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IN memoirs published in the first two volumes of Liouville's Journal,
Liouville and Sturm considered transcendents satisfying differential
equations of a certain type, and gave a proof that an arbitrary function
could be expanded in a series of multiples of such functions. Many of
the expansions used in physics are of the type in question. The proof
given is not now accepted (see Burkhardt's Report, p. 759), and the
object of the present paper is to give a sound proof, at least for functions
which are analytical throughout the proposed range of validity of the
expansions: the proof is actually of more general application than this,
but there is no attempt to examine whether any function expansible in
a Fourier series can also be expanded in the more general form.
Another limitation is that the range of validity of the expansions is not
supposed to reach to any critical point of the differential equation
satisfied by the general term.

On the other hand, the expansions have a greater degree of generality
than those of Liouville on account of the presence of four arbitrary real
constants (restricted by an inequality) in the place of his two (h, H).

In the simple case of Fourier's series the oscillating series

2 (cos nx cos nt-\-sin nx sin nt)

is multiplied by F{t) and integrated with respect to t. The resulting
series converges, and use is made of an expression for the sum to n
terms to find the sum to infinity. The same idea is carried out here for
the wider class of expansions treated. There is a fundamental oscillating
series £<£>, whose terms are symmetric functions of x and t; an ex-
pression is found for the sum of n terms of this series by means of

* For references on the subject see a report on " Entwickelungen nach oscillirendeu
Functionep," by H. Burkhardt, in the Jahreaberieht der Beutsehen Mathematiker-Vereinigung,
now being issued.
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a contour integral; the oscillating series is multiplied by F(t) and
integrated, and thus turned into a convergent series whose sum
is F(x).

2. In the differential equation

^ r . O , (1)

let X be a parameter, X a function of x independent of X. Suppose that,
for real values of x between 0 and 1 inclusive, X has no singularity and
that its values are real throughout that range.

Derivatives with respect to x and X will occur; they will be indicated
by dashes and dots respectively.

Let <p, \j/, Xi «>* be functions satisfying (1) and distinguished by the
following initial conditions :—

when x = 0, <p = 0, </>' = 1, ^ = 1, yfr' = 0 ;

when x = 1, X = °> X' = *> « = 1, <*>' = 0.

Then, by the known theory of differential equations of the second
order, <f>yjr—(j>\^',. xl(a~Xw' a r e constants, and, in fact, each of them
is equal to 1.

Also <px'~<t>X> ^I'X'^'ft'x* <*)<p'—u>'<f>, wi// —(a'xf/ are constants, that
is, depend on X only ; let their values be e, g, h, k. Then

g = >A (1) = X' (0), * = V'' (1) = ~ «>' (0),

and gh—ek = 1.

We also have x = <70~C^A"» w = — k<j>-\-h\}s,

</> = hx+ew, x/r = kx+gt0-.

8. From the theory of differential equations t we know that <p, \fr, x, «>
are analytical functions of X as well as of x, and that therefore e, g,
h, k are analytical functions of X. This is true for all finite values of X.
There is, of course, an essential singularity at infinity, as will appear
more fully from results that are to follow.

• Written <px, <//£, . . . , or <p(x), \f/(x), ... or <p(x,\), ... when necessary.
t See especially Poincare, Ada Mathematiea, Vol. x u i . , pp. 15, 16. Other references are

given in Foreyth's Theory of Differential Equations, Vol. n., chap. ii.
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4. The more general equation

+(X+XU)y = 0

may be reduced to the form (1) by a change of variables, if U is a holo-
morphic function of x only and is constantly positive, not zero, between
the limits 0, 1. The reduction is made by taking TJ*y as the new

U*dx/\ XJ^dx as the new independent.
o /Jo

5. Suppose Xx to be a new value of X and 0lf fa, ..., ev gx, ... to be
what <p, \fs, ..., e, g, ... become when \ takes the place of X. Then

"+ (X+X) 0 = 0, i> Xi = 0 .

Take the limits to be 0 and 1; thus

(Xx-X) I <pXldx = -
Jo

Similarly (Xx—X) I
Jo

= ex-e.

—«i(0) = A — ^ ,

(Xt-X) T
Jo

If in these we diminish Xx—X without limit, we have

e = 0 x ^ » 9 = ^X^x,
Jo Jo

f1 • f1

/i = — 1 <pu)dx, k = — I \frcodx.
Jo Jo

= k-kv

(2)

(3)

These results could have been found by differentiating the equations
= 0, ... with respect to X. Thus

But

BO that

X"+(X+X)X = 0,
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Integrating between 0 and 1, we have

6 = Jo

[Jan. 12,

so for the rest.
Other useful results are

(4)

fi
(Xx — A) <j><f>xdx = e x h — e h x

Jo

n
(Xx —A) 1 <f>\fsxdx = gxh—ekx — l

Jo

(Xx —A) \ d>x\fsdx = —ghx-\-exk-\-l
Jo

(Xx—X) \jr\lrxdx = g\k—gkx
Jo

(*i—*) XXid* = ^ i - ^ i
Jo
fi

(Xx—X) 1 o)xxdx = glh—elk—l
h

(Aj—A) xw\dx = —ghx+e
Jo

{Xx — A) I co(oxdx = khx—kxh
Jo

) 0 2 dz = eh—eh
o

f1
ifryjsdx = gh — ek, . . .

Jo

fi. Now let i?, G, i/, A", L be real constants, and suppose A, A, to be
values satisfying the condition*

Ee+Gg+Hh+Kk = 27.. (5)

We shall show that, if a certain condition of inequality is fullilled hy
E, G, H, K, L, the values of A satisfying (5) are all real.

* The reader will perhaps find it n help to take first one or two special cases, for instance,
that in which G, Jf, K, L vanish, and that in which E = K = 0, G = H ~ L = I. It is hardly
necessary to recommend comparison with the trigonometrical expanHions which arise when X — 0.
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For, by the formulae of § 5,

el—egl) — EH(g1h—elk—ghl-\-ekl)

+H2(khl-klh)+LE{2gl-2g)-LH(2k-2kl)+L*(glk-gkl)

+L*(g1k-gkl)

l)(Eg+Hk) + (Gg+Kk){Egl+Hk1)+L2(g1k-gkl)

Hence, unless \ = X.

dx = 0. (6)

Suppose then that X is complex; the conjugate quantity will also
satisfy the condition (5), and may be taken as \ . Thus x> Xi a n ^ w> wi
and \jr, yjsx are also conjugate, and, if

GH > EK+L\

the equation (6) is impossible, the expression on the left having a positive
value.

If GH = EK+L*, (6) cannot now be true unless

Ex—Hco+L\fr — 0 ;

that is, E+kL = 0, —H+gL = 0.

Thus g, k are real and are equal to gx, kv But

gxk—gkx = (\x — X) yfs^dz,
Jo

a purely imaginary quantity, not zero. Hence X cannot be complex, even
when GH - EK+L\

When E, H, L all vanish, this argument fails, but the same result may

be established by considering {Gxx—Kioy—L<t>x){Gx—Kw—L<t>)dx.
Jo

7. We shall then suppose GH<£EK+L2, so that the values of X
satisfying the condition (5) must be real. They will generally be distinct
also. If not, we should have

Ee+Gg+Hh+Kk = 0,
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that is, {E<f>x+G\fsx—H<pa>—K\f,u)\dx = O.
Jo

The subject of integration is here

(E<j>+G\f,)(g<f>-e\f,)+(H<t>+Kyjs)(k(t>-h\f,)

or <p2(Eg+Hk)+<pyj,(Gg-Ee+Kk-Hh)-\l,2(Ge+Kh),

and is of constant sign if

(Gg-Ee+Kk-Hhf < -4(Eg+Hk)(Ge+Kh),

or if

(Gg+Ee+Kk+Hh)2<4(Gg+Kk)(Ee+Hh)-4(Eg+Hk)(Ge+Kh)

or ±(GH-EK)(gh-ek),

that is, if L2 < GH-EK.

Hence, in this case, a double value of X cannot occur.

If L2 = GH—EK, a double value of X will occur only when the same
subject of integration vanishes identically, that is, when

Eg+Hk = 0 = Ge+Kh, Gg+Kk = Ee+Hh = L.

These conditions give

Le = (Gg+Kk)e-(Ge+Kh)g = -K,

and similarly Lg = H, Lh = G, Lk — —E.

Hence this case cannot occur when L = 0. It does happen when X is

constant and fi = K = 0 G = H 1-7
A triple value of X cannot occur. This would mean the further

condition
Ee+Gg+Hh+Kk = 0,

which may be written gh-\-gh—ek—ek = 0

o2 . . . .
or ^-2{gh—ek) = 2(gh—ek).

OA

Thus we should have gh — ek = 0, that is,

£ 1 1 (d>x\lst—<f>t\lsx)(xx<at—xttox)dxdt = 0,
JoJo

ou account of the formulae (3).

But
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and therefore this double integral is positive and cannot vanish unless, for
all values of x and t, ^ ^ = 0 ^ = ft c o n s t a n t j

which is impossible, since <f>'\^—</>\l/ = 1.

8. Let x, t be two quantities, real, positive, and < 1. Consider the
value of \il{x, t, \)d\ where Q(x, t, X) stands for

Ee+Gg+Hh+Kk-2L

and the integral is taken round a closed curve in the X plane which does
not pass through any point at which the denominator vanishes. The only
singularities of the subject of integration for finite values of X are poles at
the points where Ee+Gg+Hh+Kh = 2L.

At any such point, supposed to be a simple zero of the denominator, the

derivative of the denominator is

I (E<px+G\fsx-H<P<»-Ki'«»)dx,
Jo

and the numerator is a symmetric function of x, t, since it may be written

(Eg+Hk)<px<pt+(—Ee—Hh+L)<px\f,t+(Gg+Kk—L)\Jsx<f>t

These expressions are respectively the denominator and numerator of the
residue. In the exceptional case (see § 7) when the denominator has a
double zero, the numerator vanishes also, as may be seen by taking it in
the form last written. Thus the subject of integration has only a simple
pole, the residue being

t) (Eg+Hk) </>x </>t+(Gg+Kk) (ftc^l+fog <pt)-(
Ee+Gg+Hh+Kk

But now E:G:H: K :: —k:h:g: —e,

and gh+gh—ek—ek = 2(ek—gh).

The residue is therefore

(gk—gjc) <l>x <f>t+(ek—hg) {<j>x •^•t-\-<f)t\frx)-\-(eh—eh) \Jsx

gli—ek

d>xd>t \ yj^dx—{<px\lrt-\-<{>t\^x) <j>\lsdx+y]sx\lst
Jo Jo Jo

f1 ?(d>x\jst-<pt\J,xfdxdt
o Jo

or J* ri-K * ^ • (7)
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Hence f Q (x, t, X) dX = *2nr 2 * (./•, if. A)

where <£ (x, £, X) stands for

(Eg+Hk) <px (f>t+(Gg+Kk—L) ty

—H<f>o—K\fsw) dx

and the summation covers all the values of X, within the contour of
integration, at which Ee+Gg+Hh+ Rk = 2 L

and, if two of these values of X coincide, the corresponding terms in the
summation are to be replaced by the expression (7). If we suppose the
values of X at which poles of il occur, in ascending order of numerical
magnitude, to be X,, X2, X3, ..., we thus have two expressions for the
sum of n terms of the series

namely, {$nr)~l\il(xt t, \)d\ and (l2nr)~1lil{t,x,X)d\, the integrals being
taken along some closed path, say the circle | X | = I, which encloses.
\u X2, ..., X,,. and not X«+i, XH+2, In order to test the convergency
of the series we may examine further these expressions for the sum to-
n terms. It will be found that the series does not converge as it stands.

9. We need to know the orders of magnitude of (f>, \fr, ... when X is a

great complex quantity. Now when X = 0 and X = (a+ifi)2 the most

general solution of the equation (1) is

ij = A cos \(a+ift)x-\-a+ib;
where A, a, b are constants, A being complex and a, b real. Here then

\y\2 = \A\*\co8Yi2(l3x+b)-sm*(ax+a)}

= | A |2 {sinh2 (#c + 6) 4- cos2 (ax+a)\.

Thus | y | oscillates between \A \ cosh (fix+b) and \A |sinh(/kc+&).

Again, \y' f = \X\\A |2{sinh2(/3z+&)+sin2(az+a)}

which oscillates in like manner.

But |X#2| + |2/T = |X^2| cosh (2)9x4-26),

which increases steadily with x. On the other hand, |Xy2| — \y'\2 oscil-
lates between ± \\A*\, and in fact Xy24-2/'2 is constant and equal to X42..
These results are approximately true when X is variable, as will now be
shown.
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The following lemma will be used. If w is defined by the differential

ir" = 4fjLzw,
equation „

1 ir" =

where /x is a function of x that lies between two positive constants Mi. Ma
0*! >• (UJJ) s o l°ng a s x is between 0 and 1, and by the further conditions
that when x = 0, w = 1, w' = 0, then w is constantly between cosh 2/
and cosh 2/*2a; so long as x is between 0 and 1.

For let W = cosh 2/JL1X—W.

Then W" = 4(/4-/x*) cosh ' i ^

and therefore W increases with x so long as W <£ 0, while W increases
with x so long as W > 0. Initially W and W both vanish and therefore
both increase with x and are always positive, that is, cosh 2/^z > to.
Similarly w > cosh 2fi2x.

10. Let X = /3-|-/<r, | X + X | = Q, and put y = u exp a1, so that p , a,
a, v are real, and p = a2—/32, |X| = / = a2+jS2. Then

and therefore «"-M«'2+2m'«'4-««t?"+M(A"+/j + 'or) = 0.

Separating the real and imaginary parts, we have

u"—uv'2 + u(X+p) = 0, 2u'v' + Hv"+tur = 0.

Now put w = | (X+X) //21 +1 y' |2 = Qu*+ u'*+u*v'*.

Then ?o' = Q'u2+2u'(u"+Qu—Hv'

= Q"u2+%uu'WQ'-X')+2{Q-X-p)w,

after substitution for u", v" and reduction.
Now the terms Q"u2-\-2uu'(k2Q' — X') are generally insignificant com-

pared with the others, for ^, _ y'(Y4- \in

which is less than the finite quantity A*', and

Q" = X"(X+P)!Q+cr2Xr2IQ3,

which is similarly finite.
Let 6 denote the greatest value of [ Q"u2-\-2uit'(2Q' — X')\/w taken as

a fraction whose numerator and denominator are homogeneous quadratics
in u, u', uv', the denominator being essentially positive. By the ordinary
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methods we find that Q&—Q"6—(2Qr—X'f = 0. The roots of this quad-
ratic are small quantities of the order of Q~*, that is, of the order of l~K

Hence w" = %iv{Q—X—p-\-e) where e is a small quantity comparable
with l~K Further,

= pX/l+a, small quantity comparable with l~\

Hence Q—X—p = {l—p) (1 — X/Z) + same error.

Now l-p = 202;

so that w" = (4/32+>/)«;,

where tj is finite even when I is made infinitely great. We shall suppose
for the present that fi becomes infinite with /, which will happen if the
amplitude of the complex quantity X is not too small.

Let 4fM* and 4 ^ be the greatest and least values of 4y82-f->;; then

ix^—fx^ is always finite, and therefore Mi~M2> Ati~/̂ > P~-Ma ̂ en^ t° ^nfc

limit zero as /3 is increased, if filf /JL2
 n a v e ^ne same sign, as /3.

11. Now y may stand for <j> or x : m the former case the values of
w, w' when x = 0 are 1,0; so that, by the lemma (§ 9), w must lie between
cosh 2^3* and cosh 2/J.^X and therefore w, or

where €% tends to zero as ft is increased.

Similarly, \(X+ X)X
2| + lx'l2 =

where e2 also tends to zero.
To find similar results for \js and w, let

Then

+4<rQ'u2v'IQ2+<2,(Q2-2<ri)X'uu>IQ\

Hence it comes out in the same way that

| ^ 2 | + |^'2/(X+X)| = £(l+ea) exP ^*»

|o,2|-f|o,'2/(X+X)| = ^(l-f-64) exp 20(1-3),

where e3, e4 tend to the limit zero as /3 is increased.

* Here 0 is taken positive; when j3 is negative the value is £(1 + e,) exp ( — 2/8*), and so

throughout what follows.
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12. Again, multiply the equation (1) by 2//' and integrate. Thus

Taking <j> for y, we have
f
Jo

whence |0'2+(X+A)02| < l + ^ t {\4>'\*+\(X+\)<l>2\\dx (8)f
o

where f is the greatest numerical value of X'/Q, and is therefore of the
order of magnitude of I'1.

Now |0'|2+|(X+A)02| increases with x, from 0 upwards, since it
satisfies the equation w" = (4;82-f rj)w and the initial conditions w = 1,
w' — 0. Hence in the integral in (8) the subject of integration is greatest
at the upper limit, and

Thus •' *,. | . _T -.J.L consists of two parts, one of the order of
10 I -r|vA-|-A)0 |0 0 |

magnitude of I'1 and the other of that of exp (—2/3z); both diminish
indefinitely as/3 increases, and therefore the ratio \(X-\-X)<p2\/\<p'2\ tends
to the limit unity.

We may therefore say that \<j>'\2 and |(X-|-X)02|, or in fact |A02|, lie
between the limits J (1 ± e) exp 2/3x, where e diminishes indefinitely as ft
increases. In the same way we have for |x'|2 and jXxa| limits of the form

dbf) exp 2/3(1—x). Similarly, from the equation

we deduce that

and that |x/ra| arid \\fs'2/\\ lie between limits of the form £(l±e) exp 2/3x ;
similarly the limits for |o>2| and |a>'a/A| are of the same form as those
for|xTand|Ax

2|.*
By putting x = 1 in the results relating to <p and \fr we find that

h2, g2, le2, and k2/l lie between limits of the form J (1 ± e) exp 2/3.

18. The expression <f>x\fst~<pt\[sx has also to be considered. As a
function of x it satisfies the equation (1) and the further conditions that
when x = t, y = 0, y' = 1. Hence, by analogy with the result found for <p,

* For another method of proof Bee Note II.
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\\(<px\lst—<f>t\fsxf\ lies between limits of the form i ( l±e ) cosh 2/3(x — t),
the hyperbolic function being used because the sign of x — t is uncertain.

\(<(>'x\Jst—\fs'x<}>t)*\ also lies between limits of the same form.
Again, when X = 0, \\r = <f>' and g = h. When X is variable we have

= 0,

and therefore {\},"-<f>m)+(X+\)ty-<p') =

Thus '-<t>")<t>-ty-<l>')<t>' = f
Jo

—0' = 0 I X'<f>\lsdx—\fs \ X'tfdx = I T'
Jo Jo Jo

where T' is what X' becomes when t is put for x.
But by our former work \T'<f>t(<px\frt—<f>t\jsx)\, when x>t, does not

exceed C exp fit exp /3(x—i) -j- / where C is a fixed finite quantity.
Hence i/r—^>' does not exceed Ca; exp /3:r -J-1: it therefore vanishes in

the limit in comparison with i/r or <f>'', these being of the order of mag-
nitude of exp fix: it follows that g—h vanishes in comparison with g or //.

14. Thus in the numerator of Q,(x,t,\) the quantities <f>xxt, V^X^'
<pxwt, \fsxwt, <f>x\f/t—\^x<l>t are respectively of the same orders of mag-
nitude as /- ' exp fi{l+x — t), Z-* exp/3(l+.c—t), Z~* exp 0(1+x—t),
exp fi{l-\-x — t), /"- cosh fi(x — t), while in the denominator e, g, h, k are
of the same orders as l~* exp fi, exp /8, exp fi, lk- exp 8̂. Thus when x < £
the terms of the numerator are small compared with those of the de-
nominator, since 1-f-x—t and t—x are both less than 1: the numerator is
therefore small in comparison with the denominator unless the terms of
the latter neutralize each other. This cannot happen unless K = 0, since
k is great compared with e, g, h. When K = 0 the sum of the terms
Gg+Hh will only be of lower order than g, h if G = —H, since we have
proved that g—h is small compared with g or h: this is, however, im-
possible, since, when K = 0, GH <£ L2, and therefore GH cannot be
negative. If then K = 0, G =—H, we must have G = H = L = 0, and
only the terms containing E are left.

Thus, when x < t, Q (x, t, X) tends to the limit zero as fi increases
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without limit: it is, in fact, comparable at most with the greater of the
two* quantities j - * e x p fi{x-t), /-i exp fi(t-x-l).

The length of the contour of integration is comparable with /, and there-
fore \Q(x, t, X)dX tends to zero for those parts of the path where the
amplitude of A is not nearly 0 or 27r, SO that fija is not small.

The part where the amplitude of A is nearly 0 or 2 T must be treated
separately. When X = 0, and the amplitude of A is 0, <p and ^ are
simple trigonometrical functions. We need to know within what range
the trigonometrical forms give a satisfactory approximation.

15. From the equation 0w+(X+A)0 = 0

we have <p' sin xy'X—v'X (f> cos X\/X = — X<f> sin X\/Xdx
Jo

and <pf cosa;y'X-f-y'X0 sin x*/X = I—I Xcpcosx^/Xdx
Jo

by multiplying by sin xy'X and cos x\/X and integrating.
Eliminate <f>'; then

r
AJX (f> = sin x y X — T(j> (t) sin (x—t) y X dt

Jo
where T stands for the same function of t that X is of x.

Suppose K to be a superior limit to ly^X^—sinzy'Xl. We have

I sin x y X | !}> cosh fix

where, as before, X = (a-\-ifi)2.

Hence | $ \ A | 3> /t-fcosh fix and |^| >̂ l~ *(K-\-cosh fi), since x >̂ 1.
Let B be the greatest numerical value of T between t = 0 and t = 1.

Then
i rr

"' - '" sin (x —

^ If
I Jo;o

Thus «•# }> .B 0t+cosh fi) cosh /?

and we may take K = B cosh2 fi I (fi—B cosh fi).

This diminishes indefinitely as I increases if cosh2 fi becomes infinitely
small in comparison with #, or with a. This would happen if fi were
5> £ log a. We have also

<l>' = eos-r-v/X— T<f>(t) cos (t—x)«/Xdt,
Jo

* The second must be taken when the term multiplied by L is the most important in the
numerator. Since L does not vanish, 6", If, K cannot all vanish ; so that the least favourable case
is when K = 0. When A'does not vanish n (x, t, \) is comparable with /-* exp fi (t—1) or ulso
/- 'expj8(<-a;- l) .
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so that \<p'—coa x */\\$> B l~h(ic+cosh ft) cosh ft,

that is, K.

The same quantity K is a superior limit to |x\A~l~8in(l~a ;) \A| and
|x'—cos (1—z)\A|, and also to 1^—coss\A|» |Vr '^~i+sina;\A|,
|a>—cos (1—x)*/\\, |&/X~*—sin (1— x)*/\\. Hence, by putting X = 0 we
get approximations to <p, x> ^> w which hold good at least so long as ft is
between + J log a. When ft does not lie between these limits the work
of §§ 10-14 is applicable, since ft increases indefinitely with I.

16. The path of integration may thus be divided into two parts, a
minor arc on which a is great and positive and ft lies between + ^ log a,
and a major arc on which ft lies without these limits. The value of the
integral taken over the minor arc shows no sign of being infinitesimal, for
the length of the arc becomes infinite and the subject of integration is
of the order of magnitude of l~K Thus the series does not converge; in
fact the successive terms of the series do not tend to zero as a limit.

If, however, we multiply the terms of the series by an analytical
function of t, say, F(i), and integrate with respect to t between limits
included in the range from 0 to 1, the result is a convergent series whose
sum to infinity can be found.

17. If a, 6 are such that 0 ^ a < x < b ̂  1, we have, choosing the
expression for 2M> in which the contribution of the major arc is small,

rif f #(z, t, K)F(t)dt

, x, XIFiQdtdK+ffcHx, t, X)F(t)dtd\,

the integration with respect to X being again over the circle | A | = /.
which encloses \ v A.2, ..., Xn.

For ft we may write —(T-\-\)~x(PQ.ld& and integrate by parts with
respect to t. The expression becomes

adt

tL \It
In the single integral pick out the terms given by substituting x for t.
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They are

F(x) • E<f>'x + Gjr'x — H <j>'io — K >//(,) + L (<//yl — t/,\t/)
A'+X i Ee+Gc/+Hh+Kh—2L

Ee+Gg+Hh+Kk-2L I '

or ${X+\)~]F{x)d\ or 2nrF{x), since the point where X = — X falls
within the contour of integration. It is now to be proved that the rest of
the expression tends to zero when the radius / is increased indefinitely.
The major and minor arcs as denned above (§ 16) must be considered
separately.

18. Writing still a-\-ifi for \A> we have on the major arc « positive
and )8 > ^ log a numerically, and therefore increasing indefinitely with /.

Then

Q(t x, X) =

+ (Ee+Gg+Hh+Kk-2L),

which is at most* of the order of magnitude of exp /3(x — £—-1) or
exp/3(£—x), whichever is the higher, and therefore tends to zero if t < x.
Also F(t) is finite and dX/(T+X) nay be written

in which expression the first factor is always finite, and the second is i dS
where X = I exp 16. The range of values of 0 in the integration is less
than 2TT, and hence, for the major arc,

f t_dm* - ^ Fit)

tends to the limit zero.

Similariy j { | « < * , t, X)

for the major arc, tends to zero, since b > x.
The first double integral may be written

n(('*'X) 1
* See note to § 14.

8KB. 2 . VOL. 3 . NO. 8 8 8 .
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The factor -r- { x - r ^ ^ ) i i s always finite; let A be a superior limit to

its absolute value.

The factor — Q (t, x, X), provided a > x—£, is not greater in absolute
Cut

value than B exp /? (t—x) where B is also finite. Hence this double
integral is not greater than

Ja
2irAB\ exv(3(t—x)dt or

J
or than 2vABlP.

It therefore tends to the limit zero.
When a<x—$ the only difference is that for values of t between a

and x—$ the term multiplied by L becomes the most important in the
numerator of dQ/dt, unless L = 0. This does not affect the result: we
have seen that, for such values of t, \ dil/dt | has a superior limit of the
form -Bexp/3(£—t—1), and the integral of this between a and x—$ is
negligible.

The other double integral tends to zero similarly. Hence the whole
contribution of the major arc tends to the limit zero.

19. On the minor arc the range of values of 6 is infinitesimal, and
hence it is only necessary to prove that the factors of the form dQ/dt are
finite in order to show that the contribution of the minor arc is infini-
tesimal. Clearly the arc must be so drawn as not to pass through any
point such as Xn.

Now on the minor arc fi < ^ log a numerically, and therefore the

numerator and denominator of -r. Q(t, x, X) differ by infinitesimals from
at "

E\~* cos t\/X sin (x—1)\A — G sin t^/X sin (a;—1)\/X

—fl"cos t^Xeosix — l)y/X-\-K*/X sin t*/Xcoa(x—1)A/X-\-L COS(X—

and EX~* sin ^X+(G+H) cos </X—K*/X sin </X—2L.*

Suppose first that K does not vanish; then the term containing it is the
chief term in the denominator, the rest diminishing without limit in
comparison, so long as sin y/X is not small.

* This approximation shows, if any proof is needed, that the series \, , AJ( ... is an infinite
one, since by substituting successive even or odd multiples of ±ir for A/ \ we find that the
expression changes sign an infinite number of times. The even multiples of $ir serve when
K = 0, G + i f =£ 0, the odd multiples in other cases.
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Now | sin \/\ | 2 = | sin2 (a+J/3) | = cosh2 /3—cos2 a = cosh2 /3,

if we take a = an odd multiple of \TT. This implies that a is constant
along the minor arc, which is therefore not circular, but parabolic ; along
it (3 varies from — J log a to ^ log a.

Similarly, | sin21^/\ | = cosh21$—cos2 ta }> cosh2 fy3,

and | cos21*/\ | = cosh21{$—sin2 ta }> cosh2 tfi.

Hence | K*J\ sin t»J\ cos (x—l)y/X | > Iis/l cosh tfi cosh (x—1)/3,

which is less than K^l cosh /3 when t < x < 1; similarly

| L cos {x — t) <s/\ | > L cosh ̂ 8,

and so for the other terms of the numerator. Hence the contribution of
the minor arc tends to zero when K does not vanish.

Suppose next that K = 0 : then GH^L?; so that G-\-H cannot
vanish unless G, H, L are all zero. Take G+i f not to vanish. The
same kind of proof applies, but, since

| cos \/X | 2 = cosh2 /3 — sin2 a,

we take a to be a multiple of -K ; so that | cos */\ \ = cosh fi.
If G, H, K, L all vanish, the proof is the same as when K is not zero.

Similarly for j-Q(x, t, A) whjn a; < ^ < 1.

20. Hence we have

F(x) = lim s" T $(«, *, \r)F(t)dt,
n=« r=lJa

when
If

a
X

<x<b.
were < a,

2t7T 2
r = l

we

Ja

should have

\>(x,t,\r)F(t)dt =
JJa

.x, t,X)F(t)dtd\,

and this would be zero in the limit. Similarly, if x > b.
Thus F(x) is expanded between a and Z> in a series of multiples of the

functions <j>(x,\n) and \fs(x, Xw); the sum of the series is zero when
0 < x < a or 6 < x < l ; the coefficients of (f>{x, Xn), ^ ( s , Xn) are the
values when X = Xn of

\{Eg+Hk)<j>+(Gg+Kk-L)\f,\ F{x)dx

H 2
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and T {(Gg+Kk-L)<l>-(Ge+Kh)\l,\ F(x)dx
Jo.

-7-

respectively; \lt \ , ... are the values of X for which

Ee+Gg+Hh+Kk = 2L,

and, if two of theae coincide, the coefficients just written become in-
determinate and are to be replaced by such quantities as are indicated
by (7), § 8.

It is easy to pass to a similar series which shall express different
analytical functions in different parts of the range between 0 and 1. The
functions need not in fact be analytical, since only the first derivative of
F{x) was used in the proof; it is necessary to the proof that this
derivative should exist, but the whole series of derivatives is not needed.

21. When GH = EK+L2* the numerator of $(z, t,X) breaks up
into factors, one a function of x, and the other the same function of t.
This happens in the best known special cases. For instance, when G, H,
K, L all vanish the equation determining \ v X2, ... is e = 0, and we have
expansions in series of harmonic functions which all vanish at the two
ends of the range of validity, since when e = 0 the functions <f>, x only
differ by a constant factor.

Again, when E = K = 0, G = H = L = 1, each term of the ex-
pansion has the same value and the same derivative at the two ends of
the range ; thus, if X had 1 as a period, the expansion would be in periodic
functions ; in our notation the type of such a function would be x~~0 o r

co—x/r indifferently.

22. Again, taking X = 0, we have trigonometrical expansions, and, if
G = K = L = 0, the terms are of the form A sin ax, the values of a
being such that tana = -

These are the expansions used by Fourier in his treatment of the problem

* Note that GH— EK— X3 is an algebraic invariant of the two forms

in the variables e, g, h, k. If this invariant is positive, and e, g, h, k are taken as coordinates of
a point in space of four dimensions, the two loci

Ee+Gg + Eh + Kk-2l =0, gh - ek-1 = 0
cut one another in a conicoid whose generators are imaginary, and, if the invariant vanishes,
in a cone.
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of the conduction of heat in a solid sphere (see Burkhardt's Report, p. 420 ;
Fourier's Works, Vol. i., p. 312). A variety of other forms of trigono-
metrical expansion could be derived by giving different values to
E, G, H, K, L.

23. The question whether the expansion of F{x) is valid when x = a
or 19 has not yet been answered, but it is readily seen as in § 17 that the
expansion as a rule is only valid when x = a if F{a) = 0, and when x = b
if F(b) = 0 ; more generally, the expansion of a discontinuous function
does not hold good at the values where the discontinuities occur.

The cases x = a = 0 and x = b = 1 deserve special notice. Take
first x = a = 0. We have

2 I2<TT 2 I $(Q,t,K)F(t)dt

dt

which is of the order of magnitude of exp(—^0, or possibly exp/3(f — 1)
when t > £ and L ^ 0. Thiv the double integral tends to zero as
before. In the single integral th part given by substituting 6 for t tends
to zero unless 6 = 1; taking 6 =• 1 and writing A'o, Xx for the values of
X when x = 0, 1, we have for the single integral

Gg + Kh-L F(0) G-Lh F(l) ( ,.
Ee+Gg+Hh+Kk-*L Xo+X Ee+Gg+Hh+Kk-2L X,+M '

The value of this is 2nrF(0) if XQ = Xx, E = 0, and

H : L : : L : G :: F(l) : .F(O);

or if F(l) = 0 = F(0) ; or if E, G, H, L all vanish and Xo=£ Xv It tends
to the limit 2nrF(0) if JP(O) = 0 and K does not vanish, or if F(0) = 0
and K, L vanish.

Similarly, when x = b = 1, we have

| , X) = (-H<J>'t-KyJ,'t+Lx'f)l{Ee+Gg+Hh+Kk-2L),

and the single integral in this case is, if a = 0,

f (/
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The value of this is 2nrF(l), if Xo = Xv E = 0, and

H:L ::L : G : : F(l) :F(0);

or if F(l) = 0 = F(0); or if E, G, H, L all vanish and Xo =£ Xv

Hence the expansion is valid for the extreme values 0 and 1 in three
cases, at least,

(1) When F(l) = F(0) = 0.

(2) When E, G, H, L vanish, so that the equation whose roots
are Xlf X2, ... is A" = 0.

(3) When X0=Xl,E = 0,L = mG, H = m2G, F(l) = mF(0),
m being some real constant, finite or infinite.

There are other cases in which the expansion is valid for one extreme
value or the other.

It is easily seen that these conclusions are not affected by discon-
tinuities in F (x) at intermediate values of x.

24. It has been assumed that none of the critical points of the
differential equation fall between the values 0 and 1 of the independent
variable or at either of those values. If 0 or 1 were a critical point, the
expansion would not necessarily fail, as is shewn by the special case of
Legendre's functions in which there is a critical point at each end of the
range of validity. If the method of this paper were used, the initial
conditions by which <p, x, ^, « are defined would have to be modified.

NOTES ADDED IN PROOF.

I. To the results in §§ 6, 7 the following may be added. If Y stands
for Ee-\-Gg-\-Hh-\-Kk — 2L, Y = 0 is an equation for X whose roots are
separated by those of Eg+Hh = 0, also by those of Ge+Kh = 0, and
further by those of Z+KY = 0, where

Z =

a, (3, y, S, K being any real constants, and M a real constant such that

M2 > GH-EK-L*.
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It follows, in fact, from the formulae of the paper that

This being never negative, the roots of Y = 0 and Z-\-KY = 0 separate
each other as a rule; it is, however, possible for Y, Z to vanish together
when GH—EK = L2-\-M2. If X, \ were conjugate complex quantities,
we should have (ZY1— YZl)/(Xl—X) essentially positive.

II. The results of §§ 11-18 may be proved, perhaps more simply, by
the following method. Suppose, in § 15, that fi is not restricted, and that
K is a superior limit to

| VX </>—sin XA/\ I / cosh fix.

Then | <j> ̂ X | > ( 1 + K ) cosh fix;
r.x

thus |.^\/X—sinaVM>-BZ~5d+*) coah fit cosh fi(x — t)dt
Jo

> BI~H1+K) ("f- cosh £a;+^si

so that K ̂ > Bl~h{\-\-K), since ta. h fix < fix, x < 1.
Hence we may take K = B/( —B), a small quantity, and the ratio of

0v/X to sin x\/X tends to unity when fi is increased indefinitely, since
| sin x<\/\ | approaches equality with cosh/3x, and (/>^X—amx^/X is small
compared with cosh fix. In the same way <f>' and cos xy/X, \js and cos
\fy' and —y/X sin x^/X, xV^- a nd s i n (^—1)\/X, x' a u ^ c o s (x~ 1-WK <
cos (a; — 1)\/X, w' and \/Xsin (1—x)\/X tend respectively to equality when
fi is increased indefinitely.


