a[AD]+B[BD],
which becomes, when D coincides with O,
0= a [40]+8[BO).

The ‘rn,tio in which O divides the segment 4B, and therefore 0 it-
self, is known when a and 8 ave given.
Liet us now agree to use equations of this kind
ad+bB+ ... +1L =0,

even when the points -4, B, ... L are not situated upon-one line. If
the space 8 of these points is of » manifoldness, then we define the
VOL. XXVIfL.—No. 589. ' Q
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meaning of such an equation by laying down thet, if valid at all, it
must be equivalent to

a[4X]4b[BX]+...+1[LX] =0,

where X may be any arbitrary S,., within the S,.' of the points
4,..L

‘We shall now successively prove (1), if an equation like the above
holds good in space of » manifoldness 8,, it will not cease to be valid
in any space containing that S,.

(2) Between any n+2 points of a space of » manifoldness which
are not situated in space of less than » manifoldness, there exists
exactly one linear equation

ad+bB+...+1L =0,
where at+b +..4+1 =0,

and (8) if 4 ... L is a pyramid of non-vanishing magnitude in space
of » manifoldness, and any point P of that space is given as a linear
form of the corner-points of that pyramid

P=ad+..+AL,

then P is uniquely determined by this equation.
To prove (1) let
a[4X]+b[BX]+...+1[LX] =0,
where X is any S,., in the S, containing all the points 4, B,... L.
Let further 3 be a S,,, containing the S,; and let Y be any space of
n manifoldness contained by 2.

Y has with any straight line of % u point in common. This follows
from the original definition of plane spaces (as well as by [Y1] =0
where I is any line of 3, which is easy to prove). With a plane
contained by ¥ it will therefore have in common at least two points,
consequently a straight line; and similarly, with the 8, of the points
4, ... L a S, , which may be called X. et P be any point of Y not
contained by X. Then

Y is composed by X and P ;

thereforo [4Y] =[4X].[(4X) P]
= [4X].[S.P].

Similarly, [BY] = [BX].[S.],

(Y] =[LX].[S.P].
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It follows that
a[AY]+b[BY]+...+1[LY] =0.
From this the proposition (1) is verified by induction.

The truth of (2) is also demonstrated by induction. Assume it to be
true when » = k. Then it will continue to hold good when n=Fk+1.
A4, B, C, ... L being a group of k43 points in space of manifoldness
k+1, the line AB will have one point P in common with the space
S, ., of the remaining points C, ... I. Now, we know that between
A, B, P there exists some equation such as

ad+BB—-P=0, a+B8=1,
and according to assumption there exists an equa.fion such as
yO0+8D+...4+AL—P =0, y+3+...+A=1

The space S of the points A ... I comprises the spaces where these
equations are valid; they are therefore both valid within it. It
follows then that the two expressions

ad+BB and yC+éD+...+AL
must be the same ; and it is incidentally noticed that
at+fB=y+é4. +A
One equation of the form
aA+bB+cC+...+1L =0, a+bdb+..+1=0,
is therefore sure to exist. Assumo the existence of another
adA+VB+c0+...+1L=0.
Compose X by O... L. Then
[0X)=[DX]=...=[LX] =0,
and " a[4X]+C[BX] =0,
o [AX]+ 0 [BX] =0,
showing that @ : b = o’ : V. Similarly
atb:c: . :l=a:b ..l
proving (2) completely.

Let, finally,
P =ud+BB+...+AL.
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From what we know about points upon a straight line a4+ DB is
the a+B-ple of some definite point A" upon the line 4B,

ad+BB+y0 = (a+p) A ++0

is the a+ B+ y-ple of some definite point on the line 40 ; ?.e., some
definite point in the plane ABC. By induction, it is immediately clear

that
aA+f3B+...+AL, where a+f+..+A =1,

is some definite point in the space AB... L.
The valnes a, 8, v, ... A which fix the position of & point
P =ad+B+y0+...+\L

will be called the “ coordinates ” of P, whenever 4, B, ... L is o fixed
pyramid nsed all throngh in one piece of work.

From the theorems given many properties of plane spaces can at
once ho dednced. TFor instance, any S, has with any S,, both being
contained in spaco S,, where &+ = n, one point in common. For,
asswne any pyramid of k41 points in the S, 4,... 4y, and a
similar pyramid in the S, B,...B,,.. The total number of these
points which ave all sitnated in the S, being k+k+2 =n+2, one
linear equation must exist between them (generally speaking)

ﬂ;|A|+...+ﬂ*+, 'Ak‘1+b1]}|+'"+b501 B".l = 0,
Sa+3b=0."

If Sa = ¢ then a,A4,+ ... +a;., A, is the c-ple of the point common to
both S; and S,.

Similarly it may be shown that a S, and a S, both of which are
contained in space S, must have a plane space of manifoldness
k4h—n in common (k+ % supppsed to be larger than n).

If Sa Si S ave any three spaces contained in & S, and

h+k4+l=n-1,

one straight line (generally speaking) can be drawn to cut all three
‘spaces. Assuming

I+ 1 points in the S, v A, Ay,
k+1 points in the S, B, ... By,,,
l+ l‘points in the 8[, Gl oo 0“.1,
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we have h+k+143 = n+2 points in the 8, between which therefore
a linear equation will exist, viz.,

A+t A+ 0. B+ b B+ 604 4600 Gy = 0.

Consequently the three points 4, B, U belonging respectively to
Sh, S’;, S,, defined by

ad = 4,4+ ity diyyy
BB = blB,+ see +bk¢lBk0h

70 = GIOI +... +C,+1 Olﬂ_a
are collinear.

(Some theorems based on the propositions of this section are given
in two articles by the author in Nafure, August 8th and October 17th,
1895.) '

The coordinates of a point have a certain geometrical significance.
Liet ad,+ad;+ .. ta,,4,;=0
for n+2 points 4, ... 4,,, ina S,.

From this

a (A X]+a,[4.X]+...+a,,y [4,,: X] =0.
Assume for X the space 4;4,... 4,,1; then
oy (A, Ay oo Anys] 43 [Agdy ... Arys] = O.

If, therefore, o= [A45... 4,4],

then ay= —[d4;... 4,..],

and generally a, is found by replacing, i [4,4, ... 4444), ax by @, and
changing the sign of the whole.
In conformity with the rule of signs, we shall obtain

ay = [A')AS ces Aul'.']a
ny = —[AIAS eo A-n-b‘)]’
g = [AIA2A4 aes Avlfﬁ]s

u, = —[4,4,4:4, ... A“,],
&e.
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4. Let Ay =ad+...+a, 45,0

In accordance with the meaning of such equations, we obtain, by
adding any combination X =P,P, ... P, of # points in space 4, ... 4,,,
to ench member,

[I)IPS e PnAnn] = [P1P9 e P,,A,]+...+a,,,, [Plpﬂ e PﬂA"’I]‘

Replacing A,,. by its linear expression in the 4;, this assumes the
form of an identity

[PxPa see Pu (a|A|+ eoe +a'n+lAMl]
= a,[P,P,... P,A]+a,[P\P,... P, A, ] +....

Treating the P similarly, it is clearly shown that the values of
pyramids whose points are linear forms of other points are found by
treating them as if they were algebraical products.

Let 4, B, P, Q be four points on one line, and

P=aA+bD,
Q=cA+dB;
then, according to the above,
[PQ]=ac[AA])+ad [AB])+bc[BA]+bd [BE].
If, now, the rule of signs is taken into considerafion, this is seen to ke
a b |[AB].
cd

Let, similarly, I, @, E be three points in n plane, linearly expressed
by means of three points A4, B, 0 in the same plane whose triangle
does not vanish

P =ad+bB+c0,
Q =dA+¥B+c0,
R =a"A+b"B+c"0.
Then it is easily seen that
[PRR]= a|b ¢ |[ABO]

+b|c o |[BCA)

+c|d ¥ |[CAB).
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But, according to the rule of signs, [ABC], [BCA], [CAB] all
denote the same value ; therefore
[PQR]}= |a b ¢ |[ABC).
a v
al’ b/’ c’l
It could, in exactly the same manuner and in connection with some
elementary properties of determinants, be shown that, if n4+1 points
P, ... P,,, arve expressed as lincar forms of the n 41 corner-points of some
pyramid A, ... A, n their space
Pi» =y, Al+ o +a'o‘,uu Avuh
then C[PPy ... Pop] =y e Ay, s {4, ... 4n0y].

Qupr,1 oeenes Gostynet
Let A4, ... 4, be a fixed pyramid, P a variable point. Put
P=gd+..4+2,.04,.;
then the totality of points for which the @ satisfy a linear equation
a0, a2 =0
form a certain S,,;. Indeed, let P, ... P,, be 241 points whose co-
ordinates x; ; satisfy the given linear equation. Then from clementary
properties of determinants their determinant (=; ;) vanishes; there-
fore also [P, ... P,.,}, showing that P,,, belongs to the space of the
other » points.
If Q, B are any two points, and
T +agt,+ ... tatig =u= 0
be the equation of any S,_,, then
u@ : ulR,
or the proportion of the values obtained by inserting in place of the
running coordinates contained in  those of @ and R is equal to

(801Q] : [Sasi 2],

that is, equal to the proportion of the perpendiculars from the two
points on the §,.,. Indeed, let P,,... P, be any n points fixing the
S.-1s X a variable point

X=zd4,+...+2,1,4,.; )
then [P, ... P,X] must be a multiple of «, both being homogeueous
and linear in the w»; and expressing by their vanishing the same
circumstance.
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5 Let A, B,...Li; A, B,... L be any two pyramids in the same
space & Let i be any other .space. Then, from the formula of
composition,

[AB...In] = [AB ... L]. [&],
(AB..Ln]=[4'B"... L] . [&].
Should therefore :
[AB...L]=k[4'H... L),
then also [AB ... In] = k[A'DB... L'y].
This equation may again be written in an abbreviated form thus,
AB...L=k . AB.. L.

In accordance with this result we may lay down that by the words
“gpace £ is meant any combination of points in that space whose
pyramid is = 1; and by k&, k denoting any constant, any combin-
ation of points in that space whose pyramid is = &,

Tn owvder to express the fact that any two spaces S and T are
identical, we write S = T, saying S congruent to 1. Thus the straight
line I;, joining two points A, B, is L=ADB. However, according to
theabove, L only = ADB when [AB] = 1. Generally AB = [AD]. L.

A lincar cquation between spaces of the same manifoldness

N SR
(B) eé+eb+...+aéb =0,
is defined as an abbreviation for the equation befween numerical
vines albn) +a bl + . ta[bn] =0,
n denoting an arbitrary space, such that
tn=&in=... =&
It is immediately seen that from (E) it follows that also
&S+ eI+ . +abd =0,
&4 denoting an arbitary space.
If a linear equation exists between two spaces, they must be congruent.
Let, indeed, ¢ and n be any two spaces, P any point of 5. From
aé =cm,
we conclude ¢ &P =.c,nP =0;

i.c., any point belonging to n also belongs to.¢; therefore ¢ =1.
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If a Unear equation exists between threec spaces of It manifoldness
¢, &y, &, they must have @ S, 1 common ; and they will be contained in
@ Sy And, conversely, if this is so, then a linear relation must exist
between them.

Indeed, let ittty = 0.
If P is & point common to §, and &, then -
LEP =0 and &P =0;
but GG P+, & P4, P =0;
consequently also 4P =0;

Z.e., 8 point common to two spaces ¢ belongs also to the third.

Let 2 be the space common to §&£;, 4, any point of £ not
contained in X, 4, any point of § not contained in 3. Join 4,, 4,.

From b A Ag+cfod Ayt e d, Ay = 0y
we conclude, since EA, =0, A, =0,
that also 4,4, =0;

t.c., that the line 4,4, has a pointin common with &. Let this point
be denoted by A,.

Let, now, A; be a point, if such a point exists, belonging to &,but not
to 24,. Join 4] with A,. Any line cutting & and & will, as we
have scen, also cut & Let 474, cut & in A;.  A4,4] and A;4; will
be contained in the plane 4,4,4;; therefore have a point P in
common. P belonging to both £ and & will be contained in X, ..,

34,41 =0. )
We seo therefore that all points of £ are contained in 34,; so we
btai '
ovin b=34, &=34, &=34,

S is therefore of manifoldness k—1, and the space containing &, &, &
18 24, A,, of manifoldness k+ 1.

Conversely, if ¢, &, & are three spaces of manifoldness k, having a
Sk-1 (2) in common and contained in a S;,;, they will be cut by any
line of the 8;,, not belonging to the S, in one point each, denoted
respectively by A,, 4,, 4,,

§ =34, §L=34, §=34,
A4,, 4y, A, being collinear, a certain relation will exist between them,

oA+ Ayt dy =0,
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therefore also 34,4+ ¢ 34,+¢,34, =0,

which may also be written

o [34,] &40, [24,] &0, [EAIu] &=0.
The theorem proved may be expressed differently thus :—

(1) If two spaces £, & of & manifoldness have a space S, in
common, then any linear form of them ¢ §+¢,¢, is congruent to
some space &, also containing the S;_;.

(2) If two spaces ¢, & of &k manifoldness have not a space S;_, in
common, then any linear form of them ¢, & +¢, 4, cannot be congruent
to any space, but will have a symbolical significance only.

If, for instance, I,, ], are two lines in space which have no .point in
common, then ¢!, +¢,l;, or any expression equivalent to it, will not be
represented by a line. But nature adds forces in the same manner
ag lines are added in the sense defined above, so that such expressions
6,4+ ¢, 1y may very well be employed to express the effect of a system
of forces acting upon a rigid body, or the instantaneous movement of
such a body.

Let &,&, ... &, be spaces of k manifoldness. Then any linear

form of them
01£l+01$g+ .o +cm6m+ vee

will be called a form of manifoldness k.

DBetween the border Sy’s of any pyramid no linear relation can possibly
exist. But any space of k manifoldness in the space of the pyramid can
be represented as a linear form of these border Sy's.

Let 4,, ... A,y be the corner-points of any pyramid in space S..
To prove the first part of the proposition assume any linear relation
between the border S, of the pyramid

ady ... Apn+...teb+...=0,
the ¢ denoting constants, the £ horder S's. Add the combination
1= Ayadnsz . Auiyy
containing all corner-points but the 4, ... 4i,,; then
[4n] = 0;
therefore 6 [4,... dendia... o] =0.

{4,... 4,,,] is different from zero according to hypothesis. Therefore
¢, = 0, and generally ¢; = 0.
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In any space ¢ of & manifoldness in the S, assume any k+1 points
Py, Py, ... Py, whose pyramid is =1. Then, according to defini-

tions ¢=PP, .. P,.

But, the P being situated in the S, fixed by the pyramid 4, ... 4.,y
they must be expressible as linear forms of these points 4,,

i

- P, =0 A1+Go,a A2+---+cl,u+l.An+h

P = s dy+6rp,4,+ ... +erana1duare

P, ... P,,, is therefore obtained by multiplying the linear expressions
with each other, under consideration of the rule of signs, and the law
that two identical factors give zero as result. The expression thus
obtained defines £ uniquely, as no other expression of the same form
can be equal to it. The coefficients of the border S.’s are expressible
in the form of determinants of the matrix

Chal,l evveee Chetnek

according to what has been shown before.

The most general form of manifoldness & in space S, is conse-
quently a linear form of the border S;’s of any pyramid sitnated in
the S,. As such it has altogether (n+1),,, independent coeflicients
(coordinates).

The forms' of manifoldness 2 can be given a certain shape which
seems simpler than any other.

If a and b are any two lines, and [ab] =0, then a and b will have
a point in common, and any linear form ha+kb will therefore be
congruent to some line. If, however, [ab] is different from zero, such
a reduction will not be possible, as was shown before.

Let 4, B, C, D be the four corners of a pyramid in a S,. The
general form of the second order in the S, is

X=1c¢,dB+¢;40+c;AD+¢,BO+¢;BD+¢,CD,

t.e., = A4 (¢,B+c;,C+c;D)+¢,BC+¢;BD+¢,CD.
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But ¢, B+¢,0+¢, D -i8 = gome point,
¢, BC+c,BD+¢,0D is = some line,

in the plane BOD; therefore
X = ha+kb,

where a passes through an arbitrary point 4, and b is totally situated
in an arbitrary plane BOD (not containing 4).
This, then, is the reduced form of the second order in space.
Similarly, 4,, 4;, ... 4, being the five corner-points of a pyramid

ina S, X =hA,P+7,

where X is the most general form of the second order in the S, and
Y the most general form of manifoldness 2in the S, 4,4,4,4,, and P
belougs to that S,

Put, then, Y =ka+1b,

s0 that a passes through P; then h4,P+ka is.again = some line ¢;
and we finally obtain
X = mc+nb,

where m, n are some constants. The line of reasoning is thus indicated.
We conclude: The most general form of the second order in space S, is

X=ca+..+ca,

where the c are constants and the a lines,and » is = }n or =} (n+1)
according a8 # is even or odd.

If the a; are all situated in a space X, we may say that X belongs
to X What, then, is the condition that X belongs to a space of
manifoldness &, and not to space of lower manifoldness ?

If X = lLa+kb,
XX = X?® = hkab,
aa and bb being zero, and
Xt=0.
If : X*=0,
then h.k=0 or [ab]=0,

from which we conclude that X must then simply be a line,
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Therefore the necessary and sufficient condition that X should be
a line is
. c Xl = 0’
and that X should belong to a S, is
Xt =0,

and quite: generally, concluding in the same -way as above: The
necessary and sufficient condition that X should belong to a space of 2n+1

manifoldness is
Xnoi e O.

And the space to which X belongs is = X"\,

In the language of determinants this leads to the following theerem.
Let, first of all, four points A4,, 4,, 4;, 4, be the corner-points of a
pyramid in space S;, and

P=cd+64+c, 40,4,
Q=d A, +d;4;+d, A, +d 4,

Then X=PQ= lc, c,lA,A,+ 6 6| A 4,+...

d, d, o ldydy
=4, AlAi+Al,8 A, 4,+4, A, A+ 4y, 454,

+ 4, A;4,+4, 4,4,
This not being the most general form of manifolduness 1in S, the
A must satisfy the relation expressed by
X*=0.
Developed, this relation is seen to be
(E) A58, A, 8, +A, A= 0.

Or, in the language of algebra, between the six determinants of the
matrix
G 6 G G
‘o dy dy dy

the above relation (E) holds good, and, if (E) be satisfied, then the
magnitudes A, can be expressed as determinants of such a matrix,



238 Mr. E. Lasker on the Geomatrical Oulculus. [Nov. 12,

Let, now, quite generally A, N i)e any pyramid in space S,,,
a, be any line = A{} 4, 4,+ A} 4,4,+ et ANA A+,
8 o =AMAAF e FAD AL,
@ o SANAAF i FATAAS .,
X =hay+hgag+... +ha, = A A A+ ... +AGA A+ ...

If v is smaller than 3 (a+1) or in, then X is not the most general
form of the second order in space 4, ... 4,,;. The 4, ; must there-
fore satisfy e number of conditions. They are all expressed by

the equation (E) X=0,

when X* is supposed to be different from 0. In algebraic form
(El) EA.‘H]:I ¢ A‘vfl ¢ A‘ll/l b A‘ 0’

velriysl

where the summation is.tp be extended over all indices

il,.jll seey ivth jﬂ-h
different from each other, but which bélong- to & circle of 2v+2
integers; (E’) then is a series of necessary and sufficient conditions
that magnitudes A, ; shall be expressible as one and the same linear
f " &)
orm hAU+h,AD ¢ +5,AY

of the determinants A!") of matrices
WJ

(%) (k)
€1 cines nel
O] (k)
d] ...... B 41

We might put this again into determinant form, but we leave the
matter here, as it lies too far apart from the object here pursued.

Forces acting on a rigid body have a certain line of action a, and a
certain intensity k, so that, by identifying them with k.q, they are
perfectly defined.

Two forces in the same plane have the same effect as one force
according to the parallelogram of forces. Let @, b be the two lines of
the forces f,, f;, P the point of intersection of a and b. Further,
determine 4 on a, and B on b, so that

L =[P4},
and k= [PD),
where fi=h.a= 14,

and fi=k.b=PB.
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The resultant of f, and f; is double
PD, where D is the centre of the
finite line BA ; therefore

D=} (4+B),

according to the parallelogram of
forces. So, then, the resultant of f|
and f; is

- =2PD = PA+PB=f+f,

This is also true when a and b are parallel, and even when
h+k=0

(the two forces then forming a couple); only that then the line of
action of the force is a certain exceptional line which will afterwards
be spoken of as the line infinity, and which would again be
characterized by f; +f,, in situation as well as in regard to a cortain
factor (the magnitude connected with the couple).

By applying the calculus to the formulwm of mechanics, the same
result would be attained for forces acting on.rigid bodies in space.
The effect of a system of forces upon a rigid body would theu be seen
to be expressible by a form of manifoldness 1. The resultaut of a
system of forces would simply be their sum (in the sense I defined
above), and the corrcsponding infinitesimal motion of the body would
also be determined by the same form of manifoldness 1.

6. We have not in the preceding sections again mentioned the
possibility that presented itsolf in the introduction, namely, that two
spaces might be parallel.  Projective geometry shows how to
connect parallelisin with the general theory. Parallel spuces in
plano, or in space, are such as intersect in a certain line or plane, the
line or plane at infinity. The same is true for spaces of any degree
of manifoldness.

For three points on a line we had
[4B]+[BC]+([04] =0,
similarly for four points in a plane

[4B0)~[BCD]+[CDA]~[D4B] =0,

and generally, 4, A,, ..., 4,4, denoling any pyramid fixing a space
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S,, and P any point of that space
[4;... Ay P1=[ 4,4y ... 4,1 P1+[4, 4,4, ... Ay P]—...

ok [A,4, ... Ayy] = 0.

This formula, indeed, is obtained by means of the last proposition of
§ 3, identifying 4,,; with P, and applying

a,tag+...+a,,, =0
The equation may also be written, the space

A, e ‘Aﬂ‘fl—Al‘A& cee A,'*1+A1A,A4 cee An+], &c-,

being denoted by I,
[IP} =F[4,4,...4,.,]).

I is defined as a certain form of manifoldness n—1 in space of mani-
foldness n. Two S,.,'s contained in a S, have a S,_; in common.
Therefore a linear form of such §,.,’s is again some S,.,; and con-
sequently I must be some S,_,. The above equation, however, shows
thut all points P form with I one and the same magnitude. "This is
an apparent contradiction which has to be explained.

Let A, B, C, D be the four
corners of a pavallelogram. The
diagonals bisecting each other,
their point of intersection must be

1 (A4 D) and also 3 (B+0)
showing that
A+D=B+0,
or A-B=0-D.

We found that a4+ 8B expressed the a+B-ple of a point on the
line 4B. Here we see that, when a+8 =0, the point in question
also belongs to any line parallel to AB. The significance of a43=0
is shown by letting « 4 B assume continunously varying values,with zero
as limit. Let, for instance, a be stable = 1, # approach —1 as limit.
The point P = aA+SB will then travel away from the poiuts 4, B;
the more nearly 3 approaches —1, the farther away P will move,
and the more nearly the vailue of [P:]: [PL] will approach unity.
Tn the limit 3= ~1, P will be at infinity ; A—DB s therefore = the
point at infiuity of the line AB,
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The equation
[IP] = q=[A'l aos Au-l]

may now be interpreted as meaning -
(1P} = [1Q),
where ( is any other point of the S, ; or else

[(I(P-Q)]=0,

showing that I contains all the points at infinity, belonging to any
line P in space S,. I is accordingly called the S, ., infinity.
We shall define I by the form

I=A4,4,... A,.,,—4 4y ... 4, +...
with the condition, however, that the value of F[4, ... 4,,,] giving
[[P] must =1. Hence [IP]=1, where P iy uny finite point;
therefore Agdy oo Ay —A A4+ 4, +...=c. ],

where ¢ is the value of F[4,... 4,,,].

Two S, tn the S,, say S and 1, which are parallel, tutersect iu L.

Indeed let A3 bo any line in 8. Irom A4 let fall a perpendicular
on 1, cutting it in A°.  In the plane BAA’ drvaw the parallel A'B’ to
AB through A’, which, being perpendicular to AA’, must belong to 1.
But AB and A’B have in common their point of intersection with I.
ADB being perfectly arbitravy, it is evident that the S, _; in which 8
intersects [ must also belong to 7'

8, I, I ave therefore connected by a linear equation

aS+bl = 1.

"o tind the significance of a and b we compose this equation with P,
where P is any point of S.

Thus we obtain b=[TP],

showing that b is' the perpendicular distance of § from 7. Com-
posing with any point D of I,

«[SD] = [TD].
1t will afterwards be shown that [SD] is the sine of the angle that
S forms with the lines that pass through D.  So then
a=1,
VOL. XXVIIL.—N0. $90. K
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since parallel spaces form the same angle with any line, and
bI=T-8

(where T and S are in their normal form).
Let 4, B,... L be any pyramid fixing a S,, Since A—B,4—-0, ...
... K~1I, all belong to I, it is evident that I contains all the points

z24d+yB+...+zL,
for which ' z +y +.+2=0,
The latter is therefore the equation of I when coordinates are used.

Let 4, B, O D be four points in &
plane connected by the relation

A—B=A(0-D);
ADB must be parallel to CD. " From

the above we obtain
A—\0 =B-AD,

showing that the point E of inter-
section of A0 and BD divides the
segments AC and BD in the same
ratio A : 1, which is also = i 05] This makes it evident that the
symbol A—B is expressive of a certain direction as well as a certain
magnitude; the magnitude being [ AB]and the direction being marked

by the point at infinity of the line AD.
A — B denotes therefore a certnin  sect,”” parallel to AB and equal

to 1t in length ; A (A— B) denotes, similarly, a sect pavallel to AB and
equal to A[AB] in length (although, to be quite strict, such symbols
should be regarded as denoting the point at infinity 4 —B common to
all lines parallel to 4B, multiplied into u certain magnitude).

If P is a point, D any sect = A (4—B), then P+D is a point,
easily constructed by drawing through P in the plane PAB the line
PQ parallel to 4B and equal inlength to A[AB]. The magnitude of
a sect may be positive or negative, sccording to the law of signs
introduced in § 2. It may be denoted by the symbol [...]. Thus
[D] denotes the magnitude of the sect D). In applications where
only its absolute value is considered, regardless of the sign, that value
may be written, in conformity with a notation already in vogue, thus,
|1 D}. _

Let D,, D,, ... D,.;\\)e' any nsects; Q = P+ D,+D;+...+D,is found,
as is easily seen, by describing a polygon whose one corner is P
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and whose sides are successively parallel and equal in length to
D,, D,, ... D,; The ultimate point of this polygon is §. It closes

when .
D+ Dg+...+D, =0.

For some applications of the preceding theory (although not
affecting our present purpose) it may be well to remark that

| Dy+Dy+...+D, |
i, at most, equal to
IDl+ D+ 4+ | Dafs
and that Di+Dy+...+D,+..., limn =,

converges towards a definite sect of finite length whenever the series

I Dyl +|Dy| o4+ | D] +..., limn= o0, is convergent; and
vice versu. 'This is immediately seen by considering the geometrical
significance of D, + D, +... 4+ D,.

Points at I obey the same laws, so far as their composition is con-
cerned, as points in the finite portion of the space S,. So, then, D),
denotes the line at infinity joining the points at infinity D,, D;, We
may represent D, 1), by means of triangles of a certain magnitude
whose plane is parallel to a certain plane. The magnitude in ques-
tion is [P(P+D,)(P+D,)]; the plane is PD,D,, P denoting any
point whatever.

Gemnerally the geometrical substrate of D,D, ... D,, 7.c., the space
8, of these points at infinity, is a pyramid of » manifoldness, whose
apace is parallel and which is equal in magnitude to the pyramid

P(P+D,)...(P+D,),
P being perfectly arbitrary. The magnitude of the pyramid
P(P+D) ..(P+D,)
niay, for shortness, be denoted by
[D\D,...D,]},

which ia allowable, this value being quite independent of how
P is chosen (as may, for instance, he shown by the thcorem of
-composition).

If I’ is any space, D any point, both at I, then [I'D] or the
magnitude formed with space I' by point D is the sine of the angle
which the direction of D forms with that of the space I'; the angle DI’

R 2
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being defined as the angle formed by any line PD with its perpen-
diculnr projection on space PI’. For this is exactly the magnitude
of o pyramid whose base is a pyramid of magnitude 1 in PI” and
whose vertex is P+ D (where D is of length 1). [D,D,... D,] is there-
fore calculated by multiplying the [D,](D,] ... [D.] by the sine of
the angle D,D;, this again by the sine of the angle that D,D, forms
with D, &c., according to the theorem of composition.

The conclusions of §3 applied to sects show that the finite points
of the space PD, ... D, are expressible in the form

P+aD+...+2,D,,

wheve the 2; may assume any values whatever.

If 8 is any S,., in a 3,, then [SP] denotes the length of the
pevpendicular from P on S.  Interpreted in this manner, [II’] would
not = 1, but be infinite.  The explanationis that I belongs to a class
of spaces (of which it is the only veal representative) to which the
conception of normal form as oviginally given does not apply.  The
reason for this will very soon appear.

If P is any finite point, I) a variable point at I in its normal form,
then P+ will cover one half of the snrface of a spherical manifold-
ness whose centre is I, the other half being represented by P—1.
The geometry on the surface of a sphevienl manifoldness is thevefore
identienl, in metrical as well as projective 1'e1:1‘ti0n.=x, with the geo-
metry of points at I :

7. The calculus whose outlines hiave heen laid down in the preceding
pavagraphs may be divested of its geometrical menning ; and it will
then become a caléalus of linear forms and of determinants.

Indeed, let 4, 13, ... L he = linear forins in % homogencouns varinbles,
and let ADB ... I. denote the corresponding determinant ;3 AT o matrix
of two rows, the other vows (', I, ... I/ left indeterminate ; ABC
similarly a matrix of three rows, &. And let any equation such as,
for instance, :

2. AB4+b.CD4c.EF = 0,

.if valid at all, be understood as an abbreviation of an identity between

matrices (AB, 0D, EF) where the rows left indeterminate in these
matrices are supposed to be identical. Then it is, indeed, easily
enough seen that the Inws of the geometrical calculus are expressions
of elementary properties of determinants. For instance,

A4 =0
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would signify that the equality of two rows in a determinant causes
it t ish, -
it to vanish, AD = — BA

that the transposition of two rows makes it change its sign.
(A+B) C = A0+BC

ig easily seen to follow from the elementary fact that a determinant
i3 a linear function of the terms of each row or column. And, finally,
the significance of ABC...L =0
is obviously that A, B, 0, ... L are connected by some linear equation ;
that they are not * linearly independent.”

8. The calculus is applicable to the geometry whose elements are :
"~ (1) Plane spaces S, through a fixed Si_,.
(2) Plane spaces S,_, in a fixed space of » manifoldness.

Indeed, any two S, having S,., in common may be linearly
comnected so as to forn another S, through that Si.,. Any element
of this geometry may he generated by composing the fixed S,_, with
points outside of it; any lincar manifoldness of clements of this
geometry by composing the S;_, with plane spaces outside the S;._,.
A space 8, will obviously be of manifoldness n—k in regard to the
clements of this geometry, the fixed S, being contained by the S,.

1f El = Sl.--ﬁin
EQ = ng_la“lg,

B, = 8, 4,
are elemenis of this geometry, we need only identify
[y ... 1] with [Si. 4, ... A4],
By By owith S 4, .. Ay,

and the whole theory of point geometry is at once transferred to this
geometry.

{(2) is proved by veference to §5, whence it appears that the S, _, of
a 8, form a linear manifoldness of degrec % ; that they ave linearly.
expressible by the 241 border S, _, of any non-vanishing pyramid in
the S,; and that any linear form of these border S,., represents
again, unconditionally, a S,.,.
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As regards geometry (1) [E, ... I;] (in the new sense) was found
to be = [S,.,4, ... 4,] (in the old sense). If 8 is any one of its

spaces, §=8,.,¢

in ita normal form (according to the original definition), and E any
element

E= Sk_‘A,
also in its normal form, then

[SE] = [5:..164]

is, according to the theorem of composition, the perpendicular
distance of 4 from S. If then the angle formed by two lines
emanating from a point in the S,., into § and E respectively, and
perpendicular to the S,_,, is called the angle £ SE, then it is easily

scen that : .
[188] =sin £ SE.

If the S,., lies entirely at I, then [SF] is similarly seen to be tho
perpendicular distance of the two parallel spaces § and E. It is a
remarkable fact that the same is true in geometry (2), as will be
shown by the following line of rensoning.

The geometry (2) may be called the “reciprtical” geometry, and
its composition be denoted by a vertical line (so that A/B would
designate the space composed in this geometry by A and B).

Let then ABCDE ... L be any pyramid in the fixed S,; and take
for definiteness

X = ABCDE,
Y=CDEFG ... L.
Then X and Y will have the plane CDE in common, and no point be-

ides ; since, if .
sices ; swnee, 1 P=ad+bB+cC+dD+el

were a point of X also contained by Y,
YP=0
would necessarily imply

[4B...L] =0,

or else a=0, b=0.
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Let, further, 4, ... 4,,, be another pyramid, and
4= 7N} Al + ---+a1,nuAmn

L = anol,1A|+ (124 +an¢1,n+lAn+l'

Then the coordinates of CDE expressed by the border planes of the
A, are determinants of the third order in the a;; The coordinates of
X and Y are determinants of order 5 and n—1 in the a;; Now
X/Y is formed in accordance with the rules of the calculus. If

X =, P46, Py+...,
Y=cP+c;P;+...,
the ¢ being constants and the P border-spaces of the A4, then
XY = ¢, P[P +c,c; P[P+ ...

The result must be CDE, as we found before, multiplied hy some
constant. This constant must be in the a;; of order 2+1. And it
will never vanish so long as the assumption! made is complied with,
i.e., 80 long as [4 ... L] is different from zero. Therefore it cannot
be different from [4 ... L] itself.

If, then, BX is a S,.,, 4 a point outside of it,
AX/BX = [ABX].X,

as i3 seen by considerations similar to the above. From this the
proposition to be demonstrated (which might be called the sine
theorem) follows exactly as in case (1). The factor of composition
(in the reciprocal geometry) of £/n, where n is & S, ,, and ¢ any
space, is the sine of the angle formed by ¢ and y. 1f £ is parallel to
7, it is their distance; and the sanie is true when £ is a point.

The S,., I forms with any finite S,., in its normal form the
maguitude 1. Indeed, let A, B be two parallel S,_, in their normal
form, such that their distance is = 1.

Then I=A-B;
therefore [IB] in the reciprocal sense
= [AB] in the reciprocal sense = 1,

and, similarly, [IA} =—-[BA] =1.
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With this the formal laws of the calculus are complete, since, by
means of the theorem of composition in the original and reciprocal
form, the coeflicients occurring in any piece of work can always be
determined.

9. Infinity is representeci in the two geometries introduced in
the last section in a manner very different from that in which it
was expressed in point geometry.

Let O be a fixed point through which pass
three rays a, b, ¢, situsted in the same plane.

Let £ ab be denoted by v,
Lbe ” ”» a,

Lca ”» ” ﬁ)

a, b, ¢ may be in their normal form. They ¢
are then connected by the relation (3

(bc]a+[ca] b+ [ab] c =0,

sina.a+sinB.b+siny.c=0.

8

If «, b are fixed, and ¢ varies, then the angles a, 8 will vary. As
long as a and 8 remain real, sin « and sin 8 will also remain real and
determinate quantities. There is no reason why we should restrict
ourselves to real values only, the right of existence of imaginary
quantities and geometrical entities in geomeiry having been long

affirmed. If « and 3 assume, then, complex values, sina and sinf
will still remain definite. This ceases only when a and 3 become

infinite.
Let us now investigate the meaning of sin @ and sin 8 becoming in-
finite. a, 3, ¥ being connected by the relation

a+ﬁ+7 =0’

where y is constant, sina and sinf3 will become infinite simul-
taneously. From
sinfa+4cos*a=1,

. 20s a .
lim €52 —; (@ =-=1),
sina
when lmsina = w.
From sin a cas y+cosa sin y+sin 8 = 0, dividing by sin a,
b4 ’ g oy t
sin B . .
lim ~—£ = — (cos y &7 sin
sina ( Y 7):

limsing= w,
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In words: Let a, b be any two lines in a plane, so that Aa+pub,
‘where A and g ave any two constants, is = a line in their plane, and
through their point of intersection. If y is the angle formed by
a and b, then A: g = —(cos y=ssiny) determines two lines of this
pencil, which form with @ and b, and therefore with any other line
of the pencil, an infinite magnitude. These two lines are always dis-
tinct from each other, since sin y must be different from zero. The
two values A : pu to which they belong are given by the equation

N+2 pcos y+p' =0.
It y=1,
then cosy =0,

and the equation becomes  A’+4p’ =0,

showing that the two exceptional lines—isotropic lines as they are
-called—divide any pair of lines a, b perpendicular to each other in a
harmonic ratio.. These two lines are thercfore the double lines of an
involution, determined by pairs of lines through O at right angles to
each other. The involution of these lines is projected on to line I
-of plane ab into an involution of points independent of O; and there
are therefore two pointy (the civcular points) on I determined as the
-double points of the involution at I of points at right angles with
-ench other. Through one of these two points all isotropic lines
must pass. ’

According to one of our elementary propositions the totality of lines
situated in space S, which are perpendicular to a line ! and pass
through a certain point A on I form n plane space of manifoldness » — 1.
‘This may be put differently by considering only the I of the space
thus: to any point D of I corresponds n certain 3,_, situated at I
-called perpendicular to D ; and vice versa, 3 being given, D is uniquely
-determined. A covrespondence of such a nature may be conceived, as
is well known, as resulting from polarization upon some quadric
surface. The quadric surface thus determined at I will be denoted
by J. It has received different names, one of which is “ the imaginary
-spherical manifoldness at infinity.” But we shall avoid giviug this
-quadric a special name, only reserving the letter J for it.

We are not dependent for its definition on projective geometry.
‘The following is an independent investigation, to prove the (abstiract)
-existence, and to show the significance of that formation.
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Let a, b, ¢ be three rays emanating from a point O in a space S,.
Then any other ray d in the S; through O is a linear form in the-

a b ¢ d = Aa+pb+ve.

Kach plane through O will contain two isotropic lines; the totality
of the isotropic lines through O in the S, form therefore a cone,
which is cut by any plane through its vertex in two lines, and is
therefore of the second order. The angle a, b being vy, that of b, c:
being a, and that of ¢, a being B, the isotropic lines situated in the-
planes ab, be, ca, respectively, are the three pairs defined by

v=0, M4+i’+2pucosy =0,
A=0, u*4++"+2uvcosa =0,
p=0, v’+)\’+2v)\cosﬁ=0,l

respectively. Tt follows that the equation of the isotropic cone-
must be

N p? 47+ 2 cos y 4 2uv cos a+2rA cos B = 0.

This cone will cut I in a conic, determined by the three point-pairs
in which it is cut by the lines infinity of ab, br, ca, vespectively ; and
which is therefore quite independent from Q. It is this conic which
we designate by J. If I),, D,, D; are any threc points at I, forming-
with each other angles y, «, f3, respectively, then the conic J will
contain all points AD,+pD,+»D;, for which above equation is satis--
fied. More especially, if y, a, 3 are all equal to I, then the equa-
tion of .J will be

Nt =0.

If D is any point at I in its normal form, then the *“cond” that.
D should belong to J (by which we denote that function of the
coordinates of the formations considered, or that magnitude, which
must vanish whenever the condition in question is satisfied), if D-
does not belong to J, is = 1. Indeed, let D,, Dy, Dy be three points.
at right angles at I. Let

D =a,D,+ay,D,+ a;D;.

Then the cond JD = o\ +a;+a;.
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Now, if P be any finite point, P+D = @ another, then
JD = J(Q~P)

gives, according to the theorem of Pythagoras in space, the square of
the distance from @ to P, which is = 1, since D is in its normal form.

In exactly the same manner it may be shown in regard to any
space S,.

(1) That the totality of the isotropic lines throngh any finite
point P in a 8, cats I in a certain surface J, of the second order, in-
dependent of P.

(2) That this surface contains all points

A1D1+A’Dg+ (R +AIID"1
for which SAT =0,

where the D, are any sects in their normal form at right angles to
each other (a configuration whose existence is easily shown by
induction).

(3) That for any point D at I in its normal form we have

JD =1,

with the exception, of course, of the points belonging to J (for which
a normal form does not exist). .

Let now D, and D, be any two points at I. If A, u be any two
values, J (AD,+uD,) is a homogeneous form of the second order in

A, p; and, since
J(D)=J(Dy) =1,

it must be J(AD,+puD,;) = NX+u'+2\u . K,

where K is some constant depending solely on D, and I,. It is this
constant K that H. Grassmann calls “the inner product” of the
two sects D, and D,. To find its significance consider the values of
A p for which the quantic of the second order vanishes. Its two
roots obviously indicate the position of the two points AD,+ uD, in
which the line D, D, cuts J. But their equation is, as we know,

A4 pu?+2\p cos (D, D)) =0.
So, then, K =cos (¢ D,D,).
LI, generally, D,, D, are any two sects, not necessarily in their
normal form, then their “inner product” is the factor of 2u3 in

the development of J(aD,+f(D,), according to powers of a, 8.
Geometrically, it is the length of the .one multiplied by the
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perpendicular projection of the other upon it ; or [D,][D;] cos £ D, D,.
Originally H. Grassmann introduced the sign x to denote the
inner product. Later on he abandoned this way of writing. In
mechanics, where the surface J and the inner product are probably
destined to be of much use, such a short sign would have its advan-
tages.

Let Dx E denote the inner product of two sects D, E. Let I' be
any other sect. Then

(D+F)xE = DxE+FxE.

This follows readily, for instance, from the algebraical definition,
since obviously the factor of 2«8 in the development of

J{a(D+F)+pE}

is the sum of the factors ‘of 2a/3 in the corresponding development of
J(«D+BE) and J («I'+3E).

The equation of J may be written in a very simple form. Let
D, ... D, be any n linearly independent points at I. Then & point
AD + ...+ A, D, will belong to J if

(\D,+ .. +A0.D,) x (A D,+... +\,D,) = 0.
If the D; are in their normal form, this is equivalent to
SAI+ 32\ cos 2D, D; =0,
& form which might have been found by our original process.
To bring any sect D = A\ Dy+... +A,D,

to its normal form, it is necessary to divide it by the square root
-of JD, i.e., by

VAL F N 200 cos 2D, Dyt ..

The investigation carried on so far might be pursued on the samne
‘lines for the geometry of spuces S, through a fixed S,.,, or of §,_, in
afixed S,. We shall designate by the name of isotropic spaces the
two spaces of any pencil that form un infinite magnitude with any
other space of that pencil. 1f 4, B are any two spaces of & manifold-
ness having a S;_, in common, and ¢ the angle they form, then, just
a8 before, A4 + uB will be an isotropic space when

N+ ul+ 2 pucos ¢ = 0.



1896,) Mr. E. Lasker on the Geometrical Calculus. 258

1t is then shown, in exactly the same manner as before, that
A151'*' aes +xuolsuﬁ\
(the s, ...s,,, denoting a system of S,., in a fixed S,) is an
isotropic space, when

Nt X0+ 3 20 cos £ 8.8, = 0,

¢ 8,8; denoting the angle formed by S; and S;.- An isotropic space,
it will be noticed, is one which cuts J in a quadric surface having a
double point. The above is therefore, 't projected into I, the
reciprocal equation of J. )

The * cond” that a space S,._, in its normal form should touch Jis 1.
It will be sufficient to consider the state of things at I. Assume n
Na-z at I at right angles to each other a, ,... .. Put

Sz =Aa+pb+...+rl
The * cond” in question is
=X4pi LR
The 8S,.; and the « ... I being supposed to be in their normal forn
| (ub...1]is =1,
A=[b...18,]), p=—[ec...18,.5), &e.

{b... 18, ,] is simply the sine of the angle which the point b | ¢ | ... | 1
forms with 8,_,, &c. According to the “ Pythagoras” for a space S,
the value of A*+*+ ... is seen to be 1.

If we form the “cond” in question for as+f3¢, where a, {3 are any
two constants, s and ¢ any two S,_, at I, the vesult will be a
quadratie function of «, /3.0f the form «*+(*+2¢BK. Similarly, as
before, I{ may be denoted as the inner product of s and ¢, written
sxt. We have then, if s and ¢ are in their normal forms,

§Xt =cCos £s,t,
1
and (as+b.s') xt =.asxt+bs xt,

the a, b being constants. If the ,, a,, ... a,, are the border-spaces of’
any pyramid at I, the reciprocal equation of J is simply

Mo+ Ne) X N+ M),

which is = SA{+ 3N\, cos £ aia;,
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and it also follows that, to bring

A101"' vee +Auan

to its normal form, it is necessary to divide it by the square root of
that expression,

Among the many properties of J none seem so interesting as the
one which brings it into intimate connexion with the theory of the
potential function W in any space 8,. It'is that J is * apolar”
to W.

10: To find. the trigonometrical formule of plane and spherical
manifoldnesses, and related problems, can now be easily solved. The
following is a brief account of what might be said under this head.

Let 4, B, ... L be a pyramid in space of » manifoldness; 4, B, ... L
the border-spaces opposite to the corner-points 4, B, ... L,

A= BOD..L,

BB =—ABD... L,
0= ABD..L,
&e.,
50 that AA=BBE=00=..=4A=1,

where the magnitude A of the pyramid is assumed for convenience
equal to unity.
For any point P we shall then have

+ P=[4AP]A+[BP]B+...+[LP]I,
for AA=DBB=..=%1;

therefore this will be true when P=A4, B, ... L; hence also when
P is a linear form of multiples of 4, B, ... L. Similarly, if s be any
S.., in the S,,

s=[4s] A+ [Bs} B+...+[Ls] L.
As a special case, IA=IB=..=1,
I=4+(A+B+...+L).
If, then, we cut this by I,
(E) 4/I+B/I+C/I+...+LI=0,

4, B,...L are not in their normal form, but appear multiplied by
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the magnitude of the border-pyramid in their space. This is not
ltered by the intersection with I. Bringing 4/I to the right-hand
-side and forming the inner product of each side with itself, we obtain

[AP = (B¥+...+[L1*+2[B][0) cos ¢ BU +...,

‘the generalized cosine theorem for point geometry. By treating (E)
differently, it can of course be given different forms.
It may be shown without any difficulty that all the magmtudes

connected with a pyramid are known when the 'n_2+_l quantities,

representing the distances of any corner-point from any other, are
known ; and that these quantities are perfectly independent among
themselves.

The cosine of the angles formed by the directions of any two
-edges which do not intersect can easily be discovered.

~ From A—B=A-D+1B-(+D-0,
forming the * inner square ” of each side,
[4-B)'=[4-D]'+[B-0]'+[D-0]}
+2[A—D][B-0] cos 241,
+2[A—D][D—0] cos £ ADO
+2 [B—D] [D-—C’] cos £ BOD,
giving cos £ AD, BO in terms of known quantities.

The distance of any point

‘ P=oad +...4+AL
" from any other  Q=dA+..+\L
is the squave root of the inner product of P—@; and therefore ex-
n+l.n
2

pressible by the quantities.

The cosine of the angle formed by any two spaces
Moyt i A dun,
R L D VORY AR
the a,, ... v,,, being supposed to be in their normal form, is
MMt ..+ NN cos £ (a,a) +...
VN b +ONN, o8 £ (3,) /A4 e

bos¢=
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where (a;, ¢;) denotes the angle formed by a; a, For this is the
inner product of the two spaces after they have been brought to their
normal form.

Connected with » §,.,, having a point P in common, is & certain
magnitude, which iy the sine of the angle formed by any two of
them, multiplied into the sine of the angle formed by any third one
with the §,., common to the first two, &e. It is the factor of com-
position in the reciprocul geometry, the composed space being the point.
P, Ifthen S, are

A+ aag+ ... =8,

(the « being supposed to be in their normal form), then P is found
P=LA+ LA +...,

where the L are expressed according to the rules given by the #+1
determinants of a matrix of #+1 rows and % columns, whose co-
cflicients ave the A, ;. The fuctor of composition of I’ is therefore

. I+ L+ ...+ L,,,|
\/)*1 l+ + 27, lAl ,(«0"(“."9) \/\' l+

the = square roots being necessary to bring the 8, to their normal
form. 1If, for iustance, » = 2, @ represents the sine of the angle
formed by two lines.

The discriminant of
(,D,+...+z,D,) x (,D,+ ... +2,D,)

considered as a quantic in the a;, the D being sects of any kind, is the
square of [D,D;...D,]. Indeed, if E,... Ii, are sects in the space
D, ... D, at right angles to each other, and of length 1, then

(= E+...+2,B,) x (2, B, + +2,B,) = 2 +2;+... + ),
& form whose discriminant may have the value 1. If we replace

D, by its linear equivalent in the F,,

Di ” " 131 Eh
&e., ’
then (z,D,+...+2,D,) x (2, D, +... +x,D,)

will be expressed by the sum of n squares of forms y; linear and
homogeneous in the «;, whose determinant is not different from the
determinant of the linear forms by which the D, were expressed by
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the E;; the discriminant in question is therefore the square of this
determinant. But [E,... B,] = 1; therefore the discriminant is
the square of [D, ... D,].

Let it be required to find the distance of a point P from a line ! in
space Sy by means of the coordinates of P and I.

If A, B, 0, D are any pyramid in S,,

P = Ap, +p,B+p, 0 +p,D;
l=a,AB+a,A0+... +a,0D,
then IP = (a,p5—a;p3+a,p,) ABO+....
If 1 is in its normal form, then the weight of IP will be [IP].

Therefore [P} = ¢ {(mpy—asPataup)*+... } = IPXIP,

where ¢ is a constant whose value is 1, when I is in its normal form,
aud solely dependent on the a;.

The right-hand side will vanish only when this algebraical ex-
pression for the distance of P from ! vanishes, that is, when IP ig one
of the isotropic planes of the pencil in the S, through I; then it will
vunish always., The value of the perpendicular from P on ! may
therefore be found by constructing these two isotropic planes, and
forming the “ cond” that P may be contained by any one of them.

If P, @, R are any three collinear points, ! any line not intersecting
PQ in the space S;; if, further, IP forms with IQ the angle ¢, and

r]=p [IR]=g,
1 (aP+3Q) will be an isotropic plane, when
a’p' + B+ 2uBpg cos ¢ = 0.
Should therefore B = AP+ uQ, then the square (+*) of the distance of

It from 1 is P = N+ ulg> + 2\upq cos ¢.
From AP4pQ =R
it follows that MP+ulQ = IR.

If, therefore, the angles which IP and IQ form with IR are denoted

by x and y, then Ap:pg = siny :siny.

In the same way, it is hardly necessary to mention, many other
apparently more complicated metrical problems may easily be
solved. In the remaining portion of this section we shall investi-
gate the perpendicular distance of any two plane spaces that have
no point in common.

VOL. XXVIIl.—N0. 591, 8
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1f 4 and B are any two spaces of manifoldness % and % respectively,
having no point in common with each other, then one point of 4 and
one point of B are in such relation to each other that their distance
is shorter in absolute length than that of any other two points be-
longing to 4 and B respectively. The line PQ joining them is
perpendicular to 4 as well as B, and there is no other line of this
nature. Indeed, the I of the space 4B is of manifoldness A +%, I/A4
is of manifoldness A—1, and I/Bis of manifoldness k—1. To I/4
corresponds a space 3, at I, of manifoldness %, whose every point-
is perpendicular to I/4; and similarly to I/B a 3;, of manifoldness
h. 3, and 3, have a point D in common, perpendicular to I/4 as well
as I/B.

Through any point of the space 4B it is possible to draw one line
to cut A as well as B. This was shown in §3. And only one such
line can be constructed if [AB] is different from zero, an assumption
with which we started. The line ! thus belonging to D is therefore
the only line cutting 4 as well as B at right angles.

This line I will intersect 4 and B in points P, Q. The distance of
P to @ is measured by the perpendicular distance of P from thespace
of manifoldness 2+k composed by B and I/4, parallel to 4. This
distance is the snme from every point on 4. Tt is, to write it sym--
metrically, the magnitude formed by B I/4 with A I/B, and thus, as a
rale, easy to calculate when the coordinates of 4 and B are given.

11. To make this essay somewhat complete it will be necessary to
discuss, in a few words, the theory of projection, or of linear trans-
formation, ns it presents itself in plane spaces of any manifold-
ness. :

Many words are unnecessary on this subject, since it has long been
exhaustively treated. Let any two spaces of the same manifoldness,
for definiteness point-spaces, be put into a projective correspondence
with each other. Then to any point 4 in the one space S corresponds
one point 4" in the otherspace §. If any two pyramids are fixed in
8, &, the coordinates of the points of S and S’ are mutually expressible
as linear functions of each other. It follows, that to any point 4 in
8 will generally correspond the multiple of some point A" of §"
And, if

4l corresponds to ad’,
‘B ” ) ” bB"

then ad+BB " ,» aad’ 4+ PBbB.
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Let now A correspond to ad’,

B w o OB,
L "’ 7 ZI‘,’
where 4... L is any pyramid in 8, 4’,,, L’ the corresponding one in &
Any point M=oad +..+AL
will correspond to M’ =aad’+...+AlL.

1t is therefore seen that n+2 points determine the correspondence.
Kor let

A be projectively related to A’,
B " Rk} n ” B,’

" 1 M ” ey

’
L ” ” ” ” L I

n[ " ” » » ‘n‘[,)

M=aAd +...4AL,

M=dA+..+N;
then a=a ia..l=N:]\
and everything is known.

Tf S and " are brought to coincidence with each other, then one
pyramid PQIR... S will exist, whose corner points correspond to
themselves.

Indeed, assume P =ad +...+AL,

= aad’ 4 ...+ NI/ .
If, then, J” and I coincide, for some value of p we must have
a(pA—ad )+ (pB—bB)+ ...+ A (pL—-IL") = 0.
1f such equation connects
pA—ad’y, pB-0D, ...,
then that pyramid must vanish,
[ (pA—ad’)(eB=bB)...(pL-1L)] = 0,
an equation in p of order #+1, which has therefore n+1 roots.
To each value of p will belong a system of values a, 3,... A, connecting
pA—ad’ ., pL—1L,

80 that the corner-points P of the pyramid whose existence was

s 2
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asserted can be found. In general, the p will be distinct from eacl
other. If they are not, limiting processes will explain what then
takes place. But this is not of much importance for the immediate
objects of this essay.

Thursday, December 10th, 1896.
Prof. ELLIOTT, F.R.S,, President, in the Chair.

Present—twenty-two members and four visitors.

The following gentlemen were elected members :—John Borthwick
Dale, B.A., late Scholar of St. John's College, Cambridge; Charles.
Samuel Jackson, M.A., Instructor in Mathematics, Royal Militavy
Academy, Woolwich; Arthur William Ward, M.A. St. John's
College, Cambridge, Professor of Mathematics and Physics, Canning
College, Lucknow, India. Mr. S. S. Hough was admitted into the
Society.

The Auditor (Mr. Terry), having read his report, complimented the
Treasurer on the way in which he had performed his duties. Mr.
Kempe moved, and Mr. Bickmore seconded, a vote of thanks to the
Aunditor for his services. The vote was carried wnanimously. A
motion was then made by the President, and seconded by Lt.-Col.
Cunningham, and carried unanimously, for the acceptance of the
Treasurer’s report. Dr. Larmor suitably acknowledged the compli-
ment.

Major MacMahon gave a sketch of the result arrived at in
Prof. Sylvester’s * Note on a Discovery in the Theory of Denumera-
tion.” In connoxion with this paper the President announced that
Prof. Sylvester had given permission to the Society to publish the
* Outline of Lectnres on the Partitions of Numbers,” which he read
at King's College, London, in 1859, and which had never been pub-
lished ; and that the Council had arranged to print the “ Outlines ™
as o companion to the late President’s Valedictory Address.

Mr. Burbury communicated a paper * On the Stationary Motion
of a System of Equal Elastic Spheres of Finite Diameter.”

Mr. Hough read a paper ** On the Influence of Viscosity on Waves
and Currents.”
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Mr. Mnacfarlane Gray gave a description of his Multiplying
apparatus.  Messrs. C. V. Boys, Dewar, and Greenhill joined in a
discussion of points connected with the subject of Mr. Gray’s com-
munication, and a -cordial vote of thanks was passed to these
gentlemen,

The multiplying apparatus consists of two principal parts, a sole
frame and a grid. In the sole frame the product cards for the
multiplicand ave set up in order. These are the same as what are
called ¢ Napier's rods,” being each the products in one column of the
nultiplication table, nup to 9 times 9, with a card for the 0 column.
The grid is a frame fitted with a number of sliders, each of the same
breadth as the product cards. Xach slider has at mid length a pane
of glass. "The edges of the sliders coincide with the vertical centres
of the cards, when superposed, so that each pane lies over the unit
place of one card, and the place of tens in the adjacent card. The
sliders are set to bring the panes each over the product lines for one
figure in the multiplier, taking the figures in the order the reverse
of that in which the multiplicand has been set up.  The grid frame
is fitted to slide over the card frame upon stepped guides, the steps
insuring the proper relative positions when reading the products.
T'he sliders may be of leather with the glass panes cemented on.
There is a figured plate for setting the sliders by.

"T'o obtain the product of two multidigital numbers, the cards for
the figures in one of them are set up on the sole frame, and the
sliders in the grid are set for the figures in the other. 'T'he grid is
then moved linearly over the sole frame, moving one figure at a time,
and at each, step the components of the products in one of the
vertical colamns of the ordinary multiplication are exhibited at the
panes of the mmltiplier sliders. These are added together, giving
one figure of the required product; the grid is then slid on to the
next figure, and the next vevtical colnmn is then shown. In this way
the final product i3 obtained without transcribing the intermediate
products.



262 Proceedings. [Deec. 10,

0

6 3 7 1

1 2 611 4 2
1 8 912 1 3
2{4 1122 8 4
3 1 5{3 5 b
3 6j1|8|4]|2 6
4 2|12 14 9 7
4 82 415]e 8
5 4|2 7|6 3 9

shows three cards of the multiplicand 637 being multiplied by 864.
The multiplier is set to the required figures by adjusting the sliders
till the figures in the column to the right (under 0) are seen through.
the windows. :

Iinch figure in the product is the sum of the black figures seen
through the windows. Through each window two figures are seen,
but they are not on the same card. The 3 in the product is given
in this position.

By the Machine. By Ordinary Multiplication..
637 637
864 __ 864
428 2548
2192 . 3822
682 5096
314 550368
846
425
550368

Lt.-Col. Cunningham stated some results arrived at in his paper
 On the Connexion of Quadratic Forms.” Upon a portion of these
results Mr. Bickmore made some supplementary remarks.

The following papers were taken as read :—
Concerning the Abstract Groups of Order k! and }&! Holo-
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edrically Isomorphic with the Symmetric and the Alternating
Substitution Groups on k Letters: Prof. E. H. Moore.

On o Series of Co-Trinodal Quartics: Messrs. H. M. Taylor and
W. H. Blythe.

On Finite Variations: Mr. E. P. Culverwell.

The following presents were received for the Library :—

¢ Beibliitter zu den Annalen der Physik und Chemie,”” Bd. xx., St. 10 ; Leipzig,
1896.

¢ Archives Néerlandaises des Sciences Exactes et Naturelles,”” Tome xxx., Liv, 3;
Harlem, 1896.

“¢ Wiskundige Opgaven met do Oplossingen door de Leden van het Wiskundig
Genootechap,”” Deelvir,, St. 2 ; Amsterdam, 1896.

“ Bulletin of the American Mathematical Society,” 2nd Serios, Vol. 111., No. 2 ;
New York, 1896.

¢t Fentachrift der Naturforschenden Gesellschaft in Ziirich, 1746-1896,”" Teile
1, 2; Ziirich, 1896.

¢ Bulletin des Sciences Mathématiques,”” Tome xx., Oct., 1896 ; Paris.

¢ Rendiconto dell” Accademin delle Scienze Figiche e Matematiche,”’ Seric 3,
Vol.11., Fase. 8-10 ; Napoli, 1896.

¢ Transactions of the Canadian Institute,” Vol. v., Pt. 1, No. 9; Toronto,
October, 1896.

¢ Rendiconti del Circolo Matematico di Palermo,’’ Tomo x., Fasc. 5; 1898.

‘¢ Atti delln Reale Accademia dei Lincei—Rendiconti,”’ Sem. 2, Vol. v., Fasc.
9, 10; Roma, 18986.

“ Journal of the College of Science, Tokyo,”’ Vol. x., Pt. 1. ; 1896.

‘““Journal fiir die reine und angewandte Mathematik,”” Bd. cxvir., Heft 2;
Berlin, 1896. .

¢ Annales de ln Faculté des Sciences de Toulouse,”” Tome x., Fasc. 3, 4; Paris,
1846.

‘¢ Educational Times,’”” December, 1898.

¢¢ Indian Engincering,”” Vol. xx., Nos. 17-20, Oct. 24-Nov. 14, 1896.

Presented by Mr. J. Hammond :—

¢ Commercium Epistolicum D. Johannis Collins et aliorum de Analysi promota’ ;
Londini, 1722.

¢ The Method of Increments, wherein the Principles are Demonstrated, and the
Practice thereof shown in the Solution of Problems’ (by W. Emerson) ; London,
1763.





