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DIFFRACTION OF WAVES BY A WEDGE

By T. J. ’A. BrouwicH.

[Received January 14th, 1915.—Read May 13th, 1915.]

Trae following treatment of the wedge-problem starts from the idea of
generalizing the familiar process of taking images, as used in electrostaties.
It will be remembered that in the ordinary elementary problems, success
depends on the fact that the angle outside the conduetor is of the type
/n, where n is a positive integer : so that the angle of the wedge is then
27— [n.

The method of generalization is to replace the sum of the effects of n
images by a complex integral ; and then to extend the integral so as to
obtain a formula valid for any positive value of » (that is, for any angle of
the wedge). The extension required is found to be a modification of the
path of integration ; the subject of integration remains unchanged. The
discussion of the various points involved in this generalization occupies
the greater part of the paper (§ 2).

Starting from § 2 it is possible to solve (§§ 8, 4) the diffraction-problem
for impact on a wedge (1) of sound waves from a source, (ii) of eleetro-
magnetic waves from a Hertzian oscillator with its axis parallel to the
edge of the wedge, (ili) of electromagnetic waves from an oscillating
magnet, also parallel to the edge.

The problem (i) has been solved by Prof. Macdonald for a simple
harmonic source ; it is here extended to a source of any type. The pro-
blems (i1) and (ii1) are new, so far as I know.

1. A General Integral of the Wave-Equatton.

It is evident that the complex integral

U= jf B—ch) &) ae
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is a solution of the fundamental wave-equation, where
R? = P+l (z—2)*—2rry cos (0—§),
and (r, 6, z) are the eylindrical coordinates of a variable point, and (r,, 6y, 2,)
are those of a fixed point.
In order to make R single-valued in the plane of the complex variable

£, it will be convenient to make cuts as shown, parallel to the imaginary
axis, from the branch-points of R ; these branch-points are given by

E—0 = 2k + 1aq,
where 2rrycosh a = ¥+ rod-(z— 2%,

and k is any integer (positive or negative) or zero.

8+ 10
0—27 f—m: 0 g+7 #+2r
—~ia
Fre. 1.

The value of R is fixed if we agree that B is to be positive, say, on the
real axis; it is easy to see that R is then also positive along the lines
(indicated by dots) which are midway between the cuts.

The phase of R will be +3= on the right-hand edge of each of the
upper cuts, and —L7 on the left-hand edge; for the lower cuts these
signs will be reversed.

For the special cases of the potential equation and of simple harmonic
waves,* this solution was first given by Sommerfeld.t Using the other
methods developed by Sommerfeld in the paper quoted, we could proceed
to the solution of § 2, for the special case # = % (a half-plane or straight-
edge) with very slight additional work: but the process fails for other
values of n.

* Given by taking j(R—ct) = const. and f (R —ct) = e~ ¥, respectively.
1t Proc. London Math.. Soc., Vol. xxvrii1, 1897, pp. 405, 429. .

26 2
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2. Solution of the Wave-Equation, corresponding to a Source outside
a Wedge.

Consider now the question of finding a solution V of the wave-equation
corresponding to a source placed at the point (r,, 6,, z;) between the two
planes 6 = 0, 6 = =/n, subjeet to the condition that the solution is to
vanish on both the boundary planes.

When » is an integer, the solution is given by the familiar image
process of electrostatics, and can be written in the form

V pa— Vl_ Vg,
"t f(R ——ct) L f(Ry--cb)
h — s [dh—c) = 3 [Bameb)
where Vl =40 R1 VZ m=1 R2 ’
and Ri= P24 rh—2rr, cos <6—90——- knmr) +(z—2y%,
while B = 11—}—10—2)70003 <6+6 — @7—_> (z—2p%

and the nature of the function f is given by the character of the source.
We shall now express the two funetions V;, ¥, by means of integrals
of the type U defined above (§ 1). It is evident that

1 R—ct L
=g~ Sf—(—R—c)gde?)dS,

provided that the path of integration is a closed loop surrounding the
points & = 0,4 2mm/n (where » =20,1, 2, ..., n—1),

and that g,(£) is a function which has a pole of residue unity at each of
these 7 points. It may be noticed that, since 0 < 6, < w/n, these
n points all lie between ¢ = 0 and £ = 2w, on the real axis of our com-
plex diagram; and so the path of integration may be any simple loop
cutting the real axis at the points £ =0 and § = 2.

In the subsequent argument we suppose that ¢,(£) has a period 2= in
¢, and further that g, () remains finite when £ tends to infinity in either
direction parallel to the imaginary axis (see p. 455 below). These two
conditions, together with the specification of the poles, determine the
function g,(§) completely, save for an arbitrary additive constant C : and,
according to a known theorem on periodic functions, we have

n-1
g1(€) =3 I cot 3(E—6,—2mm[n)+C = Fncot In(0—E&p +C.
m=0

1t is easy to see that the value of C does not affect the value of the in-
tegral for ¥,: and so we may put C = 0.
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Since the two funetions R and ¢,(£) both have the period 27 in £, the
path of integration may be any simple loop, provided that it cuts the real
axis in two points whose distance apart is 2.

We now change the variable of integration to { = £—86, and then

1 R—ct
V1 = ﬁ S‘f'(—‘RT‘C—) Gl(f)df,
where R* = 4024 (z— 29" —2rrycos ¢,
and G1(€) = Incot in ({+0—8,),

the path of integration still cutting the real axis in two points at a dis-
tance 27 apart. Of course, in the {-plane, the cuts extend from the branch-
points 2k7 + 1a parallel to the imaginary axis.

In order to have a standard diagram we suppose that the path of in-

tegration cuts the real axis at { = — 7, { =4 = as indicated in Fig. 2.
1 (
§: —+ tet
p
i +7
C=—ta
[
Fiec. 2.

In like manner we see that

27 9 R
where @5(6) = An cot In({+0+6,,

Yy = o Sfili—_—“i) GO &,

the path of integration being the same as for V;.
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We have now expressed V; and ¥V, by means of integrals which contain
n only through the two functions G,({), G,({): and it may therefore seem
unnecessary to retain any longer the assumption that n» is an integer.
That is, we may be tempted to suppose that the corresponding solution
for a wedge of any angle =/n, may be obtained by taking

V= VI— V29

as expressed above. It will be seen, in fact, that this funection does satisfy
the necessary boundary conditions, and that it has the correct infinity at
the source. But, as a matter of fact, the function V is no longér a con-
tinuous function of 8. To explain the reason for this phenomenon, it is
necessary to consider the poles of G({), G4($), which are still given by the

formulz (= 60—6—|—2k7r/n,} 0 <y <w/n,
{ =—0,—0+42kx/n, 0<<l <=fn,

k being any integer.

Now, as 0 varies, these poles travel along the real axis; but the num-
ber of them contained in the interval (—a, 4 ) no longer remains fixed.
Thus, when 0 increases through such a value as brings one of the poles of
G1(§) to the point { = 4, the effect on the integral V; is to introduce
an abrupt change in its value: this is due to the presence of an addi-
tional pole in the interior of the path of integration. Similarly, when a
pole ecomes to { = —, it will disappear from the interior of the loop,
and again a discontinuity will occur in the value of 17

To illustrate the difficulty let us consider in detail the simple case n = 3.
The poles of G () are theu given by

(= 8,—0+3kn,
aud those of (#,(() are given by =—=0,—0+3kn,
where % is any integer, and ¢, 8, both lie between the limits O and 3r.
It will be easily seen that

(i) If 0 < 6, < 4w, G1({) bas a pole (k =0) at { = —=, when 8 = @+ = ; and Gy ({) has
a pole (k = 0) at { = —, corresponding to § = v—6,. Thus V, will have a discon-
tinuity corresponding to 8 = 6,+ m, and ¥, will have one at ¢ = v—4,.

(i) If 3w < 8, < w, G4 (¢) has no pole at either limit; but G, () has a pole (k = 1) at
¢ =+, when 6 = 2r—¢,, and a second pole (k¥ =0) at (= —=, when § ==—40.
Thus here V; has two points of discontinuity.

(ili) If = < 8 < &r, G;({) has a pole (& ==0) at ( =+, when 0 = gy—x: and G;({)
has a pole (k¥ = 1) at { = +, when 0 = 2r—6,. Thus again both functions V,, ¥,
are diseontinuous.

In order then to solve our problem for any value of the angle =/, it
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will be necessary to choose a path of integration which does not meet the
veal axis; and further the path chosen must be equivalent to the loop
already used when » is an integer.

Such a path can be obtained by adding on to the loop the two vertical
lines of the last figure (the directions of integration being indicated by the
arrows) ; for, when » is an integer, the functions (,, G5, and R, have each
a period 27 in §, and consequently the contributions to V; and ¥V, from
the two vertical lines will cancel each other.

Of course care must be taken to see that the integrals taken along the
vertical lines are convergent. Now along these two lines, R is real and
positive, and tends to infinity like /(2rrycosh »), if » is the imaginary

part of {. Thus Jdg‘/R is absolutely convergent : and | G|, | G,| tend to

the common limit 3n. Hence, provided that f(B—ct) remains numerically
less than some fixed value as R tends to + @ by real values, the integrals
V, and V, will be absolutely convergent along the vertical lines.*

Now, keeping the ends of the path fixed at infinity, we can, by Cauehy’s
theorem, deform the path of integration into the shape given in Fig. 8.
Care must be taken that neither portion of the path comes in contact
with a cut: and both parts must be kept clear of the real axis, so as to
avoid the poles which traverse the interval (—a, +#) as @ varies.

We have still to prove that the solution V = V,—V, satisfies the
prescribed conditions. It is evident that it satisties the fundamental
differential equation: and that it corresponds to the case of divergent
waves, which have not been reflected back to the source. Also we have
just seen that by using our new path of integration the function V will be
in general continuous in the interior of the space bounded by 6 = O
0 = =/n.

We have now to see that the necessary boundary conditions are
satisfied; at 8 = 0, we have

G(§) = dncot In({—06,), and Gy({) = tncot 3n({+6y,
and 8o G(§) = — Go ().

But we can choose our two halves of the path so as to be symmetrical
about the origin ; and then, by changing the sign of {, we change one half
into the other, described in the proper sense. Thus it is seen that
Vi=+4V,; at 8 =0, because B does not alter when the sign of { is
changed. Hence V=0 at 6 =0.

* It is at this stage that we utilise the condition imposed on the functions ¢, (), G, (¢),
that they must remain finite as 5 tends to either + @ or — = (see p. 452).
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Again, at @ = m/n, we have
Gi(&) =—1ntan 3n({—0), G2() = — Intan 3n ({+6y),
80 that G, () = — Gp(—);

Fi1g. 3.—The curves are at present restricted to be asymptotic to the vertical lines; when
more information as to the nature of the function f is available, we can often remove
this restriction.

and thus V; = V,and ¥V =0 at both the planes 6 = 0 and 6 = =/n.
That is, the required boundary conditions are satisfied.

The only point remaining is to prove that 7 has the right form near
the source. When the point (r, 8, 2) approaches (ry, 8, 7, it is evident
that a will tend to zero because

277y cosh a = 4724 (2—2))”



1915.] DiFFRACTION OF WAVES BY A WEDGE. 457

Thus the two cuts of our diagram will tend to join ; and since our path of
integration must pass between the cuts (twice), we may anticipate that a
special discussion will be needed. We can replace our path by the form
given in Fig. 4. Then, as 8,—0 tends to zero, we can take the inner loop

\/T'BG
[n

Fi6. 4.

smaller and smaller. Now G,() has the pole { = 8,—6 inside the loop,

and the residue there is unity; but G5() has no pole there. Thus, by

Cauchy’s theorem, the contributions from the loop to ¥, and V, are re-

spectively 1

Ff(Ro—ct) and O,
0

where R? = P*+4ry—2rrycos(0—0y)+ (2 —2,) 2

The remainder of the path indicated in Fig. 4 will contribute finite
amounts to V; and V,.
Thus in all we see that the character of V near the source is of the

type E% f(By—ct): and by a proper choice of the function f, this will
0

represent any assigned type of source (having an infinity of the first order
only).
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The proof that the function V satisfies all the prescribed conditions is
now complete : and our problem is accordingly solved, for all angles w|n,
b /

y the formula V= V—V,

where V, =
1 27t

= (a0 v= 5

jf E—D g0 dg,

and R? = P42 —2rry cos {+(z— 2,2,
G({) = dncot In({+0—0), Gu(l) = 3ncot §n ({+0-+6,),

the path of integration being that drawn in Fig. 8.

We may suppose that the two halves of the path are symmetrical about
¢ = 0; then the lower path changes into the upper (taken in the proper
sense), by changing the sign of {; and so we may replace the integral
along the two paths by the sum of two integrals along one path. Thus
we find

1 (fh—ch SB—ct)
Vi= 27t 5 R Hl(g‘)dg" Vy= 2 5 R Hy© dS,
n sin né

where HQ)=GO—G(=0=— cos n{—cos n(60—06y)’
n sin n

and Hy(§) = Gy —Ga(—=) = — cos n—cos n(0+6,)’

the path of integration being now reduced to the upper path only in Fig. 3.

The second formula has the advantage of making more obvious the
fact that the boundary condition ¥ = O is satisfied at the two planes
9 =0, @ = w/n; for clearly at each of these planes H,({) = H,({), and
consequently V; = ¥V, also.

8. The Diffraction-Problem for Sound-Waves from a Sowurce, impinging
on a Wedge.

We can now write down without difficulty the solution ¢ of the wave
equation which satisfies the boundary condition

n
U

%’3 =0,
ov

at the planes 0 =0, 6 = «/n (for any value of =), corresponding to a
source between the planes.
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As is well known, when 7 is an integer, the solution is given by
¢ == V1+ VZ:

where V; and V, are the functions obtained above. Thus, by a corre-
sponding generalization, we see that this formuls will continue to repre-
sent the required solution for all values of n, provided that ¥, V, have
the values given by the complex integrals of p. 458.
We note as a verification that in the second form of the solution
oH, , 0H, _
0t
both for 6 = 0 and =/n.
For a simple harmonic source, we may take

F(R—ct) = ew=D)

the real or imaginary part of the results being tinally selected, as may be
convenient, In this case the solution reduces to that found by Prof. H. M.
Macdonald.* We can then also, if we wish, suppose that the ends of the
path ave displaced so that the imaginary part of B is negative ; that is
the path may start from any point at infinity of the type .o 4 A, where
T A << 27, and it may finish at any point of the type (9 —\’, where
0 <\ < 7 ; instead of being asymptotic to the dotted lines +, ag in-
dicated in Fig. 8.

Prof. Macdonald has indicated how the complex integrals can be ex-
pressed in other forms which lend themselves to numerical ealculation
when 2 = } (the case of a half-plane); his formule may be written (in
the notation used here),

v, = % 5 ' K, (xR, cosh v) do,

-

where R, = r*4r—2rr, cos(0—0p)+ (2 —7p)?,
and sinh v, = 1—;— A/ (rrg) cos 3 (0—0,).
0
An alternative form, suitable when v, is positive, is given by
e—uc.lio K ©
V, = &, ——;L K, {(«R,cosh v)dwr.

The value of V, is found by similar formul®e in which 640, replaces
9"‘90.

* Proc. London Math. Soc., Ser. 2, Vol. 14, 1915, p. 418 above; the results quotfed are
given on p. 424, and the reduction of the integrals o Fresnel’s form on p. 426,
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4. The Diffraction-Problem for Waves from a Hertzian Oscillator
mmpinging on a Wedge.

It is known that if 7 denotes a solution of the fundamental wave-

equation, and if
av
oz’

14 oV
W = Za——l——ma— +n

then the electromagnetic equations are satisfied by the solution

w1 @ 109/ 0V 0
X=—"r17 5 “—?a—t(""a‘;—"a*;)’
_ oW | m &2V _1 0y oV oV
V==, T 5 8= —1%5)
) N 4 _ 1 9/, 0V oV
Z=—"5+m G v=a5( P —m):

where (I, m, n) are any fixed direction-cosines, (X, Y, Z) is the electric
forze, and (a, B, v) the magnetic force.

Assuming the wedge to be perfectly conducting, the condition to be
satisfied at the boundaries is that the electric force shall be normal to the
boundary. Now the boundaries are planes: say that one of them is the
plane of yz. Then the conditions to be satisfied at the plane z = 0 are
Y =0, Z=0; and both these condifions will clearly be satisfied provided

that
V=0, W =0,

If we choose ¥V = 0 at the plane z = 0, the value of W at that plane re-
duces to
07
oz’

which can only be zero if = 0: or it the axis of the oscillator is parallel
to the plane boundary.

Similar reasoning applies at the second face of the wedge: and we
conclude that our condition is satisfied by ¥V = 0, provided that {/, m, ») is
parallel to both planes; that is, provided that ([, m, n) is parallel to the
edge of the wedge.

‘We can accordingly solve our problem for a Hertzian osecillator with
its axis parallel to the edge of the wedge, by taking V to be the solution
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determined in § 2 (see p. 4568), and { =0, m = 0, n = 1; so that

R _ 1

= Oxodz’ =T F oyot’
*V _, 1 &V

Y_—ayaz’ ’8_+?aw§t'
2 2

g BT 1w o

02 "V r o

In eylindrical coordinates this solution can be written *

x =2V f_ 1 2V
- oroz’ ¢ =T 0ot
, 1oy 1 &Y

V== 08=*t=5mw

Z and y remaining unchanged.
If we assume that the source is an oscillating magnet, instead of a
Hertzian oscillator, it is easy to see that the corresponding solution is

, &V 1 @y
¢ == S X'=% ., oot
L1 e v
pr=- r 000z’ Y—_57'6t’
_®r 1 ev B
v=—gmtam Z=0

where now the value of V is of the form V,+V, (as in § 8). For then it
is evident that X' = 0 at the faces of the wedge; and consequently the
electric force is normal to the boundary.

These two solutions can be adapted to numerical calculation by means
of Prof. Macdonald’s formule (quoted above, p. 459) for the case of a half-
plane or straight-edge, the source being supposed simple harmonie.

It is not without interest to deduce from our solutions the known re-
sults for the case of simple harmonic plane waves. If we make 7, tend to

infinity, and take flet—R) _ Ar gt )
R R !

it will be easily seen that R —r, tends to —»cos { and that Ey—r, tends

* Here X', ¥ are the components of electric force along the directions of r, ¢ respec-
tively ; while o', 8’ are the corresponding components of the magnetic force.
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to the form —» cos(0—6,); consequently the limiting form corresponds

to a value of V = A e let+7cos 0-0,)]

in the incident wave. Thus the incident wave is given by

Xl — 0, Yy = 0’ 7 = e let+r cos(s—ou)J’

provided that 4=—1/
The complete solution is then given by
Z = Z,—27,,
. —_ _1_ KT COB & —_ _1_ 5 tx7 COS8 §
where Z,= o 5(3 H, () dg, Zy = ol L H,(0Hd¢,

H, (§), Hy(§) being the functions defined above (p. 458), and the path of in-

tegration being the upper curve in Fig. 8, or its exiension defined in § 8.
Similarly, by starting from the solution when the source is an

oscillating magnet, we can deduce the solution corresponding to an inei-

dent wave 8 =0,

a = 0, 3 (ct+rcos(0—0‘,)].

Y —¢€
The result is seen to be v = y1+vs,
where y,, v, are expressed by the same integrals as Z,, Z, above.

These results are due to Macdonald,* and forms suitable for numerical
caleulation have been deduced from them by W. H. Jacksou.t

5. Klectrostatic and Hydrodynamical Problems.

The problem of electrostatics may be briefly mentioned here: it
corresponds to the ecase in which f(E—c?) is a constant, say unity. The
solution then gives Green’s function for the space defined by the limits

0 0 /0.

Under these conditions the ends of the path in Fig. 8 can be displaced
to any extent (between adjacent cuts), without affecting the convergence of
the integrals; and so the upper path may be reduced to two integrals
-along the edges of the upper cut. On the right-hand edge we then find

B =+ /{207y (cosh v—cosh a) },

-*. Klectric Waves, 1902, pp. 192, 195.
t Proc. London Math. Soc., Ser. 2, Vol. 1, 1903, p, 393.
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where { = v, and on the left-hand edge, the sign of B is changed ; also we
find on either edge

e sinh no #e sinh v

B = = i nr—cosn0—0)" 29 =~ G —cosn 6+6,) "

Henece the formula reduces to V = V;,—V,, where

V=

n jw dv sinh nv
7 Ja A/ {2rrg(cosh v—eosh a)} cosh nv—cosn(0—6,)’

and V, is a corresponding integral with 646, in place of 8—8,.

These formulse were given by Prof. H. M. Macdonald,* and require no
further development now.

It may be worth while to add the remark that the ecorresponding
hydrodynamical problem (for a source in an incompressible fluid occupying
the space between two planes) is given by the solution

¢ = Vi+V,,

the integrals for ¥V, and V, being those given above. For it is then
evident that 0¢/068 = O both at 6 = 0 and at 6 = =/n.

* Pyroc. London Math. Soc., Vol. xxvi, 1895, p. 160, and Ser. 2, Vol. 14, 1915, p. 412

abhove. See also Sommerfeld’s paper, quoted above, for the special case 7 = §.





