
C
LO

U
D

 4
E

LE

Overcoming Barriers
for Ubiquitous User-
Centric Healthcare
Services
Alex Palesandro
Orange Labs

Chirine Ghedira Guegan
Université de Lyon

Marc Lacoste
Orange Labs

Nadia Bennani
Université de Lyon

The Orchestration for Beyond Intercloud Security

(Orbits) architecture enables flexible and legacy

intercloud application deployment for mobile remote

healing, while providing a homogeneous service

abstraction across multiple clouds.

loud home healthcare systems rep-
resent a widely investigated research
area.1 These systems are designed
for a wide spectrum of healthcare
applications, from simple electronic
health record (EHR) consultation to

remote monitoring and assisted surgery. Key require-
ments for such applications are geographical restric-
tions on the hosting of applications and data, usually
imposed by laws; stringent high-availability and QoS
constraints (99.99 or 99.999 percent of availability
time per year); and dependency on a homogeneous
set of system security services from different cloud
public providers. In other words, applications should
be accessible anywhere, anytime, with acceptable
performance and security.

Current home-based scenarios are limited to
patients who might leverage the service on premise,
relying on the same practitioner or care delivery or-

ganization (CDO). Moreover, current systems don’t
support “follow-me” scenarios, where traveling pa-
tients might require treatment away from their usu-
al residence, potentially relying on new practitioners
and CDOs (see Figure 1).

Single provider clouds can’t meet these challenges.
First, data processing has strict requirements in terms
of location awareness. In addition, single-provider
availability guarantees might not be sufficient in
medical environments. Quality of service (QoS) is
also impacted by latency, increasing with distance
between service users (such as patients and doctors)
and the datacenter. Finally, cloud providers must be
trustworthy given the privacy issues related to medi-
cal data. To overcome such limitations, healthcare
services should rely on multiple cloud providers. A
multiprovider approach brings both benefits, in terms
of geolocation, availability, and QoS; and challenges,
such as the need for consistent quality of protection

CDO 2: Private cloud

CDO 3: Private cloud

OTT cloud provider 1

OTT cloud provider 3

CDO 1: Private cloud

Wide area network

FIGURE 1. Follow-me use case. Actors in this scenario include care delivery organization (CDO), private cloud,

and over-the-top cloud (OTT) providers.

C
LO

U
D

 4
E

LE

(QoP) across providers. The multiple provider model
also adds significant complexity. The impossibility of
simply and practically leveraging multicloud benefits
prevents many applications from relying on multipro-
vider infrastructure-as-a-service (IaaS) models.

Therefore, a multiprovider system must provide
for flexible provisioning, where the application logic
influences resource allocation in the multicloud;
and must support interoperability. The multicloud
should provide infrastructure homogeneity from se-
curity and resource abstraction standpoints across
multiple sites. Infrastructure homogeneity allows
each provider to use the same security services to
protect application execution.

The Orchestration for Beyond Intercloud Se-
curity (Orbits) architecture addresses these needs,

providing simultaneous and flexible application
provisioning across multiple providers, as well as a
homogeneous service abstraction across multiple
clouds enforced at the IaaS level.

Orbits Multicloud Architecture
Healthcare use cases typically embrace a wide range
of actors (patients, pharmacists, CDO administrators,
doctors, and so on) and different classes of devices. In
addition, service developers and operators, who are
responsible for building applications and delivering
services, represent technical actors in our scenarios.

Hence, we consider two classes of service. The
first is applications deployed by CDOs and other in-
stitutions that are typically shared across multiple
actors and hosted inside private clouds or scaled

RELATED WORK IN E-HEALTH AND INTERCLOUD
ARCHITECTURES

-health cloud opportunities and correspond-
ing challenges are widely discussed in literature.

Assad Abbas and Samee Khan1 and Eman AbuKhuosa
and his colleagues2 discuss privacy issues in treating
sensitive healthcare data in public cloud infrastruc-
tures, including threats, corresponding requirements,
and different proposals for secure and private data
treatment. Orbits is orthogonal to these proposals,
because it facilitates multiprovider adoption and sup-
ports adding recurring components (such as encryp-
tion proxies) to the overcloud service model and
deploying them on multiple providers. Other work
leverages the multicloud as a secure and resilient
infrastructure for performing multiparty computa-
tion and offloading mobile healthcare applications.3,4
Both use cases are compatible with Orbits. In particu-
lar, the overall visibility of application orchestration
logic could simplify the deployment of sophisticated
policies in job distribution across multiple providers.

Interconnection of multiple provider resources
promises important benefits compared to single
clouds. These benefits include finer-grained distribu-
tion of resources across multiple countries, improving
quality of service; unified abstraction for resource
access; and cost savings, optimizing expenditures
through dynamic price comparisons between pro-

viders (for example, for Amazon Web Services Spot
instances). Several surveys on interconnected clouds
identify two main types of architectures.5

Provider-Centric Architectures
In this federation-oriented approach, providers
mutualize their resources, agreeing on a common
standard to cooperate.6 Resource federation enables
single providers to better support peak demand or
maintenance operations. This approach presents two
limitations: providers are typically competitors, and
often aren’t interested in cooperating; and different
technological choices on their infrastructure may
dramatically reduce interoperability among them.7
However, the evolution of the cloud market, where a
few major players control the largest part of market
share shows that it’s difficult for customers to cross
provider barriers.

Client-Centric Architectures
Client-centric approaches require limited provider
intervention.7,8 The client-centric model breaks the
general limitation of absence of a standard, since the
burden of the interoperability is moved from provider
to customer/third party. The architectures typically
used are either brokering or infrastructure as a service

out to public clouds.1,2 This class includes EHR
consultation for patients and prescription manage-
ment for doctors or institutions. The other class
of services is patient-oriented applications, which
typically produce or analyze personal health re-
cords (for example, drug therapy self-assessment
questionnaires, periodic self-treatments, and epi-
demiological studies). Such patient-oriented appli-
cations might require downloading and uploading
data to CDOs or designing complex interconnec-
tions among services.3 Deployed services usually le-
verage a three-tier application structure with SQL/
NoSQL databases, application servers, and front-
ends on top of infrastructure abstractions (virtual
machines [VMs], object/block storage, and virtual
networking) supported by the cloud provider. Given

the heterogeneity of actors and applications, each
tier is usually split into cooperating subcomponents
(microservices) and services, following the service-
oriented architecture (SOA) approach.

We consider a simpler scenario in which patients
move among locations and thus need to perform
telemedicine operations (such as remote treatment,
periodic self-treatment and monitoring, and (EHR)
access) using mobile devices, while CDO services
are geographically fixed in the CDOs’ private clouds.
The application orchestration logic can retrieve
the actual geolocations of the services and patients
through the front-end application and device capa-
bilities (such as GPS).

Cloud customers rely on cloud providers not
only for low-level resources (compute, networking, and

(IaaS) compatibility layers.7,8 Brokering approaches
offload multiprovider orchestration, agreeing with
a broker on the desired service-level agreements
(SLAs) and associated costs. Compatibility layers
typically rely on a client-controlled virtualization layer
to escape vendor lock-in through an interoperable
layer. Such techniques showed fair performance and
consolidation improvements compared to traditional
cloud deployment. However, how they’ll handle
flexible provisioning of applications is unclear. Orbits
implements an IaaS compatibility layer-based ap-
proach, in addition to providing multicloud flexible-
provisioning mechanisms.

Meanwhile, application architectures have
evolved toward more modularity in deployment,
reducing time between development and delivery.

Microservices Frameworks
The rise of lightweight virtualization (such as Docker
containers) is changing the way cloud applications
are developed and deployed. Revisiting the service-
oriented architecture (SOA) paradigm, monolithic
applications are componentized into cooperat-
ing microservices run inside lightweight contain-
ers (for example, Google Kubernetes and Apache
Marathon). However, with multiple providers, such
frameworks don’t consider the homogeneity of
the infrastructure services they’re leveraging (for
example, intrusion detection systems or firewall-as-
a-service for security).

References

1. A. Abbas and S.U. Khan, “A Review on the State-

of-the-Art Privacy-Preserving Approaches in the

E-Health Clouds,” IEEE J. Biomedical and Health In-

formatics, vol. 18, no. 4, 2014, pp. 1431–1441.

2. 2. E. AbuKhousa, N. Mohamed, and J. Al-Jaroodi,

“E-Health Cloud: Opportunities and Challenges,”

Future Internet, vol. 4, no. 3, 2012, pp. 621–645.

3. H. Wu, Q. Wang, and K. Wolter, “Mobile Healthcare

Systems with Multi-Cloud Offloading,” Proc. IEEE

14th Int’ l Conf. Mobile Data Management, vol. 2,

2013, pp. 188–193.

4. T. Ermakova and B. Fabian, “Secret Sharing for

Health Data in Multi-Provider Clouds,” Proc. IEEE

15th Conf. Business Informatics, 2013, pp. 93–100.

5. N. Grozev and R. Buyya, “Inter-cloud Architectures

and Application Brokering: Taxonomy and Survey,”

Software: Practice and Experience, vol. 44, no. 3,

2014, pp 369–390.

6. R. Buyya, R. Ranjan, and R. Calheiros, “InterCloud:

Utility-Oriented Federation of Cloud Computing

Environments for Scaling of Application Services,”

Algorithms and Architectures for Parallel Process-

ing, LNCS 6081, Springer, 2010, pp. 13–31.

7. D. Williams et al., “The Xen-Blanket: Virtualize Once,

Run Everywhere,” Proc. 7th ACM European Conf.

Computer Systems (EuroSys12), 2012, pp. 113–126.

8. K. Razavi et al., “Kangaroo: A Tenant-Centric Soft-

ware-Defined Cloud Infrastructure,” Proc. IEEE Int’ l

Conf. Cloud Eng., 2015, pp. 106–115.

C
LO

U
D

 4
E

LE

storage) but also for high-level services, such as da-
tabase management systems as a service (DBMSaaS)
or load balancer as a service (LBaaS), offloading
operational complexity from developers. However,
the use of these complementary services creates a
de facto lock-in that introduces a strict dependency
between cloud customer and provider. In addition,
similar services might encourage customers to re-
main inside the provider realm since transferring
data inside the same provider region is free or inex-
pensive. Therefore, interoperability at the IaaS level
can hide the complexity of compatibility layers on
different providers. However, the orchestration logic
could effectively deploy multiprovider applications,
since all requirements can be handled with a precise
knowledge of subcomponent interactions, which is
possible at the application orchestration level. Obvi-
ously, IaaS interoperability might not solve incom-
patibility issues at the application layer, but they
could simplify interoperability by enhancing the or-
chestration expressiveness of this layer while hiding
the underlying complexity.

To address these challenges, Orbits offers both
flexible provisioning of microservices-based applica-
tions, handling placement, elasticity, and availabil-
ity; and infrastructure homogeneity so customers
can completely control their security appliances.
Orbits enables infrastructure deployment to sup-
port application requirements (such as peak usage or
CSP breach) when and where they occur.

Existing approaches partially meet these re-
quirements (see the related work sidebar). Indeed,
overlay-based approaches give users an important
degree of control (such as a virtualization layer
and security appliances),4 but lack effective multi-
provider orchestration tools. However, brokering-
based approaches (for example, RightScale and
jClouds) optimize provisioning of application re-
sources without giving users more control over the
infrastructure.

To sum up, we model a use-case where a health-
care service is described by

• a microservice-based application with related
orchestration logic,

• a minimal threshold of N distinct providers and
M regions that they require a priori (such as for
availability),

• the set of security services and configurations
they want to deploy for QoP requirements, and

• a list of static provider constraints to address geo-
location (such as legal country and per-provider
minimum availability).

Developers and operators of the healthcare ser-
vice might consider a cloud service provider (CSP)
as trusted or untrusted, adopting an adversary mod-
el to deal with security and privacy.

Figure 2 gives an overview of the Orbits archi-
tecture’s three layered-design:

Application orchestration logic

Administration orchestration services

Cloud provider 1 Cloud provider 2 Cloud provider 3

Orchestration layer

Management layer

Virtualization layer

Compute resources Compute resources Compute resources

Resource multiplexer

SDN
controller

Auth
server

User-centric
cloud builder

Network
fabric builder

Cloud
operating

system

Lo
c

al
o

rc
h

e
st

ra
to

r SDN
controller

Cloud
operating

system

Lo
c

al
o

rc
h

e
st

ra
to

r SDN
controller

Cloud
operating

system

Lo
c

al
o

rc
h

e
st

ra
to

r

Execution environments Execution environments Execution environments

FIGURE 2. The Orbits architecture. Management and virtualization instances are replicated through different

providers, creating the “overclouds.”

• The virtualization layer executes scheduled jobs,
with tradeoffs between performance and isola-
tion among workloads, using security services
specified by operators at build time. It provides a
homogeneous view of security services to upper
layers to meet the QoP requirement.

• The management layer oversees resource provi-
sioning on each overlay provider, managing the
virtualization layer and the creation of new ex-
ecution environments. This layer also meets the
QoP requirement, focusing not only on applica-
tion execution, but also on access to resources.

• The orchestration layer ensures flexible provi-
sioning across multiple providers required by
the use cases. It gives an overall view of the
available providers and coordinates application
orchestration between provider instances.

Management and virtualization layer services
are deployed on each provider inside the multicloud.
We refer to those instances as overclouds, as they’re
overlay instances that provide a homogeneous view
of resources to the orchestration layer.

Virtualization Layer
The Orbits virtualization layer runs microservices
using a provider-agnostic approach. Virtualization
is a widely adopted approach to obtain isolated and
transparent hardware resource sharing between
competing software or systems. Several technologies
can be adopted to deploy and run execution environ-
ments that generally aren’t interoperable.5

The virtualization layer should realize interop-
erability among isolated execution environments
across different providers, hiding provider hetero-
geneity. Technological heterogeneity makes this
impossible at the underlay level. The virtualization
layer should also be customizable, allowing each op-
erator to deploy its chosen security services and to
impose minimal performance overheads.

Two main technological alternatives are avail-
able for the virtualization layer.

Nested virtualization is a system architecture
in which the guest operating system virtualizes a
nested guest.6 This extra level of virtualization can
be executed through nested hardware-assisted full
virtualization6 or paravirtualization over hardware-
assisted virtualization.5 Performance has always
been an impeding factor for massive adoption of such
techniques. However, some recent work shows more
acceptable overhead.5,6

Containers are user-space environments on an
operating system providing isolation between them
and host resources.7 Resource isolation is achieved

using new kernel functionalities (for example,
cgroups and Linux namespaces). However, contain-
ers still suffer from major isolation concerns due to
Linux kernel sharing and achieve weaker isolation
than VMs. Recent work has also shown that overlay
containers don’t significantly degrade performance.4

In both cases, microservices composing a com-
plex application will be run inside execution environ-
ments provided by the virtualization layer. Nested
virtualization and containers offer different trad-
eoffs in terms of isolation and performance. State-
ful applications might need to be migrated without
loss of state through live migrations, which is sim-
pler with VMs. With stateless services, a simple re-
spawn on a new infrastructure is better addressed by
lightweight containers, which can enhance resched-
uling time on new infrastructures when detecting
that a patient is moving and requesting service from
another location. VMs achieve better isolation and
resilience than containers, but have slower perfor-
mance, and might be a better tradeoff for critical
components in terms of service availability.

Thus, developers and/or operators might adapt
virtualization to workloads, selectively isolating or
aggregating diverse application components. This
can be achieved through the management layer API.

Management Layer
For infrastructure homogeneity, Orbits aims not
only at virtualization interoperability but also ho-
mogeneous resource management across multiple
clouds. This implies uniform APIs across providers.
Indeed, complete interoperability issues arising from
the infrastructure’s multiprovider nature could be
prevented by security services provided as a service
by cloud providers (for example, anti-DDoS and fire-
walls). Different APIs might require per-provider ad-
aptation; thus, homogeneous resource management
is critical to guaranteeing QoP in our use case.

We distinguish two classes of management ser-
vices for Orbits overclouds.

In local resource provisioning, the local cloud
operating system and software-defined networking
(SDN) controller components are typically in charge
of compute, storage, and networking management.

In relation with orchestration logic services, the
local orchestrator, or Stratopause component, is the
link between local resource provisioning and ap-
plication dispatching. It regularly informs the ap-
plication orchestration framework about available
overclouds, for example, resources and cloud at-
tributes (provider, region, and virtualization tech-
nologies). When the application orchestration logic
schedules a job on a certain Stratopause instance,

C
LO

U
D

 4
E

LE

the Stratopause communicates with the cloud op-
erating system service to trigger resource allocation
to satisfy the allocation requirements demanded by
the orchestration layer. The global orchestration
logic collects updates from Stratopause instances to
reach placement decisions. This instance also col-
lects microservices that dispatch commands to local
overlays, which are transmitted to the local cloud
operating system to provision resources according to
expressed requirements.

The management layer enables the use of equiv-
alent security services on different providers, for ex-
ample, to fulfill EHR systems security requirements.
However, this layer doesn’t have the overall vision of
all deployed overclouds.

Orchestration Layer
Orchestration is performed at both the infrastruc-
ture and application levels.

Infrastructure orchestration. Following the “infra-
structure as code” paradigm, a cloud template text
description for the overlay infrastructure defines
which services are deployed and where. Orchestra-
tion covers

• deploying management and virtualization layers
on selected providers,

• providing on-demand interconnection between
providers, and

• managing identity and access across overlay
instances.

Therefore, to address the deployment of overlays on
different providers, the user-centric cloud builder
component, Mantus customizes the cloud template
according to tenant-requested security services,
which might include network and system control,
management services, and virtualization; selects a
subset of cloud providers, compatible with policies
expressed by the tenant needs; and instantiates over-
lay clouds on multiple providers.

Moreover, hosting cloud providers create vir-
tual networks inside each overlay cloud. To create
multiprovider connections, a network fabric builder
component extends local virtual networks across pro-
vider barriers. Finally, an overall authentication and
authorization service transparently manages identity
and access across deployed overclouds, for example,
by coordinating different authentication services.

The Mantus orchestration component commu-
nicates with orchestration providers’ APIs (such as
OpenStack Heat and Amazon CloudFormation), de-
ploying the overclouds template, which consists of a

text-based description of the topology and configu-
ration of hardware resources and software compo-
nents. Some legislation, such as the General Data
Protection Regulation (GDPR), might require techno-
logical and organizational settings to protect sensitive
data and its processing. The infrastructure-as-code-
based security enrichment approach leveraged by
Mantus reduces the effort required to provide the
same infrastructure security and privacy services
across multiple cloud providers.

Application-level orchestration. Whereas the role of
infrastructure services is building and maintaining
the Orbits multicloud, the application orchestration
logic is responsible for flexible provisioning across
clouds, which it typically achieves by placing appli-
cation microservices across providers.

Orchestration frameworks are usually composed
of application frameworks and a resource multiplex-
er (for example, Apache Mesos). Application frame-
works are responsible for application deployment
on available resources, following developer/operator
specifications. The resource multiplexer guarantees
fair sharing between frameworks on a pool of re-
sources. In Orbits, we enhance the placement logic
of application frameworks, introducing multipro-
vider awareness of overclouds deployed by Mantus.
The overcloud-aware placement leverages Strato-
pause instances to receive updates about overcloud
instance availability and dispatch selected jobs on a
given provider.

Essential requirements of healthcare applica-
tions, such as confidentiality, data integrity, and
anonymity, might leverage the single point of orches-
tration to effectively decide where to deploy different
instances of services, relying on the infrastructure’s
homogeneity.8 This runtime control could also allow
service operators to easily comply with legislation in
terms of data protection and geolocalization.

Experimental Results
We built a proof-of-concept prototype of the basic
overlay template cloud based on OpenStack and Me-
sos (see Figure 3). We leveraged Xen, Linux Contain-
ers (LXC), and the Kernel-based Virtual Machine
(KVM) as basic virtualization technologies. The
management layer is based on OpenStack, which
supports those virtualization technologies Open-
Stack is integrated with an overlay OpenDaylight as
the SDN controller. We realized a first implemen-
tation of Mantus and Stratopause in a simpler sce-
nario, where a developer can trigger deployment of
Orbits on a select number of providers without con-
sidering the patient’s location; instead, the focus is

on enriching security services and deploying a uni-
form infrastructure layer.

The Mantus orchestration workflow proceeds as
follows.

In the first step, service definition, Mantus
uses a code description to automate infrastructure
resource provisioning and configuration, which
provides benefits in terms of reproducibility and
maintenance. Such a description concerns services
from management and virtualization layers (such
as cloud operating system services, SDN controller,
and virtualization nodes).

Next, in the service enrichment step, Mantus ex-
tends the abstract service description with the list
of security services provided as input (see Figure 4).
The initial description is then enriched by the ad-
dition of selected services from providers (such as
access control framework, hardening services, hy-
pervisor appliances, and network middleboxes).

Access control and hardening services could be
introduced as new services in the provider-agnostic
description. The infrastructure should have network
connectivity with control services. Thus, network
applications can be described as configuration files
to be deployed inside the SDN controller. Similar-
ly, hypervisor appliances can be added to compute
nodes. Finally, network middleboxes (for example,
firewalls, intrusion detection services, and HTTP
accelerators) can be described as extra services,
chained together by traffic steering flows.

In parallel to the first two steps, Mantus re-
trieves a list of available providers and applies a
simple filter and weight algorithm. We assume that
Mantus retrieves a list of provider datacenter re-
gions with predefined and comparable service-level
agreements (SLAs), such as minimal availability and
location of specific regions.

The next step is instantiation. When providers
are selected, the provider-agnostic description of ser-
vices is converted into the provider-specific orches-
tration language3 of the selected cloud providers. In
the Mantus workflow, provider-agnostic Topology
and Orchestration Specification for Cloud Applica-
tions (Tosca, www.oasis-open.org/committees/tosca)
service descriptions are mapped to per-provider de-
scriptions, such as OpenStack Heat Orchestration
Template (HOT, http://docs.openstack.org/developer/
heat/template_guide/hot_guide.html) and, in
the future, Amazon Web Services CloudFormation
(https://aws.amazon.com/cloudformation).

Modeling the base cloud services resulted in
1,103 lines of code (601 lines of Tosca YAML (Yet
Another Markup Language) and 502 of BASH
[Bourne-Again Shell] configuring scripts). The
translation of Tosca to OpenStack Heat plus the in-
stantiation logic for Heat APIs required 868 lines
of Python, which represent the specific OpenStack
driver code required to port Mantus to a new pro-
vider. Supporting OpenStack enables Orbits to sup-
port not only private clouds but also several public

Nova
compute

Compute node

Compute Resources

EEs

Mesos
slave

Keystone

Nova scheduler

Glance

Neutron

SDN controller

St
ra

to
p

au
se

Compute node

Nova
compute

Compute Resources

EEs

Mesos
slave

Custom framework

Application deployment logic Administration orchestration services

Legacy Mesos master

Keystone

Nova scheduler

Glance

Neutron

SDN controller

Primary
server Mantus

Network
tunnelling
databases

St
ra

to
p

au
se

Custom framework

FIGURE 3. Orbits prototype components. Dashed borders indicates newly introduced components, among

legacy open-source.

C
LO

U
D

 4
E

LE

CSPs leveraging this open source cloud manage-
ment system.

Table 1 summarizes how Orbits addresses
healthcare requirements. The geolocation require-
ment is addressed through Mantus, which selects
acceptable providers according to service SLAs re-
quirements; and through Stratopause, which in-
structs the application logic with IaaS provider
details. For the QoS requirement, Stratopause no-
tifies the application orchestration logic to satisfy
desired availability through replication on different
infrastructures. The QoP requirement over multiple

clouds is guaranteed by the description-based model
elaborated by Mantus.

To assess overhead when using nested virtualiza-
tion, we evaluated our Orbits prototype in terms of
both performance and scalability. To this end, net-
work latency and bandwidth represent important pa-
rameters to influence the execution performance of
healthcare applications as analyzed earlier. Figures
5a and 5b compare nested virtualized execution en-
vironments (VM plus containers), single-layer VMs,
and a bare-metal system. Degradations are concen-
trated in the nested KVM setting, where overhead

Table 1. Meeting healthcare requirements with Orbits.

Healthcare requirements Orbits component Feature

Geolocation awareness Mantus
Stratopause

Location and service level agreement (SLA)-based
provider prefiltering

High-availability/quality of
service

Stratopause Application-driven flexible orchestration over multiple
clouds

Homogeneous quality of
performance

Mantus Homogenous description-based security services
deployed across multiple clouds

Public virtual network

« Enriched » overlay template

Base cloud template

Private virtual network

(a)

(b)

Standalone service

Configuration script

Integrated service

Network function forwarding graph

OS
compute

(LXC)

SELinux
profiles

IntrospectionAnD
DDoS

Moon

OS
controller

node
SDN

controller
Compute

(Xen)

Hardening
service

Operating
system

controller
vode

SDN
controller

Operating
system

compute
node (Xen)

Operating
system

controller
node (LXC)

Internet

Internet

Moon

Hardening
server

Anti DDoS

URL filter

Stateful FW
Snort

URL
filter

FW

Snort

Introspection
SELinux
profiles

FIGURE 4. Mantus orchestration templates: (a) initial sample overlay template, and (b) services after enrichment process.

often exceeds 50 percent compared to the baseline.
LXC performs quite well and can be considered a
viable solution to introduce a user-controlled virtu-
alization layer.

As Figures 5c and 5d show, we tested the scal-
ability of nested execution environments when
increasing load in a WordPress application. A
WordPress application, like many healthcare appli-
cations,3 relies on a Web front end, a server-side ap-
plication logic, and access to a database, and could
be used as a generic and representative benchmark.
From the perspective of both throughput and elapsed
time, Xen and LXC perform well, keeping overhead
below 20 percent. In addition, from a scalability
viewpoint, control of a nested virtualization layer on
a public cloud makes physical collocalization pos-
sible,4,5 which might enable better performance re-
gardless of the underlying provider, in the context of
applications using multiple execution environments.

To sum up, experimental results show that the
performance and scalability loss of the Orbits archi-
tecture due to the adoption of an extra virtualization
layer might be affordable. The cost to adopt a new
provider isn’t huge in terms of code development,

so supporting new providers would require adding
only their orchestration service to the appropriate
Mantus driver.

e plan to extend the Orbits architecture
with additional features, such as the abil-

ity to model security services (Tosca) and weave
them into the functional infrastructure, and to
integrate SLAs. We also intend to benchmark the
Mantus and Stratopause components and overall
Orbits framework using sample healthcare appli-
cations to further validate multicloud-aware place-
ment and follow-me types of ubiquitous healthcare
scenarios, as well as other classes of applications
to evaluate the genericity of the architecture in a
variety of use cases. We’ll also address the addi-
tional management complexity introduced by mul-
tiple overlays, exploring existing frameworks (such
as the Virtual Environment Self-Protecting Archi-
tecture)9 to enrich Stratopause and Mantus with
self-management features for typical administra-
tion tasks, or detection of and reaction to unusual
events such as failures.

 10

 30

 50

 70

 90

 110

 130

 150

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

Orbits Xen
(a) (b)

(c) (d)

Orbits KVM Orbits LXC Guest KVM L1 Physical

T
im

e
 (

u
s)

9
8

.8
1%

11
1.

73
9

%

2
2

.2
7%

2
0

.4
2

3
%

 0

 20

 40

 60

 80

 100

 120

 140

1 10 100

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

se
c

o
n

d
s)

Concurrent HTTP Connections

KVM guest L1
Orbits: nested KVM
Orbits: nested Xen
Orbits: nested LXC

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 32 64 128 256 512 1,024

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

TCP payload size (bytes)

Orbits: nested LXC
Orbits: nested Xen

Orbits: nested KVM
KVM guest L1

Physical

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 10 100

O
ve

rh
e

ad
 in

 R
e

sp
o

n
se

 T
im

e
 (

%
)

Concurrent HTTP Connections

KVM guest L1
Orbits: KVM
Orbits: Xen
Orbits: LXC

FIGURE 5. We ran performance and scalability tests using an Intel Xeon E5-2650 Haswell at 2.60 GHz with 64 Gbytes of RAM and

Centos 7 as a bare-metal operating system. The base software platform is an OpenStack over Linux KVM executing Ubuntu 16.04

guests VMs, with a paravirtualized VirtIO drivers network card and disk. (a) Average TCP latency (less is better). (b) Average TCP

throughput. (c) Request service response time. (d) Request throughputs per second.

C
LO

U
D

 4
E

LE

Acknowledgments
This work is partially supported by the European
Union SUPERCLOUD Project (Horizon 2020 Re-
search and Innovation Program, grant 644962) and
by the Swiss Secretariat for Education‚ Research
and Innovation (contract 15.0091).

References
 1. Z. Jin and Y. Chen, “Telemedicine in the Cloud

Era: Prospects and Challenges,” IEEE Pervasive
Computing, vol. 14, no. 1, 2015, pp. 54–61.

 2. S. Biswas et al., “Cloud Based Healthcare Ap-
plication Architecture and Electronic Medical
Record Mining: An Integrated Approach to Im-
prove Healthcare System,” Proc. 17th Int’l Conf.
Computer and Information Technology (ICCIT
14), 2014, pp. 286–291.

 3. M. Deng et al., “A Home Healthcare System
in the Cloud: Addressing Security and Privacy
Challenges,” Proc. IEEE 4th Int’l Conf. Cloud
Computing (Cloud 11), 2011, pp. 549–556.

 4. K. Razavi et al., “Kangaroo: A Tenant-Centric
Software-Defined Cloud Infrastructure,” Proc.
IEEE Int’l Conf. Cloud Eng., 2015, pp. 106–115.

 5. D. Williams et al., “The Xen-Blanket: Virtualize
Once, Run Everywhere,” Proc. 7th ACM Europe-
an Conf. Computer Systems (EuroSys12), 2012,
pp. 113–126.

 6. M. Ben-Yehuda et al., “The Turtles Project: De-
sign and Implementation of Nested Virtualiza-
tion,” Proc. Operating System Design and Imple-
mentation (OSDI) 10, 2010, pp. 423–436.

 7. S. Soltesz et al., “Container-Based Operat-
ing System Virtualization: A Scalable, High-
Performance Alternative to Hypervisors,” ACM
SIGOPS Operating Systems Rev., vol. 41, no. 3,
2007, pp. 275–287.

 8. A. Abbas and S.U. Khan, “A Review on the
State-of-the-Art Privacy-Preserving Approaches
in the E-Health Clouds,” IEEE J. Biomedical
and Health Informatics, vol. 18, no. 4, 2014, pp.
1431–1441.

 9. A. Wailly, M. Lacoste, and H. Debar, “Vespa:
Multi-Layered Self-Protection for Cloud Re-
sources,” Proc. 9th Int’l Conf. Autonomic Com-
puting, 2012, pp. 155–160.

ALEX PALESANDRO is a PhD student at Orange
Labs and the University of Lyon III. His research in-
terests include cloud computing technologies, with a
focus on virtualization and hypervisor security. Pale-
sandro has a master’s degree in computer engineering
as part of double degree program between the Politec-

nico di Torino, Italy, and the École Nationale Supéri-
eure d’Informatique et Mathématiques Appliquées of
Grenoble, France. Contact him at alex.palesandro
@orange.com.

CHIRINE GHEDIRA GUEGAN is a full professor
of computer sciences and co-head of the service-
oriented computing research team at the Lyon Re-
search Center for Images and Intelligent Information
Systems associated with the French National Center
for Scientific Research (CNRS) in Lyon, France. Her
research interests include service-oriented archi-
tectures and computing; interoperability; complex,
autonomic, and adaptive systems; context-aware
computing; data services; privacy; and cloud com-
puting. Guegan has a research habilitation in com-
puter science from Université de Lyon I. Contact her
at chirine.ghedira-guegan@univ-lyon3.fr.

MARC LACOSTE is a senior research scientist in
the Security Department of Orange Labs. His research
interests include security architecture, cloud comput-
ing security, self-protecting systems, and open security
kernels. Lacoste has a PhD in computer science from
the University of Grenoble, France. Contact him at
marc.lacoste@orange.com.

NADIA BENNANI is an associate professor at
the Institut National des Sciences Appliquées de
Lyon. Her research interests include security, privacy,
and data management in clouds and mobile net-
works. Bennani has a PhD in computer science from
the University of Lille France. Contact her at nadia
.bennani@insa-lyon.fr.

