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Equivalent Singular Points of Ordinary Linear Differential 
Equations. 

By 

GEOa(~E D. BIRKHO~'F Of Cambridge, Mass. (U. S. A.). 

I n  a paper published in 1909") I introduced the notion of equivalent 
s ingular  points  of ordinary linear differential equations. But the theorem 
of classif icat ion to which this notion gave rise was incomplete because 
certain exceptional cases were laid to one side.**) In the present paper 
I prove the  theorem in its generality~ and base my proof on the auxiliary 
funct ion-theoret ic  theorem whose demonstration is found in the immediately 
preceding paper in these Mathematische Annalen. 

S u p p o s e  that we are given a linear differential system 

(1) d x - - ~  P's(x) y~ (i = 1, 2 , . . . ,  n) 
j = l  

where the  functions 2~(x) are analytic functions of the independent 
variable x. Any finite point x = a will be an ordinary Toint of this 
system i f  t he  functions p~(x)  are all analytic at x = a; the point x = oo 
will be  an  ordinary point ff all the functions io~j (x) vanish-to the second 
order a t  leas t  at x = cr Any point which is not an ordinary point is 
t e rmed a singular point of the linear differential system; we restrict our- 
selves to singular points at which the functions p~j(x) are rational in 
chavacSer i e. are analytic or have a pole. I t  is no restriction to assume 
tha t  tshe singular point under consideration lies a~ x = ~ ,  and this we 
shall do.  

I n  the  vicinity of x = cx~ each coefficient p~j(x) may be expanded 
in a ser ies  of  descending integral powers of x. I f  q is the greatest exponent 
of the  leading power of x in any of these series, then q-~ 1 is the 

*) Trans.  Am. ~ath.  Soc. 10, p. 4~6~470. 
**) Loc. cir. p. 446 and p. 453. 
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ranTc of the singular point x = cr The case of rank 0 (q = -- 1) is the 
regular singular point. 

Any linear transformation of the dependent variables in (1) 

(2) Y~ = 2  a,~(x) yj 
j = l  

in which the functions a~(x) are analytic at x = ~ and such that the 
determinan~ {a~s(x)[ is not zero at x = de takes the given linear differen- 
tial system (1) into a transformed system 

of the same form. The explicit expression for ~ j ( x )  is given by the 
formula 

(4) ~,j(x) = O,~(x) p~,(x) a,j(x) - - ~  g,,(x) -~ a,j(x) 
k,l= l k=l 

(i,j--- 1,..., n) 

where (g~s(x)) is the matrix of functions inverse to (a~(x)).**) The equa- 
tions (3) may be found by direct substitution. 

If two linear differential systems (1) and (3) are related by a trans- 
formation (2) in which the function a~j(x) are not only analytic a~ x = ce 
but reduce to di~ at x----oc ( 0 i t = l  and $ , r  for i+ j )  we will say 
that the two systems have an equivalent singular point at x = oo.**-*) 
Since the transformation inverse to (2) is dearly of the same form, this 
reiation of equivalence is a symmetric one. Likewise, since the composition 
of two transformations like (2) is another of the same form, the relation 
of equivalence is transitive. 

It is obvious from the form (4) of the coefficients ~ij(x) that the 
rank of neither one of two systems having an equivalent singular point 
at x = de can exceed that of the other, and hence tha~ the rank of all 
such systems is the same. 

*) For these definitions see Schlesinger, Vorlesungen 4ber Zinearr Differential- 
gleiehungen, p. 181. 

**) For an exposition of the e]ementary properties of matrices used in the present 
paper see Schlesinger, loc. oiL., p. 18--19. 

***) This definition is more satisfactory than the one used in my earlier paper 
(Trans. Am. Math. See., lee. cir.) where the functions a~.j(x) were merely restricted to 
be rational in character at x ~ o~. 
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The importance of the notion of equivalent singular points lies in 
the fact that the solutions of linear differential syste.ms (1) and (3) with 
equivalent singular points x ~ r must be of essentially the same nature 
in the vicinity of x =  oo since the coefficients a~s(x ) in the trans- 
formation (2) are analytic at x = ~ .  I have made application of the 
notion of equivalence in my paper in the Transactions of the American 
Mathematical Society. 

We  now proceed to prove the theorem: Every linear differential system 
(1) with a singular point of ran]~ q Jr 1 at x = oo is equivalent at x ~ ov 
to a canonical system of the form 

7~ 

dr ,  
(5) x ~ -  = ~ P ~ j ( x )  Ys ( i =  1 ,2 , . . . ,n)  

j = l  

in which l~ ( x )  axepolynomials of degree not greater than q ~-l. 

P r o o f .  Outside of a certain circle ix I ~--/~ in the complex plane, all 
of the points x = a are ordinary points of (1). According to the funda- 
mental existence theorem for a linear system (1) we infer then that there 
exists a set of n linearly independent solutions of (1), 

(6) (y~. �9 �9 ~ ) ,  (y~., �9 �9 y~..), �9 �9 (y~ ,  �9 �9 y.~), 

each element of any one of which is analytic for I x l l ~ / ~ ;  the general 
~olution 'may be expressed as a linear combination of these particular 
solutions. The elements of these solutions are not in general single-valued 
Since, when the independent variable x makes a positive circuit of x-~ ~ ,  
these solutions alter respectively to a new set 

( ~ , , ' '  ", L~) ,  ( ~ , . ' ,  ~ . ~ ) , . . . ,  ( ~ , . "  ", L . )  

which are of course linearly independent. Each one of this set of solu- 
tions is linearly dependent on the first set of solutions; this relation 
may be indicated by the matrix formula 

(7) (~,~.) -~ (y.) (c.)  

where (c~) is a matrix of constants of determinant not zero. Thus the 
set of solutions undergoes a linear transformation when x makes a positive. 
circuit of x ~ ~ .  

Now according to the well-known theory of such transformations i t  
will be possible, except in special cases, to choose an initial set (6) o f  
solntions so that t~e matr~ (e~) takes the simple normal form ( ~ , ~ ) ,  
i. e. there will exist n linearly independent solutions (6) such that each 
element of  the jt~ one of  these is merely multiplied by a factor Q~. when 
x makes a positive circuit of x ~-- cx). For the moment we will assume 
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that (6) is a set of solutions with this property. Later it will be seen 
that only a slight alteration is necessary to treat the special cases.*) 

Now define the quantities 21 , - . . ,  ~ up to an additive integer by 
the equations 

- - 1  
~ ~ V _ - / l o g  ~j ( j = 1 , 2 , . .  ,n ) ,  

and then define the functions l~(x) by the equations 

(8) v , / x )  = z,~(x)x~S. 
These functions are single-valued and analytic for I x l ~ / ~  since x~ is 
multiplied by Oj when x makes a positive circuit of  x-ffi ee. Moreover 
the determinant 

is not zero for Ix I ~ R**). Hence, by the auxiliary theorem above referred 
to, we may decompose (l~/x)) into a produc~ of matrices 

(Z,j (x)) = (a,/x)) (e,/x)xk~) 
where (eiflx)) is a matrix of functions analytic at x---- oo reducing to the 
unit matrix (#~.) at x ~ cx), where (e~/x)) is a matrix of entire functions 
of determinant nowhere zero in the finite plane~ and where kl~ ...~ k, are 
integers. 

Let us choose the functions %@) thus obtained as the functions 
%(x)  in the transformation (2). From the equations (8) and the last 
equation we obtain 

(v,j) = (%(~))  (r ,~)  
where 
(9) ~Y~j = e,~(x)x k~ + ~ = e , / x )x  ~'~ . 

Hence the n sets of functions (:YI~,'" ", Y~j) where j =  1 , . . . , n  form a 
set of solutions of the transformed equation (3). 

If we substitute each of  these solutions in the equations (3) in suc- 
cession we may combine~the n ~ resulting equations into the single matrix 
equation 

(,~ r,? I - ~ - / =  (~ , /x ) )  (Y,~) 
whence we find 

(10) (~, j (x))  = \ ~ - / ( , j )  �9 

*) For a complete discussion of ~he facts outlined here see Schlesinger, loe. 
~ . ,  p. 90--104. 

**) Schleslnger, loc. cir., p. 21. 



1 3 8  O.D. BraKHO~F. 

NOW we have 

( r ,  s) = (e,  (~)~'4 = (e,r (~,~x ~j) 
a n d  also 

d , ix ,  e,,(x))-----(f,j(x) )=(f~j(x))(~jx"~-') 
w h e r e  the functions fi~(x) are entire functions. From (10) we have then 

(_~,i(x)) = (ft~(x)) (O,~x ) (O,~x ) (e,~(x)) -~ x (f~3 "(x)) (e'J (x))-~" 

]:~[ence the matrix (~i~(x)) is made up of functions single-valued and 
ana ly t i c  in the finite plane except for a possible pole of the first order 
a t  x - ~ O .  

Moreover, since the rank of the singular point x ~ oo of (3) is q § 1, 
~he functions ~i](x) are clearly rational in character at x =  ~ ,  and their 
expression in descending powers of x begins with a term in the qth power 
o f  x or in a lower power. 

Consequently the funotions x~i j (x  ) are analytic everywhere in the 
f ini te  plane with a pole of at most the ( q ~ l )  th order at x = ~ ,  and 
m u s t  be polynomials P~j(x.) of de~ee q -~ i at most. It follows at once 
tha~ (3) has the form stated in the theorem. 

Thus the theorem is proved in the case where all the multipliers 
0 i , ' "  ", P~ are distinct (or more exactly, when the elementary divisors of 
~he matrix (a~j--(~js are distinct). 

I~ remains to account for the degenerate case when two or more of 
t h e s e  multipliers become equal. We consider merely the simplest case 
w h e n  two values of 0 become equal, say p~ and p~, as well as the corres- 
pond ing  elementary divisors. In this case n linearly independent solutions 

(y~,, . . . ,  y~, ) , . . . ,  (y~,~,.--, y~,) 

m a y  be found such that when x makes a positive circuit of infinity these 
become  respectively 

In  this case we define its, its,. . . ,  X~ as before and write 

( l~, (x) log x ) 
~,~ = ~,~(~)x~,  ~ , ,  = , ~ + ~,~(x) x~, ,  ~,~ = ~ , ~ ( x ) ~ , ,  . . ., 

Shus defining a matrix (~,.~.(x)) of functions which again are single-valued 
a n d  analytic for !x I ~ / / ,  and of determinant 

�9 - ~ ' - ~ ' -  . . . .  ~I~,~(~)l§ for I ~ 1 ~ .  
T h i s  matrix ~herefore satisfies the conditions prescribed in the auxiliary 
~heorem. 
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Now, proceeding essentially as before, we infer that the functions 
x_~j(x) are polynomial in x of degree at most q -}- 1. 

The formulas (4) show that in all cases the coefficient of xq in 

1 

is the same as the corresponding coefficient in the function p~j(x). 
In the simplest case of a regular singular point (q = - 1) the canonical 

system is of the simple soluble form 

dy~ 

in the expansion of where the constants p~j are the coefficients of 

p~(x) in descending powers of x. 
From this fact the fundamental existence theorem for a regular singular 

point may be at once derived. 


