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THE following treatment of the wedge-problem starts from the idea of
generalizing the familiar process of taking images, as used in electrostatics.
It will be remembered that in the ordinary elementary problems, success
depends on the fact that the angle outside the conductor is of the type
7r/n, whe댄 11, is a positive integer: so that the angle of the wedge is then
2τ-τIn.

The method of generalization is to replace the sum of the effects of 11,

images by a complex integral; and then to extend the integral so as to
obtain a formula valid for any positive value of n (that is, for any angle of
the wedge). The extension required is found to be a modification of the
path of integration; the subject of integration remains unchanged. The
discussion of the various points involved in this generalization occupies
the greater part of the paper (§ 2).

Starting from § 2 it is possible to solve (§§ 3, 4) the diffraction-problem
for impact on a wedge (i) of sound waves from a source, (ii) of electro
magnetic waves from a Hertzian oscillator with its axis parallel to the
edge of the wedge, (iii) of electromagnetic waves from an oscillating
magnet, also parallel to the edge.

The problem (i) has been solved by Prof. Macdonald for a simple
harmonic source; it is here extended to a source of any type. The pro
blems 이i) and (iii) are new , so far as I know.

1. A Gene1'al Integrαl of the vVave- Equation,.

It is evident that the complex integral

u = Jf(Rζct) g(f)df
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where

is a solution of the fundamental wave-equation, where

R 2 = 1'2+채+ (z- zo)2- 2rro cos (e-f) ,

and (1', e, z) are the cylindrical coordinates of a variable point, and (1'0, 80, z이

are those of a fixed point.
In order to make R single-valued in the plane of the complex variable

f , it will be convenient to make cuts as shown, parallel to the imaginary
axis , from the branch-points of R; these branch-points are given by

양-e = 2k7r ± ta ,

21깨 cosh a = 1'2+채+ (Z- ZO)2，

and k is any integer (positive or negative) or zero.

6+t«

8-2 71" 8-π 8 6+ '71" H+2π

6- ‘a

FIG. 1.

The value of R is fixed if we agree that R is to be positive, say, on the
real axis; it is easy to see that R is then also positive along the lines
(indicated by dots) which are midway between the cuts.

The phase of R will be +i 7r on the right-hand edge of each of the
upper cuts, and - 훌7r on the left-hand edge; for the lower cuts these
signs will be loeversed.

For the special cases of the potential equation and of simple harmonic
waves,* this solution was first given by Sommerfeld. t Using the other
methods developed by Sommerfeld in the paper quoted, we could proceed
to the solution of § 2, for the special case n = 윷 (a half-plane or straight
edge) with very slight additional work: but the process fails for other
values of n .

... Given by taking f(R-ct) = const. andf(R-ct) = c“ (ef - ]l l , respectively.
t Proc. London Math.. Soc. , Vol. XXVIII, 1897 , pp. 405 , 429.

2 G 2
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2. Solμtion of the Wαve-Equαtion， corresponding to α Source 0μtside

a Wedge.

Consider now the question of finding a solution V of the wave-equation
corresponding to a source placed at the point (1'0' 80, zo) between the two
planes 8 = 0, 8 = τ/11" subject to the condition that the solution is to
vanish on both the boundary planes.

\Vhen 11, is an integer, the solution is given by the familiar image
process of electrostatics, and can be written in the form

where

and

while

V= V1 - V2,

V
1

== ’El f(R꿇ct) , 찍 = i fl짧쉰rl ,

R; == ]'2+십1TO COS (8-θ0- 빨) 十(Z- ZO)2

R; = J .2 +삼J')'o cos (8+80 - 웰) +(?Zo)2,

and the nature of the function f is given by the character of the source.
'Ve shall now express the two functions VI' V2 by means of integrals

of the type U defined above (§ 1). It is evident that

1 rj (R - ct) - ε
1-꿇

provided that the path of integration is a closed loop surrounding the

points t == 80+2η~7r/n (까~here m = 0, 1, 2, 000' 11,- 1),

and that gI (t) is a function which has a pole of residut:l unity at each of
these 11, points. It may be noticed that, since °< 80 < 7r/n, these
11, points alllie between f == 0 and 얄 =2τ， on the real axis of our com
plex diagram; and so the path of integration may be any simple loop
cutting the real axis at the points 흥 = 0 and 양 =2τ.

In the subsequent argument we suppose that Ul (￥) has a period 27r in
f, and further that gI (f) remains finite when 흥 tends to infinity in either
direction parallel to the imaginary axis (see p. 455 below). These two
conditions, together with the specification of the poles, determine the
function gI (f) completely, save for an arbitrary additive constant 0: and,
according to a known theorem on periodic functions , we have

gl(f) = 융 ~ cot 융 (f-80- 2Jn7r!n)+C = 융n cot 할，l (e-fo) +0.

It is ed.sy to see that the value of C does not affect the value of the in
tegral for VI: and so we may put C = O.
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and

where

Since the two funcbions Rand gl (양) both have the period 2껴. in t, the
pathof integration lnay be any simple loop, provided that it cuts the real
axis in two points whose distance apart is 2τ.

We now change the variable of integration to t = 홍-θ， and then

1 rf (R - ct)
1 - 값 \J '.L"R '-'''I G1(nat,

R2 =션+1'~+ (Z- Z이2- 2'1'새 cos t,
G1 (t ) = 훌n cot 훌n (t+o-o이，

the path of integration still cutting the real axis in two points at a dis
tance 2τ apart. Of course, in the t-plane, the cuts extend from the branch
points 2k7r ± La parallel to the imaginary axis.

In order to have a standard diagram we suppose that the path of in
tegration cuts the real axis at t = - 7r, t = +τ as indicated in Fig. 2.

~==+Lι

(==0
-n

(=-td.-

FIG.2.

In like manner we see that

+끼

where

1 rf (R __~야
~ = 2:'L \J '.L"R ,-, v I G2(t)dt,

G2 (t ) = 훌n cot 훌n (t+O+ Oo) ，

the path of integration being the same as for VI'
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t == 80-θ+ 2kτln ， ) 0 < eo < 7r싸，

t == - 80-8+2kπIn， ) 0 < e < 7r/n,

We have now expressed VI and V2 b:r means of integrals which contain
μ only through the two functions GI <~) , G2 (~); and it may therefore seem
unnecessary to retain any longer the assumption that n is an integer.
rrhat is , we may be tempted to suppose th싸 the corresponding solution
for a wedge of αny angle 7r/n , may be obtained by taking

V== V I - V2,

as expressed above. It will be seen, in fact, that this function does satisfy
the necessary boundary conditions, and that it has the correct infinity at
the source. But, as a matter of fact , the function V is no longer α con
tin1.tOus ‘fu nction of 8. rro explain the reason for this phenomenon, it is
necessary to consider the poles of GI <t) , G2(t ), which are still given by the
fornlulre

k being any integer.
Now, as 8 varies, these poles travel along the real axis; but the Hum

be l' of them contained in the interval (-7r, +τ) no longer remains fixed.
Thus, when e increases through such a value as brings one of the poles of
GI (t) to the point t == +τ， the effect on the integral VI is to introduce
an abrupt change in its value: this is due to the presence of an addi
tional pole in the interior of the path of integration. Similarly, when a
pole comes to t == - τ， it will disappear from the interior of the loop,
and again a discontinuity will occur in the value of V.

'fo illustra.te the difficulty let us consider in detail the simple case η = 중.

The poles of G 1 ((") are then given by

(= 80-8+3krr,

and those of G2 ( () are given by ("= -80 - 8 + 3k lT ,

where k is any integer, and 11, 80 both lie between the limits 0 and 를'11'.

It will be easily seen that

(i) If 0 < 80 < i ll', GI(O has a pole (k = 이 at ('=- π ， when 8 = 60 + 11"; and G2 ((') has
a pole (k = 0) at ,= -11", corresponding to 8 = π- 80 , Tlius VI will have a discon
tinuity corresponding to 8 = 80 + π. and V2 will have one at 8 = π -80 ,

(ii) If 1π < ~o < π ， GI (0 has no pole at either limit; but G2 (0 has a pole (k = 1) 해
(' = + 11", when e = 2π-9o， and a second pole (k = 0) at ("= -11", when 8 = π- 811•

Thus here V2 has two points of discontinuity.

(iii) If π < 80 < 훌π， GJ (() has a pole (k = 이 at ,,= + 11", when 8 = 80 - π : and G2 ( ( )

has a pole (k = 1) at ,,= +π， when 8 = 2π- 80 , Thus again both functions V h V2

are discontinuous.

In order then to solve our problem for any value of the angle 7r/n, it
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will be necessary to choose a path of integration which does not meet the
real axis; and further the path chosen must be equivalent to the loop
already used when π is an integer.

Such a path can be obtained by adding on to the loop the two vertica.l
lines of the last figure (the directions of integration being indicated by th‘’
arrows); for , when n is an integer, the functions 0 1, G2, and R , have each
a period 2τ in ~， and consequently the contributions to VI and V2 from
the two vertical lines will cancel each other.

Of course care must be taken to see that the integrals taken along the
vertical lines are convergent. Now along these two lines, R is real and
positive, and tends to infinity like ν(21"1"0 cosh η) ， if η is the imaginary

part of~. Thus fd~/R is abs뻐tely convergent: and IGIl , IG2 1 tend to

the common limit 훌n. Hence, provided that j(R-ct) remains numerically
less than some fixed value as R tends to +∞ by real values, the integrals
VI and V2 will be absolutely convergent along the vertical lines. *'

Now, keeping the ends of the path fixed at infinity, we can, by Cauchy’8

theorem, deform the path of integration into the shape given in Fig. 3.
Care must be taken that neither portion of the path comes in contact
with a cut: and both parts must be kept clear of the real axis, so as to
avoid the poles which traverse the interval (-71", +τ) as e varies.

Vve have still to prove that the solution V = VI - V2 satisfies the
prescribed conditions. It is evident that it satisfies the fundamental
differential equation: and that it corresponds to the case of divergent
、N'aves ， which have not been reflected back to the source. Also we have
just seen that by using our new path of integration the function V will be
in general continuous in the interior of the space bounded by e= 0.

e= τ/ 11， .

\Ve have now to see that the necessary boundary conditions are
satisfied; at e= 0, we have

Gl(~) = 훌n cot 융n (~- eo) ' and G2(~) = in cot 옳η (~十8이 ，

and so G1(t ) = - G2(-~)'

But we can choose our two halves of the path so as to be symmetrical
about the origin; and then , by changing the sign of ~， we change one half
into the other, described in the proper sense. Thus it is seen that
VI = +V2 at e= 0, because R does not alter when the sign of ~ is
changed. Hence V = 0 at e= o.

II< It is at this stage that we utilise the condition imposed on the functions G1 ((), G2 ((),
trHltt they must remain finite as 1/ tends to either +∞ or - ∞ (see p. 452).
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Again, at 9 = TIn, we have

G1(' >=-in tan 훌 n (~-eo)' 원(~) = - ~n tan 월n (~+(JI이 ，

80 that G1 (~) = - G2 ( -~) ;

-쥬1 t=o

l
l
l
l
l

’

l

’
~를

FIG. 3.-The curves are at present restricted to be asymptotic to the vertical lines; when
more information as to the nature of the function f is available, we can often remove
this restriction.

and thus VI = V2 and V = 0 at both the planes (J = 0 and (J = τIn.

That is , the requ，상'ed boundαry COlμiitions are sαti욕fied.

The only point remaining is to prove that V has the right form near
the source. When the point (1", (J, z) approaches (1"0' (Jo, zo) it is evident
that a will tend to zero because

21"1'0 cosh a = r +1‘~+ (Z-ZO)2.
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Thus the two cuts of our diagram will tend to join; and since onr path of
integration must pass between the cuts (twice), we may anticipate that R.

special discussion will be needed. We can replace our path by the form
given in Fig. 4. Then, as 00-0 tends to zero, we can take the inner loop

-τi
(=-8n iπ

FIG.4.

0,and숭f빠ct)

smaller and smaller. Now GI(~) has the pole t = 00-0 inside the loop ,
and the residue there is unity; but G2 (t) has no pole there. Thus, by
Cauchy’s theorem, the contributions from the loop to lrI and V2 are re
spectively

where R3 = 1a+T3-2띠COS(0-8O>+ (Z- ZO) 2 .

finitecontributewillFig. 4The remainder of the path indicated in
amounts to VI and V2•

Thus in all we see that the character of V near the source is of the

type 숲j(Ro-ct) : and by a proper choice of the function j , this will

represent any assigned type of source (having an infinity of the 껴1"s t order
only).
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v== VI-감，

[ f (R - ct) 1 rf (R - ct)
where VI ==봐 \ J '-""R VV! GI(')d(, V2 == 2"도J l D G2(t)dt,

The proof that the function V satisfies all the prescribed conditions is
now complete: and OU1' problem is αccordinglν solved, for αII αngles 7r /n ,
by the formμlα

and R 2 == 1:;'+ 채-21'1'0 cos '+(Z-ZO)2,

GI (, ) == 훌n cot 훌 '1， (，+ 8- 80)， G2 (t ) == 훌n cot 한~ (t+8+80) '

the pαth of ψtteg'1'αtion beiμg tilαt d，'αwn ψt F'ig. 3.
We may suppose that the two halves of the path are symmetrical about

t = 0; then the lower path changes into the upper (taken in the propel'

sense), by changing’ the sign of ,; and so we may replace the integral
along the two paths by the sum of two integrals along one path , Thus
weftηd

_ 1 r f (R - ct) 1 r f (R - ct)
== .l=-. \ D HI (')d', V2 == n=-. \J ,.... v Dv ,·, H 2 (,) a"

~7r L ' n ~7rL ' n

'W here

αnd

H
I

( , ) == G
1(t)-G1

(- ' >==- nsin nt
n'-cos n(θ-배 ’

SIn nf
H 2 (t ) == G2 (') -꾀 (_ ，) == __ .. _ .. ~'V ~~~~ I.~~

s n'-cos n(8+eo) ’

the pαth of integrαtioμ being now red,ltced to thez앤캔Jer pα th only in Fig. 3.

The second formula has the advantage of making more obvious the
fact that the boundary condition V == 0 is satisfied at the two planes
e == 0, 8 = 7r/n ; for clearly at each of these planes HI (t) == H 2 ('), and
consequently VI == V2 also.

3. The D댐·αction-Problem， for SO'lt뼈-WIαves from α Soμree， '~n따ngtng

on α Wedge.

We can now write down without di펴culty the solution φ of the wave
equation which satisfies the boundary condition

6φ _ f\
~-u.

OJ! ’

a.t the planes e == 0, e == 7r/n (for any value of n), corresponding to a
source between the planes.



1915.J lJI F F RACT IO N OF WAVES BY A WEDGE. 459

As is well known, when n is an integer, the solution is given by

φ = V1+V2,

where VI and 172 are the functions obtained above. Thus, by a corre
sponding generalization , we see that this formula will continue to repre
sent the required solution for all values of 71" provided that VI' 172 have
the values given by the complex integrals of p. 458.

We note as a verification that in the second form of the solution

oH, . aH,‘’ (
--‘-‘----- ••ao : ae - v

both for 8 = 0 and 'Tr/n.
For a sinlple harmonic source, we may take

f(R-ct) = elK(ct-E),

the real or ilnaginary part of the results being finally selected, as lnay be
convenient. In this case the solution reduces to that found by Prof. H. ~L
Macdonald.* We can then also , if we wish , suppose that the ends of the
path are displaced so that the imaginary part of R is negαtive; that is
the path may start from any point at infinity of the type L∞ + λ ， where
T 특 λ < 27l'", and it may finish at any point of the type L ∞ -λ’ ， where
0< λ’ 같 7l'"; instead of being asymptotic to the dotted lines ± 7l'", as in
dicated in Fig. 3.

Prof. ~lacdonald has indicated how the complex integrals can be ex
pressed in other forms which lend themselves to numerical calculation
when 11, = 뭘 (the case of· a hαlf-pl£ιne); his formulre may be written (in
the notation used here) ,

까 = 뚱 J~∞ K 1 (LKRo cosh v) dv ,

where

and

R3 = 1·2+채- 2r-rocos(8-80)+(z-z텀，

sinh VI = 옳 ν(1'1'0) cos 훌 (8-80)

An alternative form , suitable when VI is positive, is given by

D-κllo , u" r~。

171 = -뉴- - 二=- \ K 1 (LKRn cosh v) d1’-
11i o 7l'" J 1'’ J v

The value of 172 is found by similar fOl'IDulre in which 8+80 replaces
8-80,

• Proc. L01띠on Math. Soc. , Sere 2, Vol. 14, 1915, p. 418 a.bove ; the results quoted are
given on p. 424 , and the reduction of the integrals to Fresnel’s form on p. 426.



460 DR. T. J. I’A. BROMWICH [May 13,

4. The D~ffrαction-Problentfor Wαves from a Hertzian Oscillat01·
ψnpingiηg on α Wedge.

It is known that if V denotes a solution of the fundamental wave
equation, and if av. av. av

W=la~+ma균 +12， 깅z '

then the electromagnetic equations are satisfied by the solution

꺼
-
행

-
τ
c

+M-h-X
( == 흙 앓 (ηL 떻- 11， 짧) ，

Y aIV -• m a2 v- -------- 며 I c2 at2 ’

v
-
￠

「
U

-r

I
v
-
?
·
ι

(
서U
끽
η

””a
/
l
l
l‘
、

a-&1-2C-Q
μ

Z
ayv. ?z a2V-

--검Z l그F 걷관 ’

v-j(1U

『
U

mv
-
ν

「ηTb
/It--\6-&--2C--Y

where (l,nt,n) are any fixed direction-cosines, (X, Y, Z) is the electric
for >Je, and (a,β， 1') the magnetic force.

Assuming the wedge to be perfectly conducting, the condition to be
satisfied at the boundaries is that the electric force shall be normal to the
boundary. Now the boundaries are planes: say that one of them is the
plane of yz. Then the conditions to be sati뼈ed at the plane x == 0 are
Y = 0, Z == 0; and both these conditions will clearly be satisfied provided
that

v==o, W=O.

If we choose V = 0 at the plane x = 0, the value of Wat th와 plane 1'e
duces to

lEE.
ox ’

which can only be zero if l == 0: or if the axis of the oscillator is parallel
to the plane boundary.

Similar reasoning applies at the second face of the wedge: and we
oonclude that our condition is satisfied by V = 0, provided that (l, m, n) is
parallel to both planes; that is, provided that (l, 'In, n) is parallel to the
edge of the wedge.

We can accordingly solve our problem for a Hertzian oscillator with
its axis parallel to the edge of the wedge , by taking V to be the solution
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determined in § 2 (see p. 458) , and l = 0, m = 0, n = 1; so that

__ a2v 1 a2 V
A=- 파견융 ， a=- 행 행at ’

1 a2 V
y=-聽， β=+ 흙 點t ’

Z - a2V+ l aav- -- ~ - --.- ~.- dz2 I c2 ()t2' r-

In cylindrical coordinates thi닙 solution can be written *.

X ’ - 팬V----- d1"dZ ’

Y’ -조 02V-
- r aedZ ’

1 d2 V
a" =-핀·굶강’

1 02 17
β’ =+~- arat ’

Z and 'Y remaining unchanged.
If we assume that the source is an oscillating magnet, instead of a

Hertzian oscillator, it is easy to see that the corresponding solution is

• (J2 V
a ’ =-~，oroz

w-%
%
v값

1갱
ν

「
C

→ν
t

1
-끼

W
-않

------β
v

v
-어

연

-θ

”μ
?
w
-

녔

+-XY

Z= 0,

where now the value of V is of the form VI+V2 (as in § 3). For then it
is evident that X’ = 0 at the faces of the wedge; and consequently the
electric force is normal to the boundary.

These two solutions can be adapted to numerical calculation by means
of Prof. J\<f acdonald’s fornlulre (quoted above , p. 459) for the case of a half
plane or straight-edge, the source being supposed simple harmonic.

It is not without interest to deduce from our solutions the known re
suIts for the case of simple harmonic plane waves. If we make 7'0 tend to
infinity, and take

.f (c t - B ) = 죠1·0 .otlc «'t + 이-R)
R R ‘ ’

it will be easily seen that R"-ro tends to -r cos ( and that Ro-ro tends

* Here X ’ , Y' are the components of electric force along the directions of T , 8 respec
tively; while"’, 13’ are the correspo:tlding components of the magnetic force.
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v = A eue [ct+1'COS (8-60}1

to the form -'I" cos (8-80) ; consequently the limiting form corresponds
to a value of

in the incident wave. Thus the incident wave is given by

X’ == 0, Y’ == 0, Z = e'lC [ct+r cos (8-60)J,

pro피ded that A = -1IK2
•

The complete solution is then given by

l' = e"e [ct+rcos(8-κ)J .β’ =0,Q ’ == 0,

Z = ZI-Z2'

[ ，，~'- ,,..• ~，.. _ 1 r
here Zl = 값 \ eκr cos팩(φ dt， Z2 == 강긁 \ eue

?' cos,H 2 (~)d(,

HI (t) , H 2 (t ) being the functions defined above (p. 458) , and the path of in
tegration being the upper curve in Fig. 3, or its extension defined in § 3.

Similarly, by starting from the solution when the source is an
oscillating magnet, we can deduce the solution corresponding to an inci
dent wave

The result is seen to be l' = 1'1+1'2'

where ¥1, 1'2 are expressed by the same integrals as Zl' Z2 above.
These results are due to Macdonald,* and forms suitable for l1 unl erical

calculation have been deduced from them by W. H. Jackson. t

5. Electrostαtic αηd Hyd1"odynal1~ical Problems.

The problem of electrostatics may be briefly mentioned here: it
corresponds to the case in which f(R-ct) is a constant, say unity. The
solution then gives Green’s function for the space defined by the limits

0 등8특 τIn.

Under these conditions the ends of the path in Fig. 3 can be displaced
to any extent (between adjacent cuts), without affecting the convergence of
the integrals ;and so the upper path may be reduced to two integrals
-along the edges of the upper cut. On the right-hand edge we then find

R == +t‘! {21'1"0 (cosh v-co.sh a) },

*. Elect1'ic lVaves, 1902 , pp. 192, 195.
fProc. London Math. SQc., Sere 2. VO!.'!, 1903, p. 393.
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where ~ = LV, and on the left-hand edge , the sign of R is changed; also we
:find on either edge

lnnnv
H I (,) = - “

lV - COS n(8-8，비 ,
L sinh nvH 2 ( , ) =-
ν-cosn(8+8，이 •

Hence the formula reduces to V = VI - V2, where

TT n ["" dv sinh 1lV

VI = 투 L ν .: 2JTo(coshη -cosh u)} cosh nV-C08 n (8-80 ) ’

and V2 is a corresponding integral with 8+80 in place of 8-80 ,

These formulm were given by Prof. H. M. Macdonald,* and require no
further development now.

It may be worth while to add the remark that the corresponding
hydrodynamical problem (for a source in an incompressible fluid occupying
the space between two planes) is given by the solution

φ = V1+ζ，

the integrals for VI and V2 being those given above. For it is then
evident that ()φ/08 = 0 both at 8 = 0 and at 8 = -rr/n.

., Proc. London Math. Soc. , Vol. XXVI, 1895 , p. 160, a.nd Sere 2, Vol. 14, 1915 , p. 412
above. See also Sommerfeld’s paper, quoted a.bove, for the special case n = 울.




