
Near-Duplicate Video Retrieval by Aggregating
Intermediate CNN Layers

Giorgos Kordopatis-Zilos1,2, Symeon Papadopoulos1, Ioannis Patras2, and
Yiannis Kompatsiaris1

1 Information Technologies Institute, CERTH, Thessaloniki, Greece
{georgekordopatis,papadop,ikom}@iti.gr

2 Queen Mary University of London, Mile end Campus, UK, E14NS
i.patras@qmul.ac.uk

Abstract. The problem of Near-Duplicate Video Retrieval (NDVR) has
attracted increasing interest due to the huge growth of video content on
the Web, which is characterized by high degree of near duplicity. This
calls for efficient NDVR approaches. Motivated by the outstanding per-
formance of Convolutional Neural Networks (CNNs) over a wide variety
of computer vision problems, we leverage intermediate CNN features in
a novel global video representation by means of a layer-based feature
aggregation scheme. We perform extensive experiments on the widely
used CC WEB VIDEO dataset, evaluating three popular deep architec-
tures (AlexNet, VGGNet, GoogleNet) and demonstrating that the pro-
posed approach exhibits superior performance over the state-of-the-art,
achieving a mean Average Precision (mAP) score of 0.976.
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1 Introduction

Near-duplicate video retrieval (NDVR) is a research topic of increasing interest
in recent years. It is considered essential in a variety of applications that involve
video retrieval, indexing and management, video recommendation and search,
copy detection and copyright protection. The exponential growth of the Web is
accompanied by a proportional increase of video content, typically posted and
shared through social media platforms. At the moment, YouTube reports more
than one billion users and approximately 500 hours of video content is uploaded
every minute3. This fact renders the NDVR problem extremely important.

NDVR is defined in various ways among the multimedia research community
as pointed in [12]. Here, we adopt the definition of Wu et al. [21]: near-duplicate
videos are considered to be identical or close to exact duplicate of each
other, but different in terms of file format, encoding parameters, photometric
variations (color, lighting changes), editing operations (caption, logo and border
insertion), different lengths, and other modifications.

3 https://www.youtube.com/yt/press/statistics.html (accessed on August 2016)
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Motivated by the excellent performance of Convolutional Neural Networks
(CNNs) on many computer vision problems, such as image classification, re-
trieval and object detection, in this paper we propose using intermediate con-
volutional layers to construct features for NDVR. Although CNN features have
been recently used for video retrieval [14, 22], it is the first time that interme-
diate CNN layers are exploited for NDVR. A first use of these layers was
recently presented on the problem of image retrieval [13, 23].

To make use of intermediate convolutional layers for NDVR, we extract
layer-level feature descriptors by applying max pooling to the activations of
each convolutional layer. In addition, we propose two layer aggregation
techniques, a first by concatenating the layer vectors in a single vector, and
a second by computing layer-specific codebooks and aggregating the resulting
bag-of-words representations. Furthermore, we evaluate three popular deep
architectures [10, 16, 19] in combination with both layer aggregation schemes
by means of a thorough experimental study on an established NDVR dataset
(CC WEB VIDEO [21]), and we demonstrate the superior performance
of the proposed approach over five state-of-the-art methods. In partic-
ular, the best configuration of the proposed approach achieves a mean Average
Precision (mAP) score of 0.976, i.e. a clear improvement over the already high
mAP of 0.958 achieved by the Multiple Feature Hashing and Pattern-based ap-
proaches of Song et al. [18] and Chou et al [3], respectively.

2 Related Work

NDVR is a very challenging task, which has attracted increasing research in-
terest in recent years. Liu et al. [12] provide a survey with detailed overviews
of the NDVR research problem and a number of recent approaches. These are
typically classified based on the level of matching performed to determine the
near-duplicate videos: video-level, frame-level and hybrid-level matching.
Video-level matching: Here, videos are represented with a global signature
such as an aggregate feature vector, a fingerprint or a hash code. Huang et al.
[6] proposed a video representation model called Bounded Coordinate System
(BCS) which extends Principal Component Analysis (PCA). In [18], Song et al.
present an approach for Multiple Feature Hashing (MFH) based on a supervised
method that uses multiple image features and learns a group of hash functions
that map the video keyframes into the Hamming space. The video signatures are
generated by the combination of the keyframe hash codes and they constitute
the video representation in the dataset.
Frame-level matching: Near-duplicate videos are determined by the compari-
son between individual frames or sequences of the candidate videos. Douze et al.
[4] detect local points of interest, extract the SIFT [11] and CS-LBP [5] descrip-
tors, and create a visual codebook for hamming embedding. Using post-filtering,
they verify retrieved matches with spatiotemporal constrains. In [15], Shang et
al. introduce compact spatio-temporal features to represent videos and construct
a modified inverted file index. The spatio-temporal features are extracted using
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a feature selection and w -shingling scheme. Cai et al. [2] presented a large-scale
approach by applying a scalable K-means clustering technique to learn a vi-
sual vocabulary on the color correlograms of a training set of images and using
inverted file indexing for fast retrieval of candidate videos.

Hybrid-level matching: A typical such approach is [21], where Wu et al. apply
a hierarchical filter-and-refine scheme to cluster and filter out near-duplicate
videos. When a video cannot be clearly classified as novel or near-duplicate,
they apply an expensive local feature-based NDVR scheme. In a more recent
approach [3], Chou et al. filter the non near-duplicate videos with a pattern-
based indexing tree and rank candidate videos with m-pattern-based dynamic
programming and time-shift m-pattern similarity.

The well-known TRECVID copy detection task [9] is also a specific case
of NDVR. However, in the TRECVID copy detection task, the duplicates are
artificially generated by applying standard transformations, whereas in case of
NDVR duplicates correspond to real content.

3 Approach Overview

The proposed NDVR approach leverages features produced by the intermediate
CNN layers of deep architectures (subsection 3.1) and introduces a layer-based
aggregation scheme for deriving a bag-of-word representation for each video (sub-
section 3.2). The bag-of-words representations of videos are stored in an efficient
inverted file index, while video retrieval is carried out based on cosine similarity
between tf-idf weighted versions of the extracted vectors (subsection 3.3).

3.1 CNN based feature extraction

In some recent research works [13, 23], pre-trained CNN models are adopted to
extract visual features from intermediate convolutional layers. These features are
computed through the forward propagation of an image over the CNN network
and the use of an aggregation function (e.g., VLAD encoding [7], max/average
pooling) on every convolutional layer.

We experiment with three deep network architectures: AlexNet [10], VGGNet
[16] and GoogleNet [19]. All three architectures receive images of size 224× 224
as input. For all experiments, input images are resized to fit these dimensions.

To extract frame descriptors, we are following the process of [23]. A pre-
trained CNN network C is employed, with a total number of L convolutional
layers, denoted as L1,L2, ...,LL. Forward propagating an image I through C
generates a total of L feature maps, denoted as Ml ∈ Rnl

d×n
l
d×c

l

(l = 1, ..., L),
where nl

d×nl
d is the dimension of every channel for convolutional layer Ll (which

depends on the size of the input image) and cl is the total number of channels.
To extract a single descriptor vector from every layer, an aggregation function is
applied on the above feature maps. In particular, we apply max pooling on every
channel of feature map Ml to extract a single value. The extraction process is
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Table 1: Total number of CNN channels per layer used by the proposed approach
for the three selected deep architectures.

(a) AlexNet

Layer Ll cl-dim

conv1 96

conv2 256

conv3 384

conv4 384

conv5 256

total 1376

(b) VGGNet

Layer Ll cl-dim

conv2 1 128
conv2 2 128

conv3 1 256
conv3 2 256
conv3 3 256

conv4 1 512
conv4 2 512
conv4 3 512

conv5 1 512
conv5 2 512
conv5 3 512

total 4096

(c) GoogleNet

Layer Ll cl-dim

Inception 3a 256
Inception 3b 480

Inception 4a 512
Inception 4b 512
Inception 4c 512
Inception 4d 528
Inception 4e 832

Inception 5a 832
Inception 5b 1024

total 5488

formulated in Equation 1.

vl(i) = max Ml(·, ·, i), i = {1, 2, ..., cl} (1)

where layer vector vl is a cl-dimensional vector that is derived from max pooling
on every channel of feature map Ml. The layer vectors are L2-normalized to
unit length after their extraction.

Table 1 depicts the employed CNN architectures and the number of channels
in the respective convolutional layers. We extract image descriptors only from
the activations in intermediate layers, since we aim to construct a visual repre-
sentation that preserves local structure in different scales. The fully-connected
layer activations are not used. A positive side-effect of this decision is that the
resulting descriptor is compact, reducing the total processing time and storage
requirements. For the VGGNet and GoogleNet architectures, we do not use the
initial layer activations as features, since those layers are expected to capture
very primitive image features (e.g. edges, corners, etc.) that could lead to false
matches. For the extraction of the above descriptors, we use the Caffe framework
[8], which provides pre-trained models on ImageNet for all three CNN networks4.

3.2 Feature Aggregation

We then follow two alternative feature aggregation schemes (i.e. ways of ag-
gregating features from layers into a single descriptor for the whole frame): a)
vector aggregation and b) layer aggregation. The outcome of both schemes is
a frame-level histogram Hf that is considered as the representation of a frame.
Finally, a video-level histogram Hv is derived from the respective keyframe rep-
resentations by plain summing. Figure 1 gives an overview of the two schemes.

4 https://github.com/BVLC/caffe/wiki/Model-Zoo
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(a) Vector Aggregation
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(b) Layer Aggregation

Fig. 1: The two aggregation schemes and the final video representation.

Vector aggregation. A bag-of-words scheme is applied on the vector vc result-
ing from the concatenation of individual layer features to generate a codebook
of K visual words, denoted as CK = {t1, t2, ..., tK}. The selection of K has crit-
ical impact on the performance of the approach and it is considered a system
parameter, which is further explored in Section 5. Having generated the visual
codebook, every video keyframe is assigned to the nearest visual word. Accord-
ingly, every frame f with feature descriptor vcf is aggregated to the nearest visual
word tf = NN(vcf ), hence its Hf contains only a single visual word.

Layer aggregation. To preserve the structural information of intermediate
CNN layers L, we generate L layer-specific codebooks of K words (denoted as
Cl

K = {tl1, tl2, ..., tlK}, l = 1, ..., L), which we then use to extract separate bag-
of-words representations (one per layer). The layer vectors vlf of frame f are

mapped to the nearest layer words tlf = NN(vlf ), (l = 1, 2, ..., L). In contrast to
the previous scheme, every frame f is represented by a frame-level histogram Hf

that results from the concatenation of the individual layer-specific histograms,
therefore comprising L words instead of a single one.

In both schemes, the visual codebooks are generated based on scalable K-
Means++ [1] on a sample of 100K randomly selected video frames. The Apache
Spark5 implementation of the algorithm is used for efficiency and scalability.

Keyframe to video aggregation. The final video representation is generated
using the bag-of-words histograms of its keyframes. Given a video d with |F |
keyframes, F = {f1, f2, ..., fF }, its video-level histogram Hv is derived by sum-
ming the histogram vectors corresponding to its keyframes, i.e. Hv =

∑
fi∈F Hfi .

Note that for the two aggregation schemes, histograms of different sizes are gen-
erated. In the first case, the total number of visual words is K, whereas in the
second case it is K · L.

5 http://spark.apache.org (accessed on November 2016)
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3.3 Video Indexing and Querying

We use tf-idf weighting to calculate the similarity between two video histograms.
The tf-idf weights are computed for every visual word in every video in collection
Db based on wtd = ntd · log |Db|/nt, where wtd is the weight of word t in video
d, ntd and nt are the number of occurrences of word t in video d and the entire
collection respectively, while |Db| is the number of videos in the collection. The
former factor of the equation is called term frequency (tf) and the latter inverted
document frequency (idf). The calculation of weights take place in the offline part
of the method, i.e. they are not recalculated for every new query.

The feature extraction and aggregation steps for a query video q are the same
as the ones described above. Once the final histogram Hq

v is extracted from q,
an inverted file indexing structure [17] is used for fast retrieval of videos that
have at least a common visual word with the query video. Then, all these videos
are ranked in descending order based on their cosine similarity with the query
video, computed using the corresponding tf-idf representations.

4 Evaluation

4.1 Dataset

Experiments were performed on the CC WEB VIDEO dataset [21], which is
available by the research groups of City University of Hong Kong and Carnegie
Mellon University. The collection consists of a sample of videos retrieved by sub-
mitting 24 popular text queries to popular video sharing websites (i.e. YouTube,
Google Video, and Yahoo! Video). For every query, a set of video clips was
collected and the most popular video was considered to be the query video.
Subsequently, all videos in the video set retrieved by the query were manually
annotated based on their near-duplicate relation to the query video. Table 2 de-
picts the types of near-duplicate types and their annotation. In the present work,
all videos annotated with any symbol but X are considered near-duplicates. The
dataset contains a total of 13,129 videos consisting of 397,965 keyframes.

All experiments were carried out on a system with Intel(R) Core(TM) i7-
4770K CPU at 3.50GHz CPU, 16GB RAM, NVIDIA GTX 980 GPU and 64-bit
Ubuntu 14.04 operating system.

Table 2: Type of transformation.
Annotation Transformation

E Exactly duplicate

S Similar video

V Different version

M Major change

L Long version

X Dissimilar video
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4.2 Evaluation metrics

To measure detection accuracy, we employ the interpolated precision-recall (PR)
curve. Precision is determined as the fraction of retrieved videos that are relevant
to the query, while recall is the fraction of the total relevant videos that are
retrieved. We further use mean average precision (mAP) as defined in [21] and
in Equation 2, where n is the number of relevant videos to the query video, and
ri is the rank of the i-th retrieved relevant video.

AP =
1

n

n∑
i=0

i

ri
(2)

4.3 Competing Approaches

In section 5.4, we compare the proposed approach with five widely used content-
based NDVR approaches.

Color Histograms (CH) - Wu et al. [21] generated a global video repre-
sentation based on the color histograms of keyframes. The color histogram is a
concatenation of 18 bins for Hue, 3 bins for Saturation, and 3 bins for Value, re-
sulting in a 24-dimensional vector representation for every keyframe. The global
video signature is the normalized color histogram over all keyframes in the video.

Auto Color Correlograms (ACC) - Cai et al. [2] used uniform sampling to
extract one frame per second for the input video. The auto-color correlograms of
each frame are computed and aggregated based on a visual codebook generated
from a training set of video frames. The retrieval of near-duplicate videos is
performed using tf-idf weighted cosine similarity over the visual word histograms
of a query and a dataset video.

Local Structure (LS) - Wu et al. [21] combined global signatures and local
features in a hierarchical method. Color signatures are employed to detect near-
duplicate videos with high confidence and to filter out very dissimilar videos. For
the rest of videos, a local feature based method was developed, which compares
the keyframes in a sliding window using their local features (PCA-SIFT).

Multiple Feature Hashing (MFH) - Song et al. [18] exploited multiple
image features to learn a group of hash functions that project the video keyframes
into the Hamming space. The combination of the keyframe hash codes gener-
ates a video signature which constitutes the video representation in the dataset.
Hamming distance is employed to determine similarity between candidate videos.

Pattern-based approach (PPT) - Chou et al. [3] built a pattern-based
indexing tree (PI-tree) based on a sequence of symbols encoded from keyframes,
which facilitates the efficient retrieval of candidate videos. They used m-pattern-
based dynamic programming (mPDP) and time-shift m-pattern similarity (TPS)
to determine video similarity.
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5 Experiments

5.1 Impact of CNN architecture and vocabulary size

In this section, we study the performance of the proposed approach in the
CC WEB VIDEO dataset in relation to the underlying CNN architecture and
the size of the visual vocabulary.

Regarding the first aspect, three CNN architectures are tested: AlexNet,
VGGNet and GoogleNet, with both aggregation schemes implemented using
K = 1000 words.

Figure 2 illustrates the PR curves of the different CNN architectures with
the two aggregation schemes. Layer-based aggregation runs outperform vector-
based ones for every architecture. GoogleNet achieves the best results for the
vector-based aggregation experiments with a precision close to 100% up to a
70% recall. For recall values in the range 80%-100%, all three architectures have
similar results. For the layer-based aggregation scheme, all three architectures
exhibit near perfect performance up to 75% recall.

Similar conclusions are obtained from the analysis of mAP achieved using
different CNN architectures, as depicted in Table 3. For the vector-based aggre-
gation experiments, GoogleNet achieved the best performance with a mAP of
0.958, and VGGNet the worst (mAP=0.937). On the other hand, when using the
layer-based aggregation scheme, the best mAP score (0.976) was based on VGG-
Net. The lowest, yet competitive results in the case of layer-based aggregation,
are obtained for AlexNet (mAP=0.969).

Table 3: mAP per CNN architecture and aggregation scheme.

Method K AlexNet VGGNet GoogleNet

Vector Aggregation
1000 0.951 0.937 0.958

10,000 0.879 0.886 0.857

Layer Aggregation
1000 0.969 0.976 0.974

10,000 0.948 0.959 0.958
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Fig. 2: Precision-Recall curve of the proposed approach based on three CNN
architectures and for the two aggregation schemes.
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Fig. 3: mAP of every layer for the three architectures.

To study the impact of vocabulary size, we compare the two schemes when
used with K = 1000 and K = 10, 000 (Table 3). Results reveal that the perfor-
mance of vector-based aggregation for K = 10, 000 is significantly lower com-
pared to the case when K = 1000 words are used. It appears that the vector-
based aggregation suffers considerably more from the increase of K compared to
the layer-based aggregation, which appears to be less sensitive to this parameter.
Due to this fact, we did not consider to use the same amount of visual words
for the vector-based and the layer-based aggregation, since the performance gap
between the two types of aggregation with the same number of visual words
would be much more pronounced.

5.2 Performance using individual layers

We also assessed the retrieval capability of every layer for the three tested CNN
architectures. Figure 3 depicts the mAP of the approach using only a selected
layer vector. In the AlexNet and VGGNet architectures, the mAP of the first lay-
ers are quite low and as we are moving to deeper layers, the retrieval performance
improves. In both cases, there are several layers that exceed the performance of
the vector-based aggregation scheme. This indicates that it is better to extract
the feature descriptors only from one layer than concatenating all layers in a
single vector. However, no single layer overpasses the performance of the layer-
based aggregation scheme, displayed with a dashed line. In GoogleNet, the first
layer (Inception 3a) is already deep enough to achieve competitive performance.
In this case, the performance for all layers fluctuates between 0.935 and 0.960.

5.3 Performance per query

Here, we analyze the performance of the best vector-based aggregation instance
(GoogleNet) with the best layer-based aggregation instance (VGGNet) on differ-
ent queries. Table 4 displays their Average Precision per query. Layer aggregation
outperforms vector aggregation for every single query. However, both approaches
fail in the difficult queries of the dataset, namely query 18 (Bus uncle) and query
22 (Numa Gary). The major factor leading to errors is that both videos have rel-
atively low resolution/quality and the candidate videos are heavily edited, which
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Fig. 4: Average Precision/query for GoogleNet (CNN-V) and VGGNet (CNN-L).

leads to a significant number of relevant videos not to be retrieved at all (i.e.
many false negatives). Nevertheless, CNN-L leads to considerably better results
in both queries in comparison to CNN-V.

5.4 Comparison against existing NDVR approaches

For comparing the performance of our approach with the five NDVR approaches
from the literature, we select the same runs as in the previous section. The
numeric data for the interpolated PR curves of the CH, LS and PPT methods
on the CC WEB VIDEO dataset were provided by the authors of [21] and [3],
respectively. For the ACC method, we developed our own implementation, which
was fine-tuned on the dataset.

Table 4: Comparison between our approach and existing approaches.

Method CH ACC LS MFH PPT CNN-V CNN-L

mAP 0.892 0.944 0.952 0.958 0.958 0.958 0.976

Figure 5 illustrates the PR curves of the compared approaches. CNN-L out-
performs all other methods up to 90% of recall, at which point the LS and PPT
methods start outperforming it. Additionally, CNN-V is at the same level with
CNN-L up to 70%, after which it starts performing worse. It is noteworthy that
the approaches based on the bag-of-word scheme have low precision at high val-
ues of recall (>90%). In terms of mAP, both versions of the proposed approach
are competitive in comparison to the state-of-the-art, as attested by Table 4.
CNN-L achieves the best score (mAP=0.976), followed by CNN-V, MFH and
PPT (mAP=0.958).

6 Conclusions and Future Work

We presented a new video-level representation for Near-Duplicate Video Re-
trieval, which leverages the effectiveness of CNN features and a newly introduced
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Fig. 5: Precision-Recall curve comparison of two versions of the proposed ap-
proach with four state-of-the-art methods.

layer-based aggregation scheme that exhibited considerably improved perfor-
mance over five popular approaches on the CC WEB VIDEO dataset in terms
of Precision-Recall and mAP.

In the future, we plan to apply the necessary modifications to our method
to exploit the use of generic C3D features [20]. Furthermore, we are going to
conduct more comprehensive evaluations of the method using more challenging
datasets, and we will also assess the applicability of the approach on the problem
of Partial Duplicate Video Retrieval (PDVR).
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