



# Threat Modeling for Automotive Security Analysis

SecTech 2016, Jeju Island, Korea



Zhendong Ma and Christoph Schmittner

AIT Austrian Institute of Technology



#### **Outline**

- Security of modern vehicle/automotive CPS
- Automotive threat modeling
- PoC implementation
- Conclusion











#### Security of automotive systems

- Vehicle systems are increasingly open and connected to user devices
- Critical vehicle functions getting automated and the driver is outside of the control loop
- Cooperative driving functions depend on trustworthiness of external data
- Security is a concern for safety
  - Adds new causes to existing hazards
  - Adds new hazards
- Privacy concerns







#### Automotive attack surface





#### ISO 26262 Road vehicles - Functional safety

|                                                                                                             | Product developn                                                                                                            | nent: system level                                                                                                          |                                                                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| Concept Phase                                                                                               |                                                                                                                             |                                                                                                                             | Production and operation                                                  |  |  |  |  |
| Item definition Initation of safety lifecycle Hazard analysis and risk assessment Functional safety concept | Product development: hardware level  Specification of safety requirements Hardware design  Hardware integration and testing | Product development: software level  Specification of safety requirements Software design  Hardware integration and testing | Production  Operation, service (maintenance, repair), and decommissioning |  |  |  |  |
| Supporting processes                                                                                        |                                                                                                                             |                                                                                                                             |                                                                           |  |  |  |  |
| ASIL-oriented and safety-oriented analyses                                                                  |                                                                                                                             |                                                                                                                             |                                                                           |  |  |  |  |



## SAE J3061Cybersecurity Guidebook for Cyber-Physical Vehicle Systems



Figure 3 - Overall Cybersecurity process framework



#### **TARA**



Figure 18 - Determining functional Cybersecurity requirements



#### Threat modeling

- Threat modeling: defining a theoretical model of perceived threats to a system.
  - Theoretical model should be as close as possible to the practical implementation to capture the significant attack vectors.
- How to model a system and its trust assumptions?
- How to model an adversary that captures its motivations, capabilities, and actions including its tactics, techniques, and procedures (TTP)?



#### Our proposal





#### 4 steps to automotive threat modeling

- Model a system by drawing the system architecture in Data-flow Diagram (DFD), adding system details to the elements in the DFD, and draw the trust boundaries.
- Identify threats stemmed from data flows by using a threat identification methodology such as STRIDE. An assessment of the severity of the threats can be added.
- Address each threat by redesigning the system, adding mitigation, or ignoring it if the risk is acceptable.
- Validate the threat modeling diagram against actual system and all identified threats are addressed.



#### **Implementation**

- Automotive ECU as a communication gateway
- Applications
  - Remote maintenance
  - Remote control similar as in cockpit
  - Over-the-Air update
- Based on an existing HMI module, which is extended with remote connectivity
- Used for off-road and duty vehicles
- Configuration of ECU may impact safety (different equipment limits depending on model)
- Configuration and software are important Intellectual Property
- Remote connection can influence operation





#### **DFD**





#### Threats generated

| ID * | Title                                                                      | ▼ Category ▼    | Short Description         | ▼ De ▼ | Interaction            | <ul><li>Priority</li></ul> | Attack method                               | ▼ Attack motivation ▼         | Attack capability                        |
|------|----------------------------------------------------------------------------|-----------------|---------------------------|--------|------------------------|----------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
| 6    | Modify or tamper application program or datat on Operator controller       | Integrity       | Attack on Integrity       |        | Wireless communication | High                       | Gain physical access to Operator controller | Manipulation of application   | Hackers with automotive expertise        |
| 7    | Exploit known vulnerabilities in OS or applications remotely               | Integrity       | Attack on Integrity       |        | Wireless communication | High                       |                                             | Compromise the device rem     | Well-organized and financed team with ex |
| 8    | MITM attack on communication between VNC client and Operator controller    | Integrity       | Attack on Integrity       |        | Wireless communication | Medium                     |                                             | Tampering transmitted data    | Hackers with automotive expertise        |
| 9    | Tamper configuration data                                                  | Integrity       | Attack on Integrity       |        | Wireless communication | Low                        |                                             | Unintended sending of confi   | Hackers without automotive expertise     |
| 10   | Sending bogus data which overload CPU resources for checking the updates   | Availability    | Attacks on availability   |        | Wireless communication | Medium                     |                                             | Temporarily disabling the no  | Hackers without automotive expertise     |
| 11   | MITM attack on communication between Operator controller and VNC client    | Integrity       | Attack on Integrity       |        | Wireless communication | Medium                     |                                             | Tampering transmitted data    | Hackers with automotive expertise        |
| 12   | Modify or tamper application program or datat on Operator controller       | Integrity       | Attack on Integrity       |        | Generic Data Flow      | High                       | Gain physical access to Operator controller | Manipulation of application   | Hackers with automotive expertise        |
| 13   | Exploit known vulnerabilities in OS or applications remotely               | Integrity       | Attack on Integrity       |        | Generic Data Flow      | H High                     |                                             | Compromise the device rem     | Well-organized and financed team with ex |
| 14   | Sending bogus data which overload CPU resources for checking the updates   | Availability    | Attacks on availability   |        | Generic Data Flow      | Medium                     |                                             | Temporarily disabling the no  | Hackers without automotive expertise     |
| 15   | Dumping software from Firmware data store                                  | Confidentiality | Attack on confidentiality |        | Generic Data Flow      | Low                        | gain physical access                        | Copy of propriety data (OS, c | Hackers without automotive expertise     |
| 16   | Sniff update transmitted in wireless network                               | Confidentiality | Attack on confidentiality |        | Wireless communication | High                       |                                             | Copy of propriety Data (OS, c | Hackers without automotive expertise     |
| 17   | Modify or tamper application program or datat on Operator controller       | Integrity       | Attack on Integrity       |        | Wireless communication | High                       | Gain physical access to Operator controller | Manipulation of application   | Hackers with automotive expertise        |
| 18   | Exploit known vulnerabilities in OS or applications remotely               | Integrity       | Attack on Integrity       |        | Wireless communication | High                       |                                             | Compromise the device rem     | Well-organized and financed team with ex |
| 19   | Compromise update server                                                   | Integrity       | Attack on Integrity       |        | Wireless communication | Medium                     | Compromise the call                         |                               | Hackers with automotive expertise        |
| 20   | MITM attack on communication between Update server and Operator controller | Integrity       | Attack on Integrity       |        | Wireless communication | Medium                     |                                             | Tampering transmitted data    | Hackers with automotive expertise        |
| 21   | Sending bogus data which overload CPU resources for checking the updates   | Availability    | Attacks on availability   |        | Wireless communication | Medium                     |                                             | Temporarily disabling the no  | Hackers without automotive expertise     |
| 22   | MITM attack on communication between Operator controller and Update server | Integrity       | Attack on Integrity       |        | Wireless communication | Medium                     |                                             | Tampering transmitted data    | Hackers with automotive expertise        |
| 23   | Modify or tamper application program or datat on Operator controller       | Integrity       | Attack on Integrity       |        | CAN bus data flow      | High                       | Gain physical access to Operator controller | Manipulation of application   | Hackers with automotive expertise        |
| 24   | Exploit known vulnerabilities in OS or applications remotely               | Integrity       | Attack on Integrity       |        | CAN bus data flow      | High                       |                                             | Compromise the device rem     | Well-organized and financed team with ex |
| 25   | Sending bogus data which overload CPU resources for checking the updates   | Availability    | Attacks on availability   |        | CAN bus data flow      | Medium                     |                                             | Temporarily disabling the no  | Hackers without automotive expertise     |
|      |                                                                            |                 | III.                      |        |                        |                            |                                             |                               |                                          |



#### TARA: threat analysis

Integrity

Availability

Confidentiality

Confidentiality

Confidentiality

Integrity

| Attack sce-        | Threat             | Effect             | A | ttack prob. | Severity | Risks  |
|--------------------|--------------------|--------------------|---|-------------|----------|--------|
| nario              |                    |                    | Ш |             |          |        |
| Asset: Software/A  |                    |                    |   |             |          |        |
| Exploit known      |                    | Take control of    | 9 | (2+1+3+3)   | 4        | High   |
| vulnerabilities in |                    | system ECU op-     |   |             |          |        |
| OS or applica-     |                    | erations, change   |   |             |          |        |
| tions remotely     |                    | parameters, and    |   |             |          |        |
|                    |                    | access data        |   |             |          |        |
| -                  |                    | Reduce function-   | 9 | (2+1+3+3)   | 2        | Mediun |
| vulnerabilities in | component          | ality of ECU       |   |             |          |        |
| OS or applica-     |                    |                    |   |             |          |        |
| tions remotely     |                    |                    | Ц |             |          |        |
| Asset: Remote con  | ntrol functions    |                    |   |             |          |        |
|                    | Eavesdropping      | Hijack estab-      |   | (1+1+3+3)   | 2        | Mediun |
|                    | *                  | lished connection  |   |             |          |        |
|                    | for remote con-    |                    | ш |             |          |        |
|                    |                    | normal operation   |   |             |          |        |
| Brute force or     | Reveal password    | Exploit remote     | 7 | (1+2+2+2)   | 2        | Mediun |
| guess remote con-  |                    | connectivity to    | ш |             |          |        |
| nection password   |                    | disturb normal     |   |             |          |        |
|                    |                    | operation          | Ш |             |          |        |
|                    | intenance function |                    |   |             |          |        |
| -                  | _                  | Intercept sensi-   |   | (1+2+2+2)   | 3        | Mediun |
| control a device   |                    | tive configuration |   |             |          |        |
|                    |                    | and maintenance    |   |             |          |        |
| nication link be-  |                    | data               |   |             |          |        |
| tween ECU and      |                    |                    |   |             |          |        |
| Web server         |                    |                    | Ц |             |          |        |
|                    | _                  | Cause unneces-     |   | (1+1+3+3)   | 1        | Low    |
|                    |                    | sary maintenance   |   |             |          |        |
| communication      |                    | actions by send-   |   |             |          |        |
|                    | Web server         | ing crafted        |   |             |          |        |
|                    |                    | maintenance        |   |             |          |        |
| A . D .            |                    | data               | Ц |             |          |        |
| A . TS .           | 1                  |                    |   | I           |          |        |



#### Conclusion

- Threat modeling an effective and practical tool for security analys in automotive development lifecycle
- Efficiency, accuracy, and repeatability
- Future work
  - Build up threat database
  - Connect DFD with SysML



### AIT Austrian Institute of Technology

your ingenious partner

Zhendong Ma Zhendong.ma(at)ait.ac.at