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An Essay on the Geometrical Galculvs. By E. LASKER. Received
July 15th, 1896. Communicated November 12th, 1896, by
Mr. Tucker.

Introdtiction.

In 1844 a remarkable book was published, entitled Die Ansdehnuntjs-
lehre, by H. Grassmann. It deals with a new species of magnitudes
—such as have a number of extensions, and which are composed of a
number of independent units—and teaches how to interpret their
addition and multiplication.

The book did not excite much interest, probably because its author
omitted to demonstrate that his calculus, although quite different from
ordinary algebra, was nevertheless, if properly interpreted, nothing but
a way of writing algebraical identities. Had he done so, he might
have considerably reduced the volume of his book, enlarged its
sphere, and would probably have found the keystone to modern
algebra.

In 1847 an essay of his, on the geometrical calculus of Leibnitz,
took the prize of the Jablonowsky Society at Leipzig. And, in 1802,
prompted by some of the few mathematicians of renown who had studied
his wi'itings, he brought out a second edition of his Ausdehmingslehre.
This second edition was far superior to the former, and gained a
small, but select, cii-cle of friends. Since that time the litei-ature
of the subject has grown to a considerable extent, and it is yet con-
tinually on the increase.

It is to be regretted that Grassmann made very little practical use
of his calculus. It is surprising that, though he had been for many
years in the possession of a new and powerful calculus, he foiled to
contribute in any way to the development of the mathematical ideas
which interested his contemporaries. Yet the time was full of
mathematical life and vigour, under the influence of such men as
Hesse, Clebsch, Riemann, Sylvester, Cay ley, not to mention the older
generation of which Gauss and Cauchy were still alive.

The author's essay attempts to demonstrate that Grassmann's
Ausdchnungdchre is a shape into which projective geometry or
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modern algebra may be thrown; that it is coextensive with these
two branches of mathematics, and that its symbolism embodies
probably the shortest and clearest and most suggestive manner of
expressing the truths of these sciences. The manner of deduction
is purely geometrical, based on a few assumptions concerning the
nature of plane spaces of any manifoldness.

1. We shall assume in the following an abstract universe, a space
S which shall contain any kind of space whose definition is faultless.
S itself will have no property to distinguish it in any way. The
Euclidean properties of our space of three manifoldness are consistent
with each other. S will therefore contain the straight line joining
any two of its points, the plane determined by any three, and the
space of three dimensions determined by any four of its points.

If, now, any point P outside of a space of three dimensions 83 is
joined by straight lines with all the points of the <S>3, then a space will
be originated which we shall call a S^ a plane space of four dimen-
sions, or of four manifoldness. Let A, B be any two points of the $3,
and A', B' any other two points upon the lines PA, PB. Then the
line A'B' will be contained by the plane PAB; which, in accordance
with its generation, must itself be contained by the Sv The 54 will
therefore contain the line joining any two of its points, the plane
joining any three and the Ss joining any four of the points of the Sv

A Sk is determined by any £3 contained by it, and any point P besides,
not belonging to the Ss. It follows that it is uniquely determined
by any five of its points not situated in one S3. Continuing the

process by which the possibility of the geometrical existence of
a St was evolved, we demonstrate in the same way the (abstract)
existence of a #„, a plane space of n manifoldness. Its fundamental
properties will be or are assumed to be—

(1) That it is uniquely determined by any n + 1 of its points not
belonging to any S* where k is smaller than n;

(2) That it contains any S/, with which it can be shown to have
h +1 poiuts in common not situated in a S, where I is smaller than h;

(3) That it is continuous everywhere;

(4) That no part of it is distinguished by itself from any other
part of it which is identically constructed ; and

(5) That any Sn.i cuts a S,t into two compartments A, B which are
identically constructed, and such that any point moving in a con-
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tinuous line (for instance, a straight one) from A into B must of
necessity pass the £„_!•

Let A, B, C, D, E be any five points fixing the position of a 8t.
Join AB and construct all the lines passing through A and perpen-
dicular to AB. Then the totality of these lines form a plane space
S^ which will be said to be perpendicular to AB. In S3 ABGD
construct the plane e, containing A, perpendicular to AB; and
similarly the plane c in the Ss ABBE and d in the 8a ABEO. ABOD
and ABDE have the plane ABD in common; consequently e and c
the perpendicular S on AB in A contained by ABD ; similarly c and d
the perpendicular e in A.HE; and d and e the perpendicular y in
AUG. % and e determine, in accordance with Euclid's axioms in
space Ss, tlie plane c uniquely; and so e and y the plane d; y and 3
the plane e. c, d, e are therefore contained in a space 28 of three
manifoldness, fixed by A and one point each of y, £, e. c, d, e divide
2S into altogether four compartments connected in A, in such wise
that any point moving in the 23 would have to pass one of the planes
c, d, e, in oi'der to move from one compartment into another. Let us
only consider two of these compartments L, AI which ate opposite to
each other, but are otherwise identically constructed. Move one of
the bordering planes c, d, e, say e, through one of the border lines,
say 2, in L (and M) continuously. In its initial position e was per-
pendicular to AB. If the angle that e forms with AB should vary,
if, for instance, the angle eAB should be larger than It, as far as L
was concerned, and therefore smaller than R if its value is measured
in M, until e comes in the course of its movement to coincide with a
plane e in L, M—when again the angle e'AB may be R—then the
spaces L\ M' described by the moving plane will again be opposite
cornel's, like L, M, and identically constructed.

But any plane through S in L\ M' will make with AB an angle
larger than R in I/, smaller than R in M'. This would be equi-
valent to a permanent property distinguishing 1! from M' and must
therefore be rejected. It follows, then, that all lines through A con-
tained by tin S8 must be perpendicular to AB. Let us assume any
line I through A perpendicular to AB, but not belonging to 23. Any
one of the points of I not coinciding with A may be called P. The St

in which we operate may be regarded as generated by the 23 and
point B in the manner originally described. B and P -will therefore
be collinear with some point Q of the 2S. AP, AQ, AB being all
contained in the plaue ABP, the two lines AP and AQ perpendicular
to AB must coincide. The proposition to be demonstrated is therefore
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verified. In exactly the same manner we may prove by induction
the more general theorem that the aggregate of lines I through A
perpendicular to some line AB in space 8,, constitute a plane space
»S,,_1t called perpendicular to AB.

Spaces perpendicular to the same line I are called parallel. They
cannot have any point in common. For, were P any such point, A
and B the points which the two spaces have in common with I, then
PAB would be a triangle with two right angles A and B.

Any plane space may be moved into coincidence with any other
plane space of the same manifoldness. This is a direct consequence
of the fundamental properties (1), (2), (3), (4) of plane spaces. .

Through any point P belonging to a Sk, itself contained in a Sk^,
a line I may be drawn in that »S*4,,, perpendicular to the 8k. And
only one such line is possible. To find I, draw any line I' in SktX any-
where ; and at any one of its points I*' erect the perpendicular »S*.
After that move the figure conceived to be rigid, so that I'' coincides
with P, S'k with Sk. The position which I' assumes will indicate I.

From any point P a perpendicular can be let fall on any space 2*
outside of it. To construct it erect the perpendicular at any point
Q of 2*, in spaco S^P; and draw in the plane of P and this per-
pendicular the parallel through P to it. Only one such perpendicular
is possible, according to Euclid's parallel axiom.

n -f 1 points not situated in a #A, where h is smaller than n, form a
figure which will here be called a pyramid of n manifoldness. The
points AX,...AUI ,will be called the corner-points, the lines AlAi,AxAs,...
AcA,j,... the edges, the planes AlAiAi,... AcAvAk... the border-planes,
the spaces S3 A^A^A^A^ AlAiA3A5, ... the border »S'3 of the pyramid ;
and so on generally. A. pyramid of n manifoldness will thus havo

, , . , tt + l . n , w + l.n.w— L , , ,u + 1 corner-points, — edges, • — •• border-planes ...
'it X . it . O

(»+l)**i border Hk.
Of any limited part of the space SH we shall assume that it possesses

magnitude. And we shall further assume that our ordinary con-
ceptions concerning the addition and the measurement of geometrical
magnitudes in space S3 are applicable to them. One of our
assumptions is therefore that magnitude in space Sa is expressible by
a number multiplied by the uth power c" of the unit of length.

Lot ][ and K be two spaces of manifoldness n—1 contained in a
<S',,; both perpendicular to some lino I and therefore parallel to each
other. In II draw any figure L, and by lines parallel to I project it
on to K into the position M. Then the figure bordered by L, M,
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and the lines parallel to I is measured by the length I of the per-
pendicular bordered by the two spaces H, K multiplied by the
measure of the magnitude L ( = M). This may be proved by a
most elementary process of integration, in conformity with the*
assumption that our conception of the addition of parts of spaces
should be applicable to parts of spaces in the 8n.

If P be any point, A and B any two parallel Sn.x in a Sn, and wo
draw from P a continuous aggregate of Hues, which cut out of A
(supposed to be nearer to P than B) a figure A\ out of B a figure B\
then the geometrical body of n manifoldness bordered by A', B\ and
the lines emanating from P is larger than A', h and smaller than
B'. h ; h being the distance of A' from .7*'.

It might be difficult to prove this when the foot of the perpendicular
let fall from P on A and B falls outside the figures A' and B'. It is,
however, sufficient for the present purpose to suppose that theso
points fall inside these two figures. Then, indeed, it is easily seen
that the perpendicular projection of the figure A' on B' is totally
enclosed by B\ and that the projection of B' on A' encloses the figure
A' on all sides. So, then, in conjunction with our last proposition,
the truth of the theorem is at once scon to follow from this.

We are now enabled to prove the fundamental theorem : If A be the
magnitude of any pyramid of n manifoldness and D be the magnitude
of any one of its border pyramids of n—1 manifoldness, h the dis-
tance of that border $„_, from the opposite corner, then

It will not detract from the generality of the theorem, if we prove
it to be true only when the foot of the perpendicular from the vertex
on the Su-i is enclosed by the figure whose magnitude is D. For, if
it bo true under this restriction, it is easily seen that it must be
generally true. We make therefore that assumption.

Cut h into any number m of equal parts, the points of intersection
being A (the corner-point or vertex) and JE/",,I/j,... J/m(which last is the
foot of the perpendicular let fall from A on the S,,-{). Through, each
Hi draw the space of n — 1 manifoldness 6'j''^ perpendicular to h,
therefore parallel to the Su.\. Then the whole pyramid is divided
into vi parts; each contained between two parallel spaces of n—1
manifoldness S;*J_, and S^*l

xK

Now the pyramid of n—1 manifoldness in the 6'^, is in all
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proportions similar to the £n_i (as can be easily proved from the
corresponding figure in piano). If the unit of length in the #,,_i is e,

then the unit of length in the *S(," . will be e —. If therefore D is the
""' m

( i \ "~l

—) is the measure of
ml

the pyramid in the 8®_x (applying supposition 4). It follows that, A
being equal to the sum of the slices between fij^, and 8\'}p A is

h I i \ "*•' >
larger than D —2 I — I , the i ranging from 0 up to TO—1, and A

• TO \mf
h I i \"~l

is smaller than D — 2 I — ) , the i ranging from 1 up to TO.
7)1 \ml

If m now becomes indefinitely large, this becomes equivalent to the

equation to be demonstrated, A = —'— .
n

2. Let A, G, D, ... L be the corner-points of a pyramid; and let B be
any point collinear with and intermediate, between A and C. Then,
from our conception of geometrical magnitude, the pyramid ABB... L
-f the pyramid BGD ... L is equal to the pyramid AGB ... L. This
equation we shall agree to write in an abbreviated form, thus,

G= CA,
implying the above.

Tho equation written down may now be understood to be quite
generally true, whether B bo intermediate between A and G or not,
as long as B is collinear with A and G. This implies that tho
magnitude of a pyramid must also be capable of assuming negative
values ; that, to be definite,

AB=-BA,

and AA — 0

In words : If two corner-points of a pyramid are transposed, its ab-
solute value does not change; but in as far as the above theorem of
addition is general it must change its sign. And, if two corner-points
of a pyramid coincide, its value is = 0.

For the objects that we are attempting to attain the true values of
the volumes of pyramids are not so much wanted as their proportions.
We shall therefore, for the sake of brevity, designate by the words—
" volume of the pyramid AtA2... An+l" and denote by [.d,... Allti] the
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n! fold of its true volume. We then obtain the following equation:—

[Al... iiII+1] = [4, ... 4,,] multiplied by the distance from An.x
to the space Ax ...A,t.

[AB... L] may be calculated by multiplying [-4B], the perpen-
dicular from 0 on line AB, the perpendicular from B on plane
A DO, &G. by each other. The perpendicular from a point upon a
plane space, in which it is itself situated, is of course 0. We see
therefore that _ . _, __ _

\_Ali ... L\ = 0
whenever any one of the corner-points of the pyramid is situated in
the space of the others. If, conversely,

[ABC ... KL] = 0,

then either [ABO ...K]=0,

or else L must belong to the space ABO ... K. From this it could bo
shown by induction that, whenever

[ABO ... KL] = 0,

any one of the cornor-points of the pyramid must be situated in tho
space of the others. If therefore n +1 is the number of the points
A,...Lt

[

is the necessary and sufficient condition that the A ... L may bo
situated in plane space of less than n manifoldness.

If £, IJ are two border-spaces of the pyramid A ... L that contain
all of its points together but have between themselves no coi'nor-
points in common, and if we denote by [£] and [»j] tho pyramids of
tho corner-points situated in £ and IJ respectively, then, from the
manner of forming the magnitude [AB ... X], it is clear that

where [£JJ] is some factor that is only dependent on the relative
situation of the two spaces $ and IJ to each other and not on tho
special position that the corner-points occupy within £ and ?/. In tho
same manner, if £„ ... $k are k border-spaces of A ... L comprising all
of these points, but of which none has any corner-point in common
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with any other, then

where [£.,] denotes the volume of the pyramid of the corner-points
situated in £ and [£, £, ... £t] a certain number determined only by
the position of tho spaces £, relatively to each other.

If \_A ... L] is different from zero, then also [£»j] is different from
zero; and $ and tj will have no point in common with each other. If
the point P belonged to both £ and y, wo might move the corner-points
in £ and y, so that one of them in either spaco £ and y coincides with
P, while the value of [$] and [17] remains unchanged. Tho value of
the pyramid would not be altered by this process ; but, two of its
corner-points coinciding (in P), it must be zero. The necessary and
suflicient condition that any two spaces i; and y have any one point
in common is consequently

O/] = 0.

If [£y] is diffei'ent from zero, the space composed by tho two (i.e.,
the space of tho A ... L) will be denoted by £y. In the same manner,
tlEi...lk denotes the space composed by £„£._,,... £4, i.e., the spaco
containing all tho points of Zu iit ... £t. We may easily verify that
[i', ... £*] is obtained by multiplying [£, £2J into tho magnitude
that £3 forms with space £,£,, this again into tho magnitude
that £4 forms with spaco £i£3£3, &c.; and that tho nocessary and
suflicient condition that any £., should have any point in common with
tho space composed by the other £ is

To define our terms: The space i',... £t will be called tho composed
space, the £< the different components. If [£J = 1, I will bo said to
be in its normal form. If [£] = c, different from 1, c will be called
the weight of £. And [£, ... £*"] will be called tho factor of the
composition. Wo thus may say: Tho weight cf the composed space
is equal to the product of tho weights of the different components
multiplied by the factor of the composition.

3. If we fix a point 0 on any straight line L and lay down a unit
of longth, all the points of the line may bo determined by their dis-
tance horn 0. If, then, a is the measure of OA, c that of OB, then
[/1/J] = c — a. Poyitivo and negative sign aro distinguished in
accordance with the law
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From the algebraical identity

we conclude

[AD] .[OD] + [BO]. [AD] + [OA]. [BD] = 0,

where also [AB] + [BO] + [OA] = 0:

Let us denote by k, I, m the values of

[AD], [BO], [0-1];

then k [CD] + Z [AD] + m [i?Z) j s= 0.

D denotes here any point of L whatever. It is therefore natural to
write- the equation between [CD], [AD], [BD] us an equation
between the points 0, A, B themselves, leaving D to be determined
until the moment when the requirements of the work make it con-
venient.

The equation maybe translated into words as follows:—Between
any three points of a straight line a linear equation must oxist. Or
else any point G of a line may be expressed as a linear form of any
two others A and B,

so that a-f/3 = 1

(on account of k+l+m == 0).

By such an equation 0 is uniquely determined. For it must imply,
according to the meaning of such an equation, that

[CD]=a[AD]+p[BDl

which becomes, when D coincides with 0,

The ratio in which 0 divides the segment AB, and therefore 0 it-
self, is known when a and fi are given.

Let us now agree to use equations of this kind

even when the points A, B, ... L are not situated upon one line. If
the space 8 of these points is of n manifoldness, then we define the

VOL. XXVIII.—NO. 5 8 0 . Q
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meaning of such an equation by laying down that, if valid at all, it
must be equivalent to

where X may be any arbitrary $,,_i within the Sn of the points
A,...L.

We shall now successively prove (1), if an equation like the above
holds good in space of n manifolduess Sn} it will not cease to be valid
in any space containing that 8H.

(2) Between any n + 2 points of a space of n manifoldness which
are not situated in space of less than n manifoldness, there exists
exactly one linear equation

where a + b +... + 1 = 0,

and (3) if A ... L is a pyramid of non-vanishing magnitude in space
of n manifoldness, and any point P of that space is given as a linear
form of the corner-points of that pyramid

then P is uniquely determined by this equation.
To prove (i) let

a [AX] + b [BX] + ...-\-l [LX] = 0,
where X is any #n_i in the JSM containing all the points A, B,... L.
Let further 2 be a *Sn+1 containing the Su; and let Y be any space of
n manifoldness contained by 2.

Y lias Avith any straight line of 2 a point in common. This follows
from the original definition of plane spaces (as well as by [YZ] = 0
where I is any line of 2, which is easy to prove). With a plane
contained by 2 it will therefore have in common at least two points,
consequently a straight line; and similarly, with the<Sfl of the points
A,... L, a $,,_i which may be called X. Let P be any point of Y not
contained by X. Then

Y is composed by X and P ;

therefore [A Y] = [AX].[(AX) P]

Similarly, [11Y] = \fiX].[SuP],

[LY]=[LX].[SHP].
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It follows that
a[AY]+b[BY] + ...+l[LY]=O.

Prom this the proposition (1) is verified by induction.

The truth of (2) is also demonstrated by induction. Assume it to bo
true when n = k. Then it will continue to hold good when n = k + 1.
A, V, G, ... L being a group of &+3 points in space of manifoldness
k+1, the line AB will have one point P in common with the space
$„_, of the remaining points (7, ... L. Now, we know that between
A, By P there exists some equation such as

aA+/3B-P = Q, a+(3 = l,

and according to assumption there exists an equation such as

The space S of the points A ... L comprises the spaces where these
equations are valid ; they are therefore both valid within it. It
follows then that the two expressions

aA+(3B and yC + SD + ... +XL

must be the same; and it is incidentally noticed that

One equation of the form

is therefore suro to exist. Assume the existence of another

a'A-t-b'B + c'C+...+Z'L = 0.

Compose X by 0 ... L. Then

[GX] = [DXJ = ... = [LX] = 0,

and

showing that a : h = a : If. Similarly

a : h : c : ... : I = a : h' '. c : ... : I

proving (2) completely.

Let, finally,
P = aA + (3B+...+\L.

Q 2
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From what we know about points upon a straight line aA+fiB is
the o+/8-ple of some definite point A' upon the line AB,

aA +$B+yO = (a+/3) A' + yO

is the a+/3 + y-ple of some definite point on the line A'O ; i.e., some
definite point in the plane ABC. By induction, it is immediately clear
that

aA+(3B+...+\L, where a+/3+.. .+X = 1,

is some definite point in the space AB... L.

The values a, /?, y, ... A which fix the position of a point

P = aA +(3B + y(7 +. . . + X L

will be called the " coordinates " of P, whenever A, B, ... L is a fixed
pyramid iifiod all through in one piece of work.

From the theorems given many properties of plane spaces can at
once bo deduced. For instance, any 8k has with any SA, both being
contained in spaco $„, where h + h == n, one point in common. For,
assume any pyramid of ft+1 points in the 8k Al... Ak+V and a
Ri'milar pyramid in the 8h Bx ...Bhti. The total number of these
points which are all situated in the Sn being h + Jc + 2 = n + 2 , one
linear equation must exist between them (generally speaking)

n,lAi+...+ak+iAkn + hiBl + ... + &/k+,JBA+1 = 0,

If 2a = c then a,/t,+ ... -f a*., Akil is the c-pleof the point common to
both Sk and Sh.

Similarly it may bo shown that a Sk and a 8^ both of which are
contained in space Sn must have a plane spaco of manifoldness

—n in common (k + h supposed to be larger than n).
If »SA, 8k, Si are any thi'ee spaces contained in a 8n1 and

one straight line (generally speaking) can be drawn to cut all three
'spaces. Assuming

h + 1 points in the &, Ax ... Ah.x,

/e + 1 points in the Sk, Bx... #*«.,,

points in the 8t, Gl...Ql+v



1896.] Mr. E. Lasker on the Geometrical Calculus. 229

•we have h+k + l + 3 — n + 2 points in the 8n, between which therefore
a linear equation will exist, viz.,

o1i4l+...+o*+1il»M + &!#!+• •• + &*+! •D*+1 + GiCfi + ... + cJt+1(7A+1 = 0.

Consequently the three points A, B, 0 belonging respectively to
Si» Sk1 8{, defined by

aA — axAx + ...

are collinear.

(Some tlieorems based on the propositions of this section are given
in two articles by the author in Nature, August 8th and October 17th,
1895.)

The coordinates of a point have a certain geometrical significance.

Lot alAl + aiA<i+ ...+an.2An+2 = 0

for n + 2 points Av ... A,,+2 in a 8,,.

From this

Assume for X the space AtAt... An+%; then

al[A1As... A + 2 ] + a 3 [ jM, . . . ^+2] = 0.

If, therefore, ax = [A3AS... ^l,,+i],

then aa = — [_A2A3... .4,,+i]>

and generally ak is found by replacing, iii [A2At... i4,,+a], ak by a, and
changing the sign of the whole.

In conformity with the rule of signs, we shall obtain

a, =
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4. Let An*i = o,^, + ,..+an+1^n+2.

In accordance with the mean'ng of such equations, we obtain, by
adding any combination .3C = P,Pg .. .Pn of n points in space Ax ... An4l

to each member,

Replacing yl,,t2 by its linear expression in the Af, this assumes the
form of an identity

.P,... Pn (0,^!+... + a,,+14n+1]

= a, [P,P9... P ^ ,

Treating the P similarly, it is clearly shown that the values of
pyramids whose points are linear forma of other points are found by
treating them as if they were algebraical products.

Lot A, B, P, Q be four points on one line, and

then, according to the above,

If, now, the rule of signs is taken into consideration, this is seen to be

a b

c d

[AB].

Let, similarly, P, Q, R bo three points in a plane, linearly expressed
by means of three points A, B, 0 in the same plane whose triangle
does not vanish

P =

Then it is easily seen that

[PQR] = V
b"

c

c"

a

a"

c'
c"

a'

a"

b'

b"

[ABO]

[BOA]

[CAB].
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But, according to the rale of signs, [ABC], [BOA], [CA B] all
denote the same value ; therefore

[PQJR] = a b c [ADC].

a' h' c

a b c

It could, in exactly the same manner and in connection with some
elementary properties of determinants, be shown that, if n 4-1 points
P t , ... P,,*i are expressed as linear forms of the n- | - l corner-points of some
pyramid Ax... An+i in their space

then [ P , P , . . .P n + 1 ] = o,,i o.|,n+1 t ... /!„•,].

Let At ... An+l be a fixed pyramid, P a variable point. Put

then the totality of points for which the x satisfy a linear equation

form a certain S,,+\. Indeed, let Px, ... P,,+i be n-f 1 points whose co-
ordinates xifj satisfy the given linear equation. Then from elementary
properties of determinants their determinant (xitj) vanishes; there-
fore also [Pj ... P,,+i], showing that P,,+J belongs to the space of the
other n points.

If Q, B are any two points, and

alxl + a<tK2+... +a,,+1ai
H + i = u — 0

be the equation of any Sn-.u then

uQ : uR,
or tho proportion of the values obtained by inserting in place of the
running coordinates contained in u those of Q and B is equal to

that is, equal to the proportion of the perpendiculars from the two
points on the SH.i. Indeed, let P, , . . . Pn be any n points fixing the
#„_!, X a variable point

X — avi1 + ...+a:n+,.i,,+1;

then [Pt ... PnX] must be. a multiple of w, both being homogeneous
and linear in the xt and expressing by their vanishing the same
circumstance.
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5. Let A, B, ... L; A\ B",... L' be any two pyramids in the same
space S. Let ^ be any other space. Then, from the formula of
composition,

[A'B1... L'*i] = \_A'B'... L'] .

Should therefore

[AB...L]=zk[A'ir...L'],

then also [AB ... Xi,] = It [A'B1... L'*i\.

This equation may again be written in an abbreviated form thus,

In accordance with this result we may lay down that by the words
" space $" is meant any combination of points in that space whose
pyramid is = 1; and by H, k denoting any constant, any combin-
ation of points in t,liafc space whoso pyramid is = k.

In order to express the fact that any two spaces S and T are
identical, we write S = T, saying S congruent to T. Thus the straight
line L, joining two points A, B, is L = AB. However, according to
the above, L only = AB when \_AB~\ = 1. Generally AB = [AB~\. L.

A linear equation between spaces of the same manifoldness
t o t j i ••• €*»

(E) r1£I+e,£,+ . . .+c 4 &=0,

is defined as an abbreviation for the equation between numerical
values r > T r J- 1 r > T n

[ f ] + [ £ ] t + [ & T j ] = 0 ,
i\ denoting an arbitrary space, such that

It is immediately seen that from (E) it follows that also

B denoting an arbitary space.

If a linear equation exists behveen two spaces, they must be congruent.

Let, indeed, £ and IJ be any two spaces, P any point of IJ. From

Cii = c2v,

we conclude ct$P = car)P = 0 ;

i.e., any point belonging to q also belongs to.£; therefore £ = »;.
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If a linear equation exists between three spaces of h manifoldness
£n £21 £»» they must have a /S*_i in common ; and they tcill be contained in
a Sk + V And, conversely, if this is so, then a linear relation must exist
between them.

Indeed, let c,£, + c,£, + c8£s = 0.

If P is a point common to £2 and £8, then

&P = 0 and £3P = 0;

consequently also £tP = 0;

i.e., a point common to two spaces £ belongs also to the third.
Lot 2 be the space common to £,£4£3, Ax any point of £, not

contained in 2, A% any point of £2 not contained in 2. Join Av Ar

From c&AiA 2 + c^A ,yl 2 + c-3£,yl,yl3 = 0,-

we conclude, since £,/!, = o, £2yl2 = 0,

that also £sAA = 0 ;

i.e., that the line -4j-42 has a point in common with £s. Let this point
bo denoted by As.

Let, now, A[ be a point, if such a point exists, belonging to £i,but not
to %AX. .loin A[ with A%. Any line cutting £ and £9 will, as we
have seen, also cut £8. Let A[A% cut £3 in A'3. AXA[ and i48il3 will
be contained in the plane AlAaA[; therefore have a point P in
common. P belonging to both $x and £8 will be contained in 2, i.e.,

^AXA[ = 0.

We seo therefore that all points of d are contained in "SiAl; so we
obtain _

2 is therefore of manifoldness ft —1, and the space containing £„ £„ £s

is 2/1 ,^2, of manifoldness fc + 1.
Conversely, if £„ £2, £s are three spaces of manifoldness ft, having a

Sk-i (2) in common and contained in a /S*»i, they will be cut by any
line of the /S*+i not belonging to the $*_i in one point each, denoted
respectively by Ax, A%, As,

& = Sili, tj ^ 2ilj, f8 = 2il8.

-4,, ilj, As being collinear, a certain relation will exist between them,

ciAti = 0 ;
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therefore also c,%AX + c,2L4,+cltAi = 0,

which may also be written

c, [2U,] ft + c, [Sil J ft + c8 [S i , ] ft = 0.

The theorem proved may be expressod differently thus :—

(1) If two spaces ft, ft of k manifoldness have a space 8k.1 in
common, then any linear form of them e,ft-fc3ft is congruent to
some space ft, also containing the Sk.\.

(2) If two spaces ft, ft of Ic manifoldness have not a space #*_i in
common, then any linear form of them c,ft + c2ft cannot be congruent
to any space, but will have a symbolical significance only.

If, for instance, lu lt are two lines in space which have no point in
common, then c^ + cj^ or any expression equivalent to it, will not be
represented by a line. But nature adds forces in the same manner
as Jinos aro added in the sense defined above, so that such expressions
c,Z, + ca£, may very well bo employed to express the effect of a system
of forces acting upon a rigid body, or the instantaneous movement of
such a body.

ket ft, ft, ... ft, be spaces of k manifoldness. Then any linear
form of them

will be called a form of manifoldness k.

Between the border S^s of any pyramid no linear relation can possibly
exist. But any space of k manifoldness in the space of the pyramid can
be represented as a linear form of these border SkS.

Let Alt... A,t+i bo the corner-points of any pyramid in space iS,,.
To prove the first part of the proposition assume any linear relation
between the border Sk of the pyramid

clAl...Ak+1 + ...+cJ£J + ... = 0,

the c denoting constants, the ft border #*'s. Add the combination

V — Ak+iAk+i... An+X,

containing all corner-points but the A1... Ak+i; then-

therefore c, [Ax... Ak¥iAk^t... ./in+i] = 0.

[.4,... An+t] is different from zero according to hypothesis. Therefore
c, = 0, and generally c, = 0.
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In any space £ of It manifoldness in the 8n, assume any k -f 1 points
P,, P8, ... Pt+i, whose pyramid is = 1. Then, according to defini-
t i o n 8 £-PP P

But, the P being situated in the Sn fixed by the pyramid Ax ... Ai+i>
they must be expressible as linear forms of theso points -4,-,

Pi ••• P*+i is therefore obtained by multiplying the linear expressions
•with each other, under consideration of the rule of signs, and the law
that two identical factors give zero as result. The expression thus
obtained defines I uniquely, as no other expression of the same form
can be equal to it. The coefficients of the border Sk'a are expressible
in the form of determinants of the matrix

according to what has been shown before.

The most general form of manifoldness h in space Sn is conse-
quently a linear form of the border Sk'a of any pyramid situated in
the Sn. As such it has altogether (« + l) t+i independent coeilicients
(coordinates).

The forms of manifoldness 2 can be given a certain shape which
seems simpler than any other.

If a and b are any two lines, and [a&] = 0, then a and b will have
a point in common, and any linear form ha + kb will therefore ho
congruent to some line. If, however, [a&] is different from zero, such
a reduction will not be possible, as was shown before.

Let A, B, C, D be the four corners of a pyramid in a 8S. The
general form of the second order in the Ss is

i.e., =zA
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But CjB+CjO+CjD is s some point,

c4B0+CBBD+ctCD is s uome line,

in the plane BOD; therefore

X = ha + kb%

where a passes through an arbitrary point A, and b is totally situated
in an arbitrary plane BOD (not containing A).

This, then, is the reduced form of the second order in space.
Similarly,. .4U Ait ... A6 being the five corner-points of a pyramid

where X is the most general form of the second order in the 8V and
Y the most general form of manifoldness 2 in the Sa A%AtAiA^ and P
belongs to that St.

Put, then, Y = ka + lb,

so that a passes through P ; then hAxP+ka is.again = some line c;
and we finally obtain

X = me+nb,

where m, n are some constants. The line of reasoning is thus indicated.
We conclude: The most general form of the second order in space 8n in

Where the c are constants and the alines, and v is = \n or = | (n + 1)
according as n is even or odd.

If the a{ are all situated in a space 2, we may say that X belongs
to X What, then, is the condition that X belongs to a space of
manifoldness h, and not to space of lower manifoldness P

If X=ha+kb,

XX = X1 = hhab,

aa and bb being zero, and

X* = 0.

If X1 = 0,

then h . k = 0 or [06] = 0,

from which we conclude that X must then simply be a line.
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Therefore the necessary and sufficient condition that X should be
a line is

X9 = 0,

and that X should belong to a St is

and quite •generally, concluding in the same way as above: Tlxe
necessary and stifficient condition that X should belong to a space of 2 n + l
vianifoldness is

And the space to which X belongs is = X"*1.

In the language of determinants this leads to the following theorem.
Let, first of all, four points Av A%, Ai} At be the corner-points of a
pyramid in space S8, and

P = c1

Then c, c3

This not being the most general form of manifoldness 1 in Ss, the
A must satisfy the relation expressed by

X* = 0.

Developed, this relation is seen to be

(E) A ^ V + A i . . A».4+Ai,4 A8.s= 0.

Or, in the language of algebra, between the six determinants of the
matrix

the above relation (E) holds good, and, if (E) be satisfied, then the
magnitudes AJJ can be expressed as determinants of such a matrix.
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Let, now, quite generally ^1 , . . . A^^ be any pyramid in space 6',,,

a, be any line = A j U i [ l U !M

A

If v is smaller than \ (» + l ) or \nt then X is not the most general
form of the second order in space Al... An+V The A<(, must there-
fore satisfy .a number of conditions. They are all expressed by
the equation /1?* ._.., n

(h) X = 0,
when X' is supposed to be different from 0. In algebraic form

(E') 2Aj j . A, y . A< i ... Aj • = 0,

where the summation is..tp. be extended over all indices

*1> Jit •••> *v*U jv + \1

different from each other, but which belong- to a circle of 2v + 2
integers; (E') then is a series of necessary and sufficient conditions
that magnitudes Ajfi- shall be expressible as one and the same linear
f° r m (1) (2) (»)

«i A,- j+ht Afj -f-... -f- »„ A,^

of the determinants A[J of matrices
.(*) <*)
c i c,,+i
dj dn+j

We might put this again into determinant form, bnt we leave the
matter here, as it lies too far apart from the object here pursued.

Forces acting on a rigid body have a certain line of action a, and a
certain intensity h, so that, by identifying them with h.a, they aro
perfectly defined.

Two forces in the same plane have the same effect as one force
according to the parallelogram of forces. Let a, b be the two lines of
the forces /„ fit P the point of intersection of a and 6. Further,
determine A on a, and li on b, so that

h = [iM],

and h - [Pn~],

where fx = h . a = I'A,

and /I = *. 6 = PIS.



1896.] Mr. E. Lasker on the Geometrical Calculus. 289

The resultant of /i and f% is double
PD, where D is the centre of the
finite line BA ; therefore

according to the parallelogram of
forces. So, then, the resultant of / ,
and / , is

This is also true when a and h are parallel, and even -when

h-\-k~O

(the two forces then forming a couple) ; only that then the line of
action of the force is a certain exceptional line which will aftorwards
be spoken of as the line infinity, and which would again bo
characterized by fi+fj, in situation as well as in regard to a certain
factor (the magnitude connected with the couple).

By applying the calculus to the formula) of mechanics, the same
result would be attained for forces acting on. rigid bodies in space.
The effect of a system of forces upon a rigid body would theu be seen
to be expressible by a form of manifoldness 1. The resultant of a
system of forces would simply be their sum (in the sense I defined
above), and the corresponding infinitesimal motion of the body would
also be determined by the same form of manifoldness 1.

6. We have not in the preceding sections again mentioned the
possibility that presented itself in the introduction, namely, that two
spaces might be parallel. Projective geometry shows how to
connect parallelism with the general theory. Parallel spaces in
piano, or in space, are such as intersect in a certain line or plane, tho
line or plane at infinity. The same is true for spaces of any degree
of manifoldness.

For three points on a line we had

similarly for four points in a plane

[ABC]-[BCD] + [CDA]-[DAB] =0 ,

and generally*. Au Av ..., Atl+U denoting any pyramid fixing a space
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Sw and P any point of that space

, ^ , . . . ^ , ] =0.

This formula, indeed, is obtained by means of the last proposition of
§ 3, identifying An+i with P, and applying

The equation may also be written, the space

A%... An+i -rtjilg... Alt^.x^-AlAiAi... -4,,+i, &c ,

being denoted by I,

J i s defined as a certain form of manifoldness n— 1 in space of mani-
foldness n. Two S,,..,'s contained in a #„ have a 6>,,_3 in common.
Therefore a linear form of such £,,_i's is again some S,,.\; and con-
sequently I must be some S,,.v The above equation, however, shows
that all points P form with /one and the same magnitude. This is
an apparent contradiction which has to be explained.

Let A, B, 0, 1) be the four
corners of a parallelogram. The
diagonals bisecting eiich other, ^vC O/--''
their point of intersection must be

and also

showing that *'VA'VA

or A-B = 0-D.

We found that aA+(ZB expi'essed the a+/3-ple of a point on the
line AB. Here we see that, when a+/3 = 0, the point in question
also belongs to any line parallel to AB. The significance of a + /3 = 0
is shown by letting a + /3 assume continuously varying values, with zero
as limit. Let, for instance, « be stable =1, ft approach —1 as limit.
The point P — uA + fiB will then travel away from the points A, B;
the more nearly ft approaches — 1, tho farther away Pwill move,
and the more nearly the value of [PA'] : [PB~] will approach unity.
In the limit ft == — 1, P will be at infinity ; A—B is therefore = the
point at infinity of the line A B.
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The equation

may now be interpreted as meaning •

[IP] = [IQ],

where Q is any other point of the Slt; or else

allowing that I contains all the points at infinity, belonging to any
line PQ in space &„. I is accordingly called the »Sn.t infinity.

We shall define I by the form

I — A^A^... All,l—AXA3... A,,tl+...

with the condition, however, that the value of =F[-4, ... -^,l+i] giving
[IP] must = 1. Hence [IP] — 1, whore P is any finite point;

therefore A2Ali... Al,+l—A1A6+ ... AHtl + ... = c . / ,

where c is the value of Tfyli ... yl.,,+,].

Two (S1,,., in tka &'„, say /S and 1\ tohich are parallel, intersect in I.
Indeed let AB bo any lino in S. From A let fall a perpendicular

on T, cutting it in A'. In the plane BAA' draw the parallel A'B' to
AB through A', which, being perpendicular to AA', must belong to T.
But AB and A'B have in common their point of intersection with / .
AB being perfectly arbitrary, it is evident that the #,,_2 in which &
intersects / must also belong to T.

S, T, I are therefore connected by a linear equation

= T.

To find the significance of a and 6 we compose this equation with P,
where P is any point of S.

Thus we obtain b = [TP\

showing that b is the perpendicular distance of S from T. Com-
posing with any point D of I,

It will afterwards be shown that [SD] is the sine of the angle that
S forms with the lines that pass through D. So then

o = l,
VOL. XXVIII.—NO. 5 9 0 . K
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since parallel spaces.form the same angle with any line, and

61= T—S

(where T and 8 are in their normal form).
Let A, B,... L be any pyramid fixing a 8n. Since A—B, A—0, ...

... K—L, all belong to I, it is evident that I contains all the points

xA+yB+...+zL,

for which x +y -f... +z = 0.

The latter is therefore the equation of I when coordinates are used.
Let A, B, 0 D be four points in a

plane connected by the relation

AB must be parallel to CD. Prom
the above we obtain

showing that the point E of inter-
section of AC and BD divides the
segments AC and BD in the same

ratio X : 1, which is also = \rz=—\. This makes it evident that the

symbol A—B is expressive of a certain direction as well as a certain
magnitude; the magnitude being [-4Z?] and the direction beingmarked
by the point at infinity of the line AB.

A — B denotes therefore a certain " sect," parallel to AB and equal
to it in length ; X (A — B) denotes, similarly, a sect parallel to AB and
equal to X [-̂ 2?] in length (although, to be quite strict, such symbols
should be regarded as denoting the point at infinity A—B common to
all lines parallel to AB, multiplied into a certain magnitude).

If P is a point, D any sect = X (A—B), then P + D is a point,
easily constructed by drawing through P in the plane PAB the line
PQ parallel to AB and equal in length to X [AB']. The magnitude of
a sect may be positive or negative, according to the law of signs
introduced in §2. It may be denoted by the symbol [...]. Thus
[D] denotes the magnitude of the sect D. In applications where
only its absolute value is considered, regardless of the sign, that value
may be written, in conformity with a notation already in vogue, thus,

• I D I -
Let JDlt Dv ... Dn, be any n sects; Q = P + A + D% + . . . + D,, is found,

as is easily seen, by describing a polygon whose one corner is P
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find whose sides are successively parallel and equal in length to
A» D3, ... Dn. The ultimate point of this polygon is Q. It closes
AV hen

, = 0.

For some applications of the preceding theory (although not
affecting our present purpose) it may be well to remark that

is, at most, equal to

and that A + A+-"+Ai+..., lim n = co

converges towards a definite sect of finite length whenever the series
| A I + | A I + ••• + I A» | + . . . , lim n — co , is convergent; and

vice versa. This is immediately seen by considering the geometrical
significance of A + D2 + ... + D,,.

Points at I obey the same laws, so far as their composition is con-
cerned, as points in the finite portion of the space SH. So, then, DtA
denotes the line at infinity joining the points at infinity Du D9. We
may represent D, J)2 by means of triangles of a certain magnitude
whose plane is parallel to a certain plane. The magnitude in ques-
tion is [ P ( P + A)(-P + A ) ] 5 the plane is P A A, -P denoting any
point whatever.

Generally the geometrical substrate of A A ••• An *-e-> the space
&n-\ of these points at infinity, is a pyramid of n manifoldness, whose
space is parallel and which is equal in magnitude to the pyramid

P being perfectly arbitrary. The magnitude of the pyramid

P(P+A).
may, for shortness, be denoted by

which ia allowable, this value being quite independent of how
P is chosen (as may, for instance, be shown by the theorem of
composition).

If I' is any space, JD any point, both at J, then [I'D] or the
magnitude formed with space I' by point D is the sine of the angle
which the direction of D forms with that of the space I'; the angle J)F

R 2
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being defined as the angle formed by any line PD with its perpen-
dicular projection on space PI'. For this is exactly the magnitude
of a pyramid whose base is a pyramid of magnitude 1 in PT and
whose vertex is P+D (where D is of length 1). [2),JDj... Dn] is there-
fore calculated by multiplying the [JDi][A] ... [#«] by the sine of
the angle DxDt, this again by the sine of the angle that DlDi forms
with D6 &c, according to the theorem of composition.

The conclusions of § 3 applied to sects show that the finite points
of the space PDX ... Dn are expressible in the form

P+.T,DI+...+«•„©„,

where the a\ may assumo any values whatever.

If iS is any $„_, in a #„, then [»S'P] denotes the length of the
perpendicular from P on S. Interpreted in this manner, [IP] would
not = 1, but be infinite. The explanation is that /belongs to a class
of spaces (of which it is the only real representative) to Avhich the
conception of normal form as originally given docs not apply. The
reason, for this will very soon appear.

If P is any finite point, I.) a variable point at J in its normal form,
then P + D will cover ono half of tho surface of a spherical manifold-
ness whoso centre is P, the other half being represented by P — 7).
Tho geometry on the surface of a spherical iminifoldness is therefore
identical, in metrical as well as protective relations, with the geo-
metry of points at I.

7. The calculus whose outlines have been laid down in tho preceding
paragraphs may be divested of its geometrical meaning; and it will
then become a calculus of linear forms and of determinants.

Indeed, let A, 13, ... L be n linear forms in u homogeneous variables,
and let AH ... L d.enotc the corresponding determinant; AH a matrix
of two rows, tho other rows C, D\ ... 1/ left indeterminato ; ABC
similarly a matrix of three rows, &c. And let any equation such as,
for instance,

n.AB + h.CD+c.EF-O,

if valid at all, be understood as an abbreviation of an identity between
matrices (AB, OD, EF) where the rows left indeterminate in these
matrices are supposed to be identical. Then it is, indeed, easily
enough seen that the laws of the geometrical calculus are expressions-
of elementary properties of determinants. For instance,
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would signify that the equality of two rows in a determinant causes

it to vanish, AB = -BA

that the transposition of two rows makes it change its sign.

(A+B) O = AO+BC

is easily seen to follow from the elementary fact that a determinant
is a linear function of the terms of each row or column. And, finally,
the significance of ARC T — o

is obviously that A, B, 0, ... JDare connected by some linear equation;
that they are not " linearly independent."

8. The calculus is applicable to the geometry whose elements are :

(1) Plane spaces 8k through a fixed 8k.v

(2) Plane spaces 8,,-\ in a fixed space of n manifoldness.

Indeed, any two Sk having Sk.x in common may be linearly
connected so as to form another Sk through that <5'jt_i- Any element
of this geometry may be generated by composing the fixed fi>t_, with
points outside of i t ; any linear manifoldness of elements of this
geometry by composing the /$'*_! Avith plane spaces outside the 8k-i-
A space 8H will obviously be of manifoldness n—k in regard to the
elements of this geometry, the fixed #*., being contained by the 8n.

E.2 =

arc elements of this geometry, we need1 only identify

[>',... Eh-\ with [S^A, ... Ah],

E,...Eh with iS4.,yl, ...A,,,

itnd the whole theory of point geometry is at once transferred to this
geometry.

(2) is proved by reference to §5, whence it appears that the /S,,.1 of
a Slt form a linear manifoldness of degree n; that they are linearly,
expressible by the w-f 1 border $„_, of any non-vanishing pyramid in
the <$'„; and that any linear form of these border 8n-\ represents
again, unconditionally, a Sn~v



246 Mr. E. Lasker on the Geometrical Calculus. [Nov. 12,

As regards geometry (1) [Ex... Eh~\ (in the new sense) was found
to be = [#*-i-^i ••• A ] (in the old sense). If S is any one of its
spaces,

O = &*_,£

in its normal form (according to the original definition), and E any
element

also in its normal form, then

[SE] = [S

is, according to the theorem of composition, the perpendicular
distance of A from S. If then the angle formed by two lines
emanating from a point in the $*_, into 8 and E respectively, and
perpendicular to the $*_„ is called the angle Z SE, then it is easily
scon that men • cm

[ES] = sm L SE.

If the Sk.\ lies entirely at 7, then [SE~] is similarly seen to be tho
perpendicular distance of the two parallel spaces S and E. It is a
remarkable fact that the same is true in geometry (2), as will be
shown by the following line of reasoning.

The geometry (2) may be called the " reciprocal" geometry, and
its composition be denoted by a vertical line (so that AfB would
designate the space composed in this geometry by A and B).

Let then ABODE ... L be any pyramid in the fixed Sn ; and take
for definiteness

X = ABODE,

Y-CDEFO ...L.

Then A' and Y will have the piano ODE in common, and no point be-

sides ; sine, if P = aA + bB+cC+dD+eE

were a point of X also contained by Y,

YP = 0

would necessarily imply

[AB...L] =0,

or else a — 0, 6 = 0.



1896.] Mr. E. Lasker on the Geometrical Calculus. 247

Let, further, Ax... AnJrX be another pyramid, and

A = ahX Ax + . . . + a,in+,yl,l+i,

L = a n + i f i Al-\~ ••• + c t n + i > n + iy l n + i .

Then the coordinates of ODE expressed by the border planes of the
A{ are determinants of the third order in the aiti. The coordinates of
X and Y are determinants of order 5 and n— 1 in the a(ij. Now
X/Y is formed in accordance with the rules of the calculus. If

the c being constants and the P border-spaces of the At, then

The result must be ODE, as we found before, multiplied by some
constant. This constant must be in the aitj of order u + l. And it
will never vanish so long as the assumption} made is complied with,
i.e., so long as \_A ... L~\ is different from zero. Therefore it cannot
be different from \_A ... if] itself.

If, then, BX is a Sn_t, A a point outside of it,

AX/BX = [ABX].X,

as is seen by considerations similar to the above. From this the
proposition to be demonstrated (which might be called the sine
theorem) follows exactly as in case (1). The factor of composition
(in the reciprocal geometry) of £/t), where tj is a S,,.u n<«d £ any
space, is the sine of the angle formed by £ and r/. If £ is parallel to
t), it is their distance; and the same is true when £ is a point.

The <S,,_i I forms with any finite £„., in its normal form the
magnitude 1. Indeed, let A, B be two parallel £„_, in their normal
form, such that their distance is = 1.

Then I = A-B-,

therefore [IB] in the reciprocal sense

= \_AB~\ in the reciprocal sense = 1,

and, similarly, [IA] = — [BA] = 1.
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With this the formal laws of the calculus are complete, since, by-
means of the tlieorem of composition in the original and reciprocal
form, the coefficients occurring in any piece of work can always be
determined.

9. Infinity is represented in the two geometries introduced in
tlie last section in a manner very different from that in which it
was expressed in point geometry.

Let 0 be a fixed point through which pass
three rays a, 6, c, situated in the same plane.

Let Z. ab be denoted by y,

L be „ „ a,

lea „ „ /3,

a, b, c may be in their normal form. They
are then connected by the relation

[be] a+ [co] b + [ab] c = 0,

sin o. a + sin j3. b + sin y . c = 0.

If a, b are fixed, and c varies, then the angles o, /3 will vary. As
long as a and /3 remain real, sin a and sin/3 will also remain real and
determinate quantities. There is no reason why we should restrict
ourselves to real values only, the right of existence of imaginary
quantities and geometrical entities in geometry having been long
affirmed. If a and (3 assume, then, complex values, sin a and sin/3
will still remain definite. This ceases only when a and fi become
infinite.

Let us now investigate the meaning of sin a and sin/3 becoming in-
finite, a, /3, y being connected by the relation

where y is constant, sin a and sin/3 will become infinite simul-
taneously. From

sin2 a -f cos2 a = 1,

,. cos a . .* ,..
lim --— —i (i? = — 1),

sin a 'when lim sin a = oo.
From sin a CQS y + COS a sin y + sin /3 = 0, dividing by sin a,

,. sin/8 , . • x
lim -;—!- = — (cosy±i siny),sin a
lim sin a = oo .
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In words : Let a, b be any two lines in a plane, so that \a+f*b,
where X and /x are any two constants, is = a line in their plane, and
through their point of intersection. If y is the angle formed by
•a and 6, then X: /c = — (cosy±z sin y) determines two lines of this
pencil, Avhich form with a and b, and therefore with any other lino
of the pencil, an infinite magnitude. These two lines are always dis-
tinct from each other, since sin y must be different from zero. The
two values X : /i to which they belong are given by the equation

If y = JB,

then cos y = 0,

and the equation becomes X2 •+• ft* = 0,

showing that the two exceptional lines—isotropic lines as they are
•called—divide any pair of lines a, b perpendicular to each other in a
harmonic ratio. • These two lines are therefore the double lines of an
involution, determined by pairs of lines through 0 at right angles to
each other. The involution of these lines is projected on to line I
•of plane ab into an involution of points independent of 0; and there
are therefore two points (the circulai' points) on I determined as the
double points of the involution at I of points at right angles with
each other. Through one of these two points all isotropic lines
must pass.

According to one of our elementary propositions the totality of lines
.situated in space Stl which are perpendicular to a line I and pass
through a certain point A on I form a plane space of manifoldness n — 1.
This may be put differently by considering only the I of the space
thus : to any point I) of 1 corresponds a certain 2,,-a situated at I
•called perpendicular to B ; and vice versa, 2 being given, J) is uniquely
•determined. A correspondence of such a nature may be conceived, as
is well known, as resulting from polarization upon some quadric
surface. The quadric surface thus determined at I will be denoted
by .7. It has received different names, one of which is "the imaginary
spherical manifoldness at infinity." But we shall avoid giving this
quadric a special name, only reserving the letter J for it.

We are not dependent for its definition on projective geometry.
The following is an independent investigation, to prove the (abstract)
-existence, and to show the significance of that formation.
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Let a, 6, c be three rays emanating from a point 0 in a space Sy

Then any other ray d in the £3 through 0 is a linear form in the-

Each plane through 0 will contain two isotropic lines ; the totality
of the isotropic lines through 0 in the $., form therefore a cone,
which is cut by any plane through its vertex in two lines, and is
therefore of the second order. The angle a, b being y, that of b, c
being o, and that of c. a being (i, the isotropic lines situated in the
planes ab, be, ca, respectively, are the three pairs defined by

= 0,

= 0,

respectively. It follows that the equation of the isotropic cone
must bo

Xa + /ns -f v9 + 2A/U cos y + Ifiv cos a -f- 2i-X cos /) = 0.

This cone will cut J in a conic, determined by the three point-pairs
in which it is cut by the lines infinity of ab, he, ca, respectively; and
which is therefore quite independent from O. It is this conic which
we designate by / . If JP,, D2, Ds are any three points at J, forming
with ench other angles y, a, /3, respectively, then the conic / will
contain all points XD, + ftD.2 + vDs, for which above equation is satis-
fied. More especially, if y, a, ft are all equal to JB, then the equa-
tion of J will be

If D is any point at I in its normal form, then the " cond" that
J) should belong to J (by which we denote that function of the
coordinates of the formations considered, or that magnitude, which
must vanish whenever the condition in question is satisfied), if D
does not belong to J, is = 1. Indeed, let D,, Dv Ds be three points
at right angles at I. Let

D = a, D, + a3R2 + ns JD5.

Then the cond JD = a) + al+as.
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Now, if P be any finite point, P+D = Q another, then

JD = J ( Q - P )

gives, according to the theorem of Pythagoras in space, the square of
the distance from Q to P, which is = 1, since D is in its normal form-

In exactly the same manner it may be shown in regard to any
space Sn.

(1) That the totality of the isotropic lines through any finite
point P in a Slt cuts / in a certain surface J, of the second order, in-
dependent of P.

(2) That this sm-face contains all points

for which 2A* = 0,

where the Dt are any sects in their normal form at right angles to
each other (a configuration whose existence is easily shown by
induction).

(3) That for any point D at I in its normal form we have

JD = 1,

with the exception, of course, of the points belonging to J (for which
a normal form does not exist).

Let now D, and D3 be any two points at J. If A, n be any two
values, J(\Dl+fiDi) is a homogeneous form of the second order in
A, n ; and, since

it must be / (\D1+/iD8) = A8+n%+2A/* , K,

where K is some constant depending solely on D, and D2. It is this
constant K that H. Grassmann calls " the inner product" of the
two sects Dx and Dt. To find its significance consider the values of
A : fi for which the quantic of the second order vanishes. Its two
roots obviously indicate the position of the two points \Dl + fiDi in
which the line DXD% cuts / . But their equation is, as we know,

A*+/48+2A/i cos (D,, A) = 0.

So, then, K — cos ( z D, D2).

If, generally, D,, Da are any two sects, not necessarily in their
normal form, then their "inner product" is the factor of 2a/3 in
the development of J (aDt+fSDt), according to powers of a, £.
Geometrically, it is the length of the one multiplied by the?
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perpendicular projection of the other upon i t ; or [A][A1 c o s ^ A A -
Origiually H. Grassmann introduced the sign x to denote the
inner product. Later on he abandoned this way of writing. In
mechanics, where the surface J and the inner product are probably
destined to be of much use, such a short sign would have its advan-
tages.

Let D x E denote the inner product of two sects D, E. Let F be
any other sect. Then

(D + F) x E = J) x E+F x E.

This follows readily, for instance, from the algebraical definition,
since obviously the factor of 2a/3 in the development of

is the sum of the factorK of 2a/9 in the coiresponding development of
J(aD+ftE) and J(aF+j)E).

The equation of J may be written in a very simple form. Let
Du ... Dlt be any n linearly independent'points at I. Then a point
A,!>, + ...-f \ul),t will belong to J if

If the Di are in their normal fonn, this is equivalent to

2Xj + 22\ 4 \ ; cos Z Dh Dj — 0,

:a form which might have been found by our original process.

To bring any sect D = AjD,+... +A,,D,,

to its normal form, it is necessary to divide it by the square root
of JD, i.e., by

The investigation carried on so far might be pursued on the same
lines for the geometry of spaces Si through a fixed &_„ or of S,,_i in
a fixed Su. We shall designate by the name of isotiopic spaces the
two spaces of any pencil that form an infinite magnitude with any
other space of that pencil. If A, B are any two spaces of h manifold-
ness having a />'*_, in common, and f the angle they form, then, just
.as before, kA+pB will be an isotropic space when
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It ia then shown, in exactly the same manner as before, that

(the sl ... s,,+l denoting a system of S,,_i in a fixed Sn) is an
isotropic space, when

X"J + ... +Xf1+1 + 2 2X.X, cos Z SiS, = 0,

Z StSj denoting the angle formed by #, and 8j. An isotropic space,
it will be noticed, is one which cuts ,T in a quadric surface having a
double point. The above is therefore, 'f projected into /, the
reciprocal equation of J.

The " cond" that a space Sn.x in its normal form should touch / i s 1.
It will be sufficiont to consider the state of things at /. Assume n
N,,_2 at I at right angles to each other a, b, ...I. Put

The " cond " in question is

= A' + ^+. . .+„*.

The S,,.t and the a ... I being supposed to be in their normal form

[«/J ... 7] is = 1,

X = [6 ... £&„_„], /i = — [«c ... I 6',,-a], &c.

[b ... I tin.i] is simply the sine of the angle which the point 6 | c | ... | I
forms with $„_*, &c. According to the " Pythagoras" for a space >S',,,
the value of A2+/t3+... is seen to be 1.

If we form the "cond" in question for us+fit, where a, fi are any
two constants, s and t any two »S',,_2 at J, the result will be a
quadratic function of a, /3 of the form a3 + />3 + 2a/3K. Similarly, as
before, K may be denoted as the inner product of s and t, written
s x t. We have then, if s and t are in their normal forms,

s x t = cos Z s, tt
i

and (as + b.s') xt = asxt + bs'xt,

the a, 6 being constants. If the alt ait ... a,,, are the border-spaces of"
auy pyramid at J, the reciprocal equation of J i s simply

(X^ + ...+ Ka») X (XjO, + ... + XHaB),

which is = 2X?+SXjX, cos Z a^
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and it also follows that, to bring

to its normal form, it is necessary to divide it by the square root of
that expression.

Among the many properties of / none seem so interesting as the
one which brings it into intimate connexion with the tlieory of the
potential function W in any space Su. It ' is that J is " apolar "
to W.

10. To find the trigonometrical formula of plane and spherical
manifoldnesses, and related problems, can now be easily solved. The
following is a brief account of what might be said under this head.

Let A, B,... L be a pyramid in space of n manifoldness; A,B, ... L
the border-spaces opposite to the corner-points A, B, ... L,

.1!=:. BGD...L,

B = -ABD ... L,

0= ABB...L,

Ac.,

so that A A = BB = GO = ... = A = 1,

where the magnitude A of the pyramid is assumed for convenience
equal to unity.

For any point P we shall then have

for AA=SB=z... = ± l ;

therefore this will be true when P = .4, B,... L; hence also when
P is a linear form of multiples of A, B, ... L. Similarly, if s be any
£„_, in the S»,

s = [As] A + lBs] B+... + [Is] L.

As a special case, IA = IB = = 1

I=±(!+.B+...+£).

If, then, we cut this by I,

(E) A/I+B/I+ C/I+... +L/I = 0,

A, 5 , . . . L are not in their normal form, but appear multiplied by
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the magnitude of the border-pyramid in their space. This is not
altered by the intersection with J. Bringing A/I to the right-hand
Hide and forming the inner product of each side with itself, we obtain

the generalized cosine theorem for point geometry. By treating (E)
differently, it can of course be given different forms.

It may be shown without any difficulty that all the magnitudes

•connected with a pyramid are known when the —'—— quantities,

representing the distances of any corner-point from any other, are
known ; and that these quantities are perfectly independent among
themselves.

The cosine of the angles formed by the directions of any two
edges which do not intersect can easily be discovered.

From A-B = A

forming the " inner square " of each side,

[A-B]* = [A-D]*+ [B-0]9+ [D-0]8,
+ 2 [A-D][B-C] COB LAI,
+ 2 [4-D][D-O] COS I ABO
+2 [B-D] [D-C] cos z BOD,

giving cos Z AD, BO in terms of known quantities.

The distance of any point

P == aA +...+XL

from any other Q = a'A +...+XL

is the square root of the inner product of P— Q; and therefore ex-

pressible by the ' quantities.
2

The cosine of the angle formed by any two spaces

the au ... i,,+i being supposed to be in their normal form, is

- h
cos L



256 Mr. E. Lasker on the Geometrical Calculus. [Nov. 12,

where (a,, a,) denotes the angle formed by «,-, a,-. For this is the-
inner product of the two spaces after they have been brought to their
normal foi'm.

Connected with n S,,_,, having a point P in common, is a certain
magnitude, which is the sine of the angle formed by any two of
them, multiplied into the sine of the angle formed by any third one-
with the &'„_;. common to the first'two, &c. It is the factor of com-
position in the reciprocal geometry, the composed space being the point
P. If the n £„_! aro

(the a being supposed to be in their normal form), then P is found

where the L are expressed according to the rules given by the
determinants of a matrix of n + 1 rows and n columns, whose co-
efficients are the A, ,. The factor of composition of P is therefore

the n square roots being necessary to bring the n S,,_i to their normal
form. If, for instance, n — 2, x represents the sine of the angle-
formed by two lines.

The discriminant of

(*, D, + . . . + xH D,,) x (a;, Z), +. . . + xnDu)

considered as a qnuntic in the a-,, the D being sects of any kind, is the-
square of [D,D8... 2),,]. Indeed, if E.i...En are sects in the space*
JL>, — D,, at right angles to each othei\ and of length 1, then

(a;,JE7. + . . . +xnEa) x (ic.^4-... +x,tEn) = x[ + xt+ ... +x*u,

a form whose discriminant may have the value 1. If we replace

I>, by its linear equivalent in the 2?,,

A i» „ ., E»
&c,

then (xlDi + ...+xnD,l) x (SB,A+ - +*»#.,)

will be expressed by the sum of n squares of forms y, linear and
homogeneous in the a?,, whose determinant is not different from the
determinant of the linear forms by which the D, were expressed by



1896.] Mr. E. Lasker on the Geometrical Calculus. 257

the Ei; the discriminant in question is therefore the square of this
determinant. But [Ex... JG7n] = 1; therefore the discriminant is
the square of [ P l . . . Dn].

Let it be required to find the distance of a point P from a line I in
space £8 by means of the coordinates of P and I.

If A, li, 0, D are any pyramid in Ss,

P =z.APl +

then IP = (tt̂ pg — 0,$}+atpy) ABO +....

If I is in its normal form, then the weight of IP will be
Therefore

= c {(o,ft-o>2i, + o4jpI)
i+... ] = IP X JP,

where c is a constant whose value is 1, when I is in its normal form,
and nolely dependent on the at.

Tlio right-hand side will vanish only when thin algebraical ex-
pression for the distance of P from I vanishes, that iB, when IP is one
of the isotropio planes of the pencil in the S'8 through I; then it will
vanish always. The value of the perpendicular from P on I may
therefore bo found by constructing these two isotropic pianos, and
forming the " cond" that P may be contained by any one of thom.

If P, Q, B are any three collinear points, I any line not intersecting
PQ in the space 8&; if, further, IP forms with IQ the angle <f>, and

I (aP + fiQ) will be an isotropic plane, when

cos </> = 0.

Should therefore B = \P+nQ, then the square (r2) of the distance of
J2 from I is

r1 = kY + n*q*+2\fipq cos <f>.

From \P+nQ = It

it follows that XlP+filQ = ZB.

If, therefore, the angles which IP and IQ form with IB are denoted

by x and f, then \p : n = 'sin ^ : sin x .

In the same way, it is hardly necessary to mention, many other
apparently more complicated metrical problems may easily be
solved. In the remaining portion of this section wo shall investi-
gate the perpendicular distance of any two plane spaces that have
no point in common.

VOL. xxvin.—NO. 591. s
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If A and B are any two spaces of manifoldness h and & respectively,
having no point in common with each other, then one point of A ana
one point of B are in such relation to each other that their distance
is shorter in absolute length than that of any other two points be-
longing to A and B respectively. The line PQ joining them is
perpendicular to A as well as B, and there is no other line of this
nature. Indeed, the Jof the space AB is of manifoldness /i + &, I/A
is of manifoldness 7*—1, and I/B is of manifoldness &—-1. To I/A
corresponds a space 2, at I, of manifoldness h, whose every point
is perpendicular to I/A; and similarly to I/B a 28, of raanifoldness
h. 22 and 2, have a point D in common, perpendicular to I/A as well
as I/B.

Through any point of the space AB it is possible to draw one line
to cut A as well as B. This was shown in § 3. And only one such
lino can be constructed if [AB] is different from zero, an assumption
with which we started. The line I thus belonging to D is therefore
the only line cutting A as well as B at right angles.

This line I will intersect A and B in points F, Q. The distance of
P to Q is measured by the perpendicular distance of P froui the space
of manifoldnesR h + k composed by B and I/A, parallel to A. This
distance is the same from every point on A. It is, to write it sym-
metrically, the mtignitudo formed by B I/A with A I/B, and thus, as a
rule, easy to calculate when the coordinates of A and B are given.

11. To make this essay somewhat complete it will be necessary to
discuss, in a few words, the theory of projection, or of linear trans-
formation, as it presents itself in plane spaces of any manifold-
ness.

Many words are unnecessary on this subject, since it has long been
exhaustively treated. Let any two spaces of the same manifoldness,
for definiteness point-spaces, be put into a projective correspondence
with each other. Then to any point A in the one space S corcesponds
one point A' in the other space &. If any two pyramids are fixed in
S, &, the coordinates of the points of 8 and S' are mutually expressible
as linear functions of each other. It follows, that to any point A in
S will generally correspond the multiple of some point A' of S'.
And, if

A corresponds to aA',

B „ „ bB\

then aA+fiB „ „ aaA'+fibB'.
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Let now A correspond to aA',

B „ „ 6/T,
• • • • >> > J • • • »

L „ „ W,

where A... L is any pyramid in S, A'...L' the corresponding one in 8*.

Any point M = aA +... +KL

will correspond to M' = aaA' +... -\-\lL'.

It is therefore seen that ra+2 points determine the correspondence.
For let

A be protectively related to A',

•*J >» J > »> >J • " »

• • • >> 5> J» J> • • • >

•*J JJ 5> ' >) 5> •*-' )

" * 55 55 55 VS • " * >

Jlf = ayl + . . .+XA

ilf = a'/l.'+...+ A'//;

then a = a' : a ... J = A' : A,
and everything is kuown.

If <S and 8' are brought to coincidence with each other, then one
pyramid PQE...S will exist, whose corner points correspond to
themselves.

Indeed, assume P = aA -fc-...+AL,

lv=aaA'+...+\lL'.

If, then, V and V coincide, for some value of p we must have

a (PA - aA') +ft(PB- bB') +.,. + A (PL - W) - 0.

If such equation connects

pA—aA', pB—bBr, ...,

then that pyramid must vanish,

[(PA-aA')(pB-bB')...(pL-lL')] = 0,

an equation in p of order M + 1, which has therefore n + 1 roots.

To each value of p will belong a system of values a, /3,... A, connecting

pA-aA'... pX-ZL',

so that the corner-points P of the pyramid whose existence was
8 2
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asserted can be found. In general, the p will be distinct from each
other. If they are not, limiting processes will explain what then
takes place. But this is not of much importance for the immediate
objects of this essay.

Thursday, December 10th, 1896.

Prof. ELLIOTT, F.R.S., President, in the Chair.

Present—twenty-two, members and four visitors.
The following gentlemen were elected members :—John Borthwick

Dale, B.A., late Scholar of St. John'R College, Cambridge; Charles.
Samuel Jackson, M.A., Instructor in Mathematics, Royal Military
Academy, Woolwich; Arthur William Ward, M.A. St. John's
College, Cambridge, Professor of Mathematics and Physics, Canning
College, Lucknow, India. Mr. S. S. Hough was admitted into the
Socioty.

The Auditor (Mr. Terry), having read his report, complimented the
Treasurer on the way in which he had performed his duties. Mr.
Kempe moved, and Mr. Bickmore seconded, a vote of thanks to the
Anditor for his services. The vote waB carried unanimously. A
motion was then made by the President, and seconded by Lt.-Col.
Cunningham, and carried unanimously, for the acceptance of the
Treasurer's report. Dr. Larmor suitably acknowledged the compli-
ment.

Major MacMahon gave a sketch of the result arrived at in
Prof. Sylvester's " Note on a Discovery in the Theory of Denumera-
tion." In connexion Avith this paper the President announced that
Prof. Sylvester had given permission to the Society to publish the
" Outline of Lectures on the Partitions of Numbers," which he read
at King's College, London, in 1859, and which had never been pub-
lished ; and that the Council had arranged to print the " Outlines "
as a companion to the late President's Valedictory Address.

Mr. Burbury communicated a paper " On the Stationary Motion
of a System of Equal Elastic Spheres of Finite Diameter."

Mr. Hough read a paper " On the Influence of Viscosity on Waves,
and Currents."
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^Ir. Macfarlane Gray gave a description of his Multiplying
apparatus. Messrs. C. V. Hoys, Dewar, and Greonhill joined in a
discussion of points connected with the subject of Mr. Gray's com-
munication, and a coi"dial vote of thanks was passed to these
gentlemen.

Tlie multiplying apparatus consists of two principal parts, a sole
frame and a grid. In the sole frame the product cards for the
multiplicand are set up in order. These are the same as what are
called " Napier's rods," being each the products in one column of the
multiplication table, up to 9 times 9, with a card for the 0 column.
The grid is a frame fitted with a number of sliders, each of the same
breadth as the product cards. Each slider has at mid length a pane
of glass. The edges of the sliders coincide with the vertical centres
of the cards, when superposed, so that each pane lies over the unit
place of one card, and the place of tens in the adjacent card. The
sliders are set to bring the panes each over the product lines, for one
figure in the multiplier, taking the figures in the order the reverse
of that in which the multiplicand has been set up. The grid frame
is fitted to slide over the card frame upon stepped guides, the steps
insuring the proper relative positions when reading the products.
The sliders may be of leather with the glass panes cemented on.
There is a figured plate for setting the sliders by.

To obtain the product of two multidigital numbers, the cards for
the figures in one of them are set up on the sole frame, and the
sliders in the grid are set for the figures in the other. The grid is
then moved linearly over the sole frame, moving one figui-e at a time,
and at each, step the components of the products in one of the
vertical columns of the ordinary multiplication are exhibited at th£
panes of the multiplier sliders. These are added together, giving
one figure of the required product; the grid is then slid on to the
next figure, and the next vertical column is then shown. In this way
the final product is obtained without transcribing the intermediate
products.
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shows three cards of the multiplicand 637 being multiplied by 864.
The multiplier is set to the required figures by adjusting the sliders-
till the figures in the column to the right (under 0) are seen through,
the windows.

Kach figure in the product is the sum of the black figures seen
through the windows. Through each window two figures are seen,
but they are not on the same card. The 3 in the product is given
in this position.

By tho Machine. By Ordinary Multiplication.
637 637
8 6 4 8 6 4
428

212 2 5 4 8
3 8 2 2

5 0 9 6
5 5 0 3 6 8

6 82
314
846

42 5
5 5 0 3 6 8

Lt.-Col. Cunningham stated some results arrived at in his paper
" On the Connexion of Quadratic Forms." Upon a portion of these
results Mr. Bickmore made some supplementary remarks.

The following papers were taken as read :—
Concerning the Abstract Groups of Order. &! and ±k'\ Holo-
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edrically Isomorphic with the Symmetric and the Alternating
Substitution Groups on k Letters: Prof. E. H. Moore.

On a Series of Co-Trinodal Quartics: Messrs. H. M. Taylor and
W. H. Blythe.

On Finite Variations : Mr. E. P. Culverwell.

The following presents were received for the Library :—
"Beibliitter zu den Annalcn dor Physik und Chemie," Bd. xx., St. 10 ; Leipzig,

1896.
" Archives Neerlandaiscs des Sciences Exactes etNaturelles," Tome xxx., Liv. 3 ;

Harlem, 1898.
" Wisktindigc Opgaven met do OploHsingcn door de Licdcn van hct Wiskundig

Genootschap," Doclvn., St. 2 ; Amsterdam, 189G.
"Bulletin of tho American Mathematical Society," 2nd Serios, Vol. in. , No. 2 ;

New York, 1896.
"Festschrift der Naturforschenden Gesellschaft in Zurich, 1740-1896," Teilo

1,2; Ziirirh, 1896.
" Bulletin dofi Sciences MathematiqucR," Tome xx., Oct.,'189fi ; Paris.
" Rcndicunto dull' Aouideniia delle Scienzo Fisicho e Matomaticho," Scrie !i,

Vol. n . , Fasc. 8-10 ; Napoli, 1896.
"Transactions of the Canadian Institute," Vol. v., Pt. 1, No. 9 ; Toronto,

October, 1896.
" Rendiconti del Circolo Matematico di Palermo," Tomo x., Fasc. f>; 1898.
" A t t i dclla Rcalo Accademia dei Lincei—Rendiconti," Sem. 2, Vol. v., Fasc.

9, 10; Roma, 1896.
"Journal of tho College of Science, Tokyo," Vol. x., Pt. I. ; 1896.
"Journal fur die reine und angewandtc Mathematik," Bd. cxvn., Heft 2 ;

Berlin, 1896.
" Annalea de la Faculte des Sciences de Toulouse," Tomo x., Fasc. 3, 4 ; Paris,

1896.
" Educational Times," December, 1896.
•« Indian Engineering," Vol. xx., Nos. 17-20, Oct. 24-Nov. 14, 1896.

Presented by Mr. J . Hammond:—
" Commercium Epistolicum D. Johannis ColliuB et aliorum do Analysi promota" ;

Londini, 1722.
"Tlio Method of Increments, wherein the Principles are Demonstrated, and tho

Practice thereof Bhown in the Solution of Problems " (by W. Emerson) ; London,
1763.




