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THE FOUNDATIONS OF THE ELLIPTIC FUNCTIONS.

By Harris Hancock (Cincinnati, Ohio).

Adunanza del 23 novembre 1919,

1. The following is a modification of a theotem which is found at the end of
WEIERSTRASS’s paper on Abelian Functions *).

TrEOREM. — If F(u) is a given one-valued function of the variable u, which has
no essential singularity in a finite region B, say, of the plane, and if « is any polar
singularity of F(u) within 3, such that

‘ L
F = —— Plu—a
=Gy TPE—2)
where there must be only one negative power on the right-hand side, P(u — o) denoting
as usual a power series in integral positive powers of u— a; while N must be the same
for every pole of F(u) in the region 3 in question; if further
L d*log (u — &)
=1 —
(v — a)* du
where | must in all cases be a positive integer, then the general integral z =f(u), say,
of the differential equation

- do
(4) 8% = F(u)
u -

is a power series that is uniformly convergent in B

-

T) See C. WEIERSTRASS, Theorie der ABEL’schen Functionen [Journal fir die reffie und angewandte
Mathematik, Bd. LII (1856), pp. 285-380]; see also WEIERSTRASS, Mathematische Werke, (Berlin, Mayer
und Miller), Bd. I, p. 349. '
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For, let o , a , ..., o be the polar singularities other than the origin of F(u)

within #, and introduce the auxiliary function F, (u) defined through the relation

2 A A 7! .
F,(U):F(u)———ld logxu ——l‘d loggg);@ Izd log(u—o:) 1, d log(u ot")’
du du du* dut

where | = o, if the origin is not a polar singularity of F(u). It is seen that F (u)
has no singularity whatever in 3} and has in this region a finite value that changes
in a continuous manner with u, so that by the Tavror-Caucay Theorem, F, (u) may
be represented through a convergent series

Fx (H) = mZ:o Cm um3

which is true for all values of u within 3. The given differential equation may be
written in the form

d*log ¢ d*
B =F (u — log 11 (u
®) 8% F, )+ L log (o)
where
l] __ l u ll u l2 &)lﬂ
(u)_u(l———;l—) (I——Z) 1—-—»1,1
multiplied by the constant alra’s ... o', which constant may be neglected as it oc-

curs in the derivative of a logarithmic term; and consequently for all values of «
within 3, z may be expressed through a convergent povwer series of the form [par-
ticular integral of (A)], z = f,(u), say, where

m+4
M=02 Cﬂl, w

(m+x){m+2)..,(m+73

Z:fl(u)‘: H(u)e"’=° . 5

while the general integral is

=00 € g
- I (m+|)(m+2 2). () 1
(I) z :f(u) — dm ‘ ](u) e“lo*“lx""‘"'*'dl—x" ,
where 4., 4, ..., 4,_, are the constants of integration.

If we consider the differential equation (4) within a smaller region R' which
includes no pole except possibly the origin, this equation may be written

d*lo d log u
(©) dfxﬁ 8%+ P(u),

where | = 1, if the origin is not a polar singularity of F(«), and where P(u) is
the convergent (within 3}') power series

m=00

P(u) = ,,,Z v 0"
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It is seen that the general integral (within 3) of the equation (C) is

. -k
w0 u
mngr o T

e ey b B
(2) r=fl)=ue=" ,
where B, B,, ..., B,_, are the constants of integration. By a comparison of the
power series (1) and (2) it is seen that the coefficients of like povers of u must be
identical (in 3, and therefore also in 3), and it follows that the series (2) must be
uniformly convergent in 3, the original realm, although this is not necessarily true of
the series (£) whose coefficients enter in the formation of those of (2).

2. The differential equation, which z = sn u satisfies, is

d : ] 2 2,2 ‘
@) (75) =@ =)0 — kD)
When differentiated with regard to u, this equation becomes

&’z _ . 2
i = — )+ 2k

It follows that

2
d'logz _ 4oa 1
< du? P
or
d*logsnu I . .
GBS pntu — . Similarly it is seen that
2 3 y
du sn’u
: d*log cn u dn®u
D ————g——z——- =Psn*u— —5—,
' du , cn’u
d*logdnu . k*cn’u
=] — k’.‘.
B b o
WEIERSTRASS ?) writes:
«If x = snu, we have
dlogx poe 1
duw’ x*

b,

If next we put x = b it follows that

2

d'logp, _d'logp . p7 P

du’ du’ P’ P
This equation becomes two equations, if we put
dzlogpl____ji d’logp__kzﬂ_
du* 20 du* P

2) Mathematische Werke, vol. 1, 1. c. 1), p. 140.

Rend. Circ. Matem. Palermo, t. XLIV (1920). — Stampato il 31 maggio 1920. 12
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After it has been shown that snu, when the absolute value of # is not greater than
an arbitrary limit, may be expressed as the quotient of two integral power series
which are convergent for values of u that are less than this limit, then it may be
proved by rigorous methods that the two functions p, p , that are defined by the two
differential equations above, may be developed in integral positive powers of # in uni-
formly convergent series. And if the four arbitrary constants which arise, are so de-
termined that for # = o,

p

then it is seen that in fact sn u —= <. Similar results are true for cn# and dnu

and we come in this manner to the representation of the elliptic functions, which
AsEL in a letter to LecenDre ®) mentions without showing however how this is done
and without indicating the method of procedure ».

3. In the present paper it is shown that ABeL’s assertion may be proved so
simply that the method of procedure needs no emphasis and at the same time it is
made clear that the methods of procedure employed by WEIERSTRASS in his paper
Ueber die Entwicklung der Modular-Functionen *) are not direct and are of little im-
portance. It is also seen that she auxiliary Alfunctions introduced by him in this con-
nection, and upon which much emphasis has often been placed, are” without value in
the development of the elliptic functions. Brior and Bouquer, for example, in the
second edition of their Théorie des Functions elliptiques, (Gauthier-Villars, Paris, 1875)
devote pages 465-475 to this subject.

4. Let us first consider the functions k*sn*u, ——, ——, —,
- sy’ en*u’ dn’u
found on the right hand side in the formulas (I), and in particular note their expan-
sions in the neighborhood of their infinities. To this end consider the nature of the
function 7 = sn# in the neighborhood of an infinity, say # = «.
Writing
i=snu=c (s—ay"+c (w—a)y"™" 4 ...,
it is seen that

3—2 =—c_n(u—a)y"! +-c_,,+1(— n D —a)y" -

3) N. H. ABEL, Précis d'une théorie des fonctions elliptiques {Journal fur die reine und angewandte
Mathematik, B. IV (1829), pp. 236-277], p. 244. See also Fernere mathematische Bruchsticke aus Herrn
N. H. ABEL’s Briefen; Schreiben des Herrn N. H. ABEL an Herrn LEGENDRE zu Paris [Journal fur die
reine und angewandte Mathematik, Bd. VI (1830), pp. 73-80], p. 76.

4) Mathematische Werke, Bd. 1, 1, c. ), pp. 1-49.
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If these expressions are substituted in (D), it is observed that the lowest exponent
on either side of the resulting expression must be equal, and consequently

— 20— 2 == — 41, or n =1
It follows that

i=c_ (w—a)y Fc+c(w—2)Ffc,(u—a)y4 ...,

N R R R PTY (R B

and

Further, if these values are substituted in the equation (D), it is found that

I
2 2 .4 _ . L J— —_
o=k, or ¢, =il ¢c,k*=o0, or ¢ =o.

It follows that in the neighborhood of a pole « the expansion of 7 is

I

I
(:snu:7u~a +cl(u,_—a)+

In the neighborhood of a zero of snu, write

R=(u— 8)"[b, + b, —B) + -]y

dz -
£ e

so that

These series substituted in the differential equation (D) show that 2m—2=o0, or m=1.
It follows that

R=0b,(u—B)Fb(u—py-4 -,

j—z-_—_bo-l-zb,(u.—@)-p.-..

and

Again writing these values in the differential equation, it is seen that
b, =1, b, =o, ....

Hence in the neighborhood of a zero, say B, the function z=sn# may be expanded
in the form

r=u— B b — By

5. Returning to the formulas (I) write

dlogsnu ., o
Ja = ksntu— = F,(u) — F (»),

where

F(u)=—Fsn"u
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and
1

2

sn’u

Fz(u) e

It follows from the series derived in the preceding article that in the neighborhood of
* its infinities the expansion of F _(u) is of the form
I d’ ‘
Fl(u):um—l—P(u‘—{Z):a;z’log(u——'a)—*—P(u—*—a),
P being the usual symbol for an infinite power series in positive powers of the
argument.

Likewise in the neighborhood of its infinities the expansion of F,(u) is of the
form '

FL(0) = - log (u— £) + P,(u — 1),

P, denoting a second positive power series.
If we assume certain known properties of the sn-function these results may be
established at once. For the expansion of snu# by the MacLauriy Theorem is

3
| mu:u~0+#%%+KM}
We further have

. I 1 .. "
sn(v ;1K) = -~ —; or, writin v—=u—1K'
b 7 ?
k snv
I I
SN — — ——————-

so that the expansion of F, (u) in the neighborhood of an infinity i K’ is

‘ Fl(u):ad-flog(u——iK')ﬁ—P(u——iK').
Writing . .
F,(v)=— 2,

cant v

we have an'( o
__ W@4K) 1
F@+ K= (v 4+ K) sn'v
Thus in the neighborhood of the infinity K, we have

a@=*gﬁfm=£mwumeﬂ_m.

Finally, if we put
cn® v
dn*v

F(0)=—F

)
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it is seen that
I

sn*(u — K —iK")’
so that in the neighborhood of the infinity K 471K’ the expansion of F (u) is

4F4 (n) = —

F ()= E%;log(u-— K—iK)+ P (u—K—iK')

But it is to be noted that the expansions in these forms for the functions F,(#) and
F,(#) may be made quite independently of the assumed properties of the sn-, cn,
and dn-functions. We have only to use the differential equations (I) that are satisfied
by the cn- and dn- functions and proceed as was done above for the functions sn u.

6. It follows directly from the theorem of Article 1 that the differential equation

d'logz _ T
i = F(u)=—Fksn’u
is satisfied by a uniformly convergent power series, say g(%), so that
4" log g (u) (u) — B sntu; and similarl
du’ y
dlogg () . I
I du? = F.()= T snu’
n d*logg,(u) — F(u) = dn® u
du’ T antu’
4’ log g, (u) ,cn’u
du’ _F4(u)—"_kdn’u’

where g, (), g,(4), g,(u)-are likewise uniformly convergent power series.
- 7. The equations (I) may be written in the form

d’logsnu — F.(4) — F,(4) = d*logg (u)  d*logg(u)

du du duw ?
dlogenu _ d'logg,(w) d’logg(n)
T—F;(“)—F,(“)—— du T du ’
d*logdnu __d’logg (u)  d’'logg(u)
T'—F“(u)_F‘(u)_T T du
It follows that
) —_— gl( ) AO+A u
| snu = (u) ,
I cnu—gZ( ) eBot B
(1) ‘ FON
dnu'__g ( ) Co+Cu
g(w)

where Ao s B3 C,, C, are the constants of intégration.
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8. From (II) it is seen that

dlogu ‘—f ksnudu.
du

In my Elliptic Functions, Vol. T, p. 288 ®) [see also HErmITE °) in SERRETS Calculus,
Vol. 2, p. 829] it is shown that

_[w _ 9@
f Fsnudu = o) Cu,

where the constant C is determinate (: —I{,— — (3;(5)(;)) ]
It follows that * ‘
dlogg(u)

- du |

og e (u) — Cu,

and consequently

u2

oI_cu? . . . .. .. .
w)y= 0 (n)e T where C! is the constant of integration. Similarly 7) it is evi-

g R 224 y

dent that

cv_c¥’

e ] 2

g; - ()x(u)e b
and in like manner

u? m_ w2

C”——C7 C C? 8
gwy=He *, g =H(n)e )
g. From (III) it follows,.if we make use of the results just written, that

() Ay
sny — ®(u>e

Since sn % is an odd function as is also T (%) while ©(«) is an even function, it
follows by writing—u in the place of u in this formula that 4] = o. We thus have

H(u)
O ()’

snu = C

- . I .
where the constant C is 9) found to be == Thus it is seen that

5y H. Hancocg, Lectures on the theory of elliptic functions, vol. T (New York, J- Wiley and
Sons, 1910). :

5Y J. A. SERRET, Cours de calcul différentiel et intégral, 5° edition (Paris, Gauthier-Villars, 1900).

7y See my Elliptic Functions, vol. 1, 1. c. 8), p. 296. ‘

8) Compare these results with those of BrioT “and Bouquet, Théorie des fonctions elliptiqués,
2% édition (Paris, Gauthier-Villars, 1875), p. 465.

9) L c. 5), p. 241
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1 H(») o
sn i = IOK and similarly
(IV) cnu == }/ i, l(l-)l‘(%% , 1k = H(K) = H_ (o),
- 0, (1) o 8(0)
— k=1 I .
Be=ew e e

The properties of the Elliptic functions may be then derived directly from those
of the Theta-functions. The Theta-functions being elemental in the whole theory, it
is more scientific to establish their properties without making use of the properties of
the elementary elliptic functions sn, cn and dn. This may be done through the in-
troduction of the so called « Intermediary Functions » of HermiTe. In Chapter V of
my Elliptic functions is given the method of procedure of that great mathematical
genius with numerous references to his works.

It may be noted in passing that from the present paper we also get some insight
into the real nature of the « doubly’ periodic functions of -the second and third sorts
(espéce) » that were introduced by HerMITE. ‘

Thus without going into an extended discussion of the properties of the auxiliary
functions g(u), g, (), ... etc., we are able in a rather simple manner to express the
elliptic functions as quotients of Theta-functions. It is seen that the functions g («), etc.
are nothing other that the Alfunctions introduced by WeiersTrass. It is also evident
that the characteristic properties that WEIERSTRASs derived for these functions, — which
it may be observed that he did by making use of the properties of the elementary
elliptic functions, — are merely propertes that were already known for the Theta-
functions as from the above it is evident that they must be. It is difficult to see why
WEIERSTRASS should ascribe such importance to these Alfunctions as to use them as
an introduction to his collected works. (See statement made by him in this connection
in his Mathematische Werke, Vol. 1, p. 50). It is perfectly evident that these Al-func-
tions add nothing either new or in themselves interesting to the theory of Elliptic
Functions.

10. We may next consider a second form of the differential equation through
which the elemental elliptic functions may be defined,

E 24 WA =5
(E) in) =4¢ —&x—g = 5R)
a form due to HermiTE and Cavrey ™).
19) See A. CAYLEY, Note sur les covariants d’une fonction quadratique, cubique, ou biguadratique d

deux indétermindes [Journal fir die reine und angewandte Mathematik, Bd. L. (1855), pp. 285-287],
p. 287; F. BrioscHi, Sur une formule de M. CAYLEY [Ibidem, Bd. LIII (1857), pp. 377-378].
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If z;considered as a function of # is written in the WEIERSTRASSIan notation
2= Qu, it follows as in Article 4 that in the neighborhood of an infinity, = say, the
expansion of @u takes the form

= (” “) + P(u — 1)

Where P denotes an integral power series.
Similarly in the neighborhood of a zero # == ¥, say, it is seen that

(= Qu= b — B — B

where
by=Y—g  and b =",
=Yg, o 4
It follows at once from the differential equation (E) that
a’z ) I
A = 67 — PXih

Then from the formula

dlogz 1 d'g 1 /dzy
dut oz dut T % \du

we have as a form of the differential equation through which 7 = @ u is defined

d*logz I g, L

(F) —d—u?—-2(+77+‘iz—-
Writing the above differential cquafion in the form

() ﬁ%iwaw~ﬂw>
where '

185 1

F(u) 74*(_ (2 - 2 gou N2

and

F()=—2z=—2@u,

we must observe first whether F, () and F (u) satisfy the postulates made in the
theorem of Article 1. It is seen at once, if we observe the expansion of the {-func-
tion given in the preceding article that in the neighborhood of an infinitiy 7 = «,

& log (u —

F,(u) =2 %) 4P (4 — ).

In the neighborhood of its infinities we also have

g, 1 2h 1 g,
F(“) _"7;1‘"—;_‘9:~ bzg’u—@—l— 2(1,1, )_I_P(u
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where b, =V —b, b, = — :I}—gz and consequently

. _ &
F0) = — gy + B = ) = jlog (e — B) + P (s — )

The postulates of Article 1 are thus shown to be satisfied for the functions F,(#)
and F,(u).

12. If we write

a2 Lofz‘w — FI (u)’
) dlogw F.(
W =+ )’

it follows that these equations are satisfied, say, by w = f, (u) and w _.p(u), where
f. (%) and () are uniformly convergent power series.

d’ log w - o . S .
If we put gY — Qu, it is seen that this differential equation is also sati-

S dw
sfied by a uniformly convergent power series which denote by f(u).

Thus from (V) we have

&1 @
_%%}_(”_) = F,()=— 20 = 2. log f(w);

or
f.(w) = f(u) e,
where @ and @, are the constants of integration.
The function f(«) is defined through the power series

© Plogft) — _gu.

Expanding @u, it is seen that

d*log f(u I . d: '
dguf() —E G = dzlogu—-cu——--

~

It follows that

log f(u) =

— b Ayt Ay

where A4, and A, are the constants of integration,
If the constants 4 , A4, are made zero, we have here the function introduged by

1.2 Lo
WEIERsTRASS, namely ¢ (#) = u[l — s wt— .. ] . The further expansion is de-

Rend. Circ. Matem. Palermo, t. XLIV (1920). — Stampato il 9 giugno 1920, 13
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rived on p. 327 of my Elliptic Functions, Vol. I **). Returning to the formula (F") we
note that it may be written

d’logz _ d’loge(u) d’logf (u)
du> —  du’ du®

Through integration we have

— P( ) ao+a ®
(H) A= Qu= oy
where «, and «_ are arbitrary constants, and wherc o(u) may be regarded as the
partlcular mtegral of the equation

d* log w I

I Slogw _ 1
) , du’ 2 gOu + 0wy (¢ u)
It may be observed here that unless one introduces a somewhat different theory, the
function © » unlike the function sn 4 above is not expressed in the usual WEIERSTRASSIan
theory through the quotient of two functions that are analogous to the Theta-func-
tions. Instead Qu is defined in the WeIERsTRASSian theory through the equation (G),
which is in fact

u = —Ir log s u.
In this connection note the formulas (II) which correspond to the formula just written
defining P and then compare with the formulas (III).
From the differential equation (D) it follows that

d(___' e 2.2,
H—;_VI—(.‘VI-—k ;

and, if 7 is defined as sn 4, the two expressions to the right, namely ¢/1 — z* and
Y1 —F*z* are the functions cn# and dnu. We expressed above all three of these

functions as quotients of Theta-functions.
13. In like manner write the differential equation (E) in the form

i .
;3%=1/413—g21“'g; = 2“/(——?‘,1/(——62-1/:{—53;

1Y V2

through the function @u, we may define ¥z — ¢, through @ u, ¥z — ¢, through
9,4 and ¥z — e, through @ u. It may be shown that these functions may be expres-
sed as quotients of power series that are uniformly convergent.

where ¢,, ¢, and e, are the roots of the cubic 43— g,z — g, =o. If 7 is defined

I Lo ).
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For
dz
d 1 du
[71;%01(”)_?1/(_51—V((_ez)((_eg)‘—gozup3u
and
dlog u 1 1 dz
du 2 Y7 —¢ du’

Noting that

&z, I I
1 67 — "{gz —2“5 €4)
we observe that
dlogp(w)_ 1 @ _ 1 SR
du? 4x—e  2@R—e)’
It follows that
dlog(@.w)y 1 S  S@
du’ T 27— Z—e)

(which expanded in powers of z — ¢ is)

_ IS F IS @R — )+ 15 R — o)

T—¢
_ S+ SR =)+ 25CE)R— ey + 55k —e)
, xR—e) ’
or, since S(¢,) = o and §"'(e;) = 24, we have
(VD) T e T E!

We may consequently write

&1 :
Llog(@,u) 2(—(; {S(e)—l-ze)—F(u) F,(a),
where 5

F() = — 20= — 29 = s log (au,

" as shown above; and where
Fz(u):—( A +2e)

14. It remains to consider the nature of the function F,(#) in the neighborhood
of its infinity z =¢_.
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From the definition @ (#) ==z —¢,, it is seen that for a zero # = = of @ u
we have g =¢,.
‘Writing
pr=a(@—a)+a(@—ay+ -,

ii—@—u—-a +2a(u—a)+

we have

From the relation

39,u - 2
(P02) == — o) =[O + ¢ — )@+, — o)
it follows that
a;=(¢, —¢,)(e, — &) =1 5(e)
4a,8,=o0, or a,=o,
a0, = (¢, —e)a, (e, —e)a;, o a,=2VS5(,)S"(e)
We thus have the expansion

1 I I I I

@0 1—¢ 5(@) @—af 1+PE—0w)

and consequently

F,(u) = (_“)2+P<u ),

where P,(u — «) is a positive integral power series.
It is thus shown that F,(u) satisfies the postulates of the theorem stated in Art. 1.
It follows that if we write t=f,(u) where ¢ is defined through the differential equation

LSe)

dlsot
B T Y pu—., &

(VID) e

then f,(#) is a uniformly convergent power series.
15. It is seen at once that formula (VI) takes the form

L otog(p,1y = % log £, — - log (e,
or '
(VIID) P.()=10u—e

where A, , B, are arbitrary constants.
We observe that f, (#) is an even function, being a particular integral of the

f( ) A,+B‘u
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differential equation (VII), and consequently changing # to —u in the formula (VIII)
it is seen that B, = o, and consequently

@Iazt/g{)u—e,: C}—(’;(—Zl

with similar expressions for @, % and @, u.

If we put Cf,(#) = o, (u), it is seen that the expansion of ¢ # in integral
powers of » may be effected as on p. 394 of the first volume of my Elliptic Func-
tions, 1. c. °). :

It would be better, however, first to evolve the theory of sigma-functions as was
implied (Art. 9) for the Theta-functions and then identify the function ¢ u with the
integral of the differential equation (VII). '

This again is unnecessary; for, from the differential equations already introduced
it will be seen in the next article that the sigma-functions are nothing other than
- Theta-functions except as to the constants of integration.

16, In Art. 8, we saw that

or, writing u |- iK' for 4, this formula becomes 1/sn*# = ?{L — 2657 log H(#). On

» p. 278 of my Elliptic Functions, Vol. L L c ®), it is proved that
I 1

i—,  where &= .
esn’v e, —e

Qre) =e +

It follows that
~ 1 ] 1 4
?(’UV&) == 83 + TTK—: -—_ _S_E—T;ZIOg H('I)).
The differential equation which defines s is (Art. 12)
_ @u = Zu? log CHu.

From this it is seen (as on p. 304 of my Elliptic Functions) that
su=Be™ H(2Kv),
s, u =8 ¢™"H (2Kv),

..............

where the constant n has the value — (es + —:— %) , and where B, B, ..., are

. o 5
determinate constants [loc. cit. %), p. 408]. _
17. Thus it has been shown, that after the auxiliary theta-functions have been
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introduced, formed and defined through the simple «intermediary functions » of Her-
MITE, the whole theory of the Elliptic Functions, whether it be expressed in the Jacosr
notation or in the WEIERSTRASSIan notation or in the generalized notation indicated
in Article 12, is made dependent upon the solution of the differential equations

dlogt .,
W———"k sn-u,
dlogt 1
dw> —  sn'u’
d'logt  dn’u
dv* ~—  cn’u’
d*logt ,cn’u
T~ P

equations which we have seen to be integrable (Art. 8) in terms of Theta-functions.
18, Similar results may be derived, if we write the original differential equation

(D) in the form
(%): 41 — (1 — D) (Risvany)

or in the form
(%) =t(1 —pot+1) (KRONECKER).

In either of these cases we may introduce functions corresponding to the Theta-func-
tions or to the sigmafunctions and we may derive for these new functions the analo-
gous properties of the functions just mentioned. One may then in a general and in
a more direct manner obtain the results that have been indicated by Riemany and
KronNEckeR. These new functions are merely other forms of Theta-functions. This is,
of course, due to the fact that the differential equations that define the functions which
are expressible as quotients of these new functions, may be transformed into the
differential equation (D). It follows also that they like the Alfunctions of WEIERSTRASS
add nothing new to the general theory.

Finally it may be observed that the results of this paper may be obtained without
employig the theorem given in the first article; however, by making use of that theorem
one knows i priori that such results as occur, must exist.
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