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I.

1. The results obtained in this paper have reference to the algebraic
differential equation

(1) f(x, y, y') = 2Ax»y*y" = 0,

where m, n, p are positive integers. I suppose that this equation possesses
a solution

(2) y = y(x),

which is real and possesses a continuous derivative for x > xQ* The
problem is to specify as completely as possible the various ways in which
y may behave as x -» oo.

This problem was first attacked by Borel, in his Memoire sur Us Series
DivergentesA Borel proved that the equation (1) cannot have a solution
y, such that .

y > e = e.2(x)

for values of x surpassing all limit. He proved further that

(3) fix, y, y', y") = 0

cannot have a solution y such that

y > ea (x)

for values of x surpassing all limit; j and there is no doubt of the truth of

• I.e., for all values of x from some value onwards (" Orders of Infinity," Camb. Math.
Tracts, No. 12, p. 6). We assume the existenco of such a solution : it is not part of the
problem to consider conditions for its existence.

t Annales de I'Ecole Normale, t. 16, pp. 26 et seq.
J The proof is not complete, but its general lines are clearly indicated.
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the corresponding general theorem, though, so far as I am aware, no strict
proof has ever been given.

Borel also devoted a section of his memoir to the subject of oscillating
solutions, but without obtaining any very definite results.

2. In a short memoir published in 1899, Lindelof* returned to the
questions raised by Borel, and proved the following much more precise
result:

If the equation (1) is of degree m in x, then there is a constant G,
such that

(4) y < ec*n+1

for x > xQ.

Further, he proved thatt either

(5) \y\<e*,l

or

(6) f-'<\y\<(r' (p>0),

for x > x0.
The solutions of the first class may oscillate, but those of the second

are ultimately monotonic, together with all their derivatives.

3. The subject of the increase (croissance) of solutions of the equa-
tion (1) has also been considered by Boutroux.§

Boutroux confines himself to the equation

(7) y' = P(x, y)/Q(x, y),

where P and Q are polynomials ; but he considers the whole subject from
the point of view of the theory of functions of a complex variable. The
distinction between the two classes of solutions (5) and (6) of course
appears again, in a more precise form—there are solutions whose increase
is less than that of some power of | x | , and solutions which, in certain
angles, behave like exponentials.

• Bulletin de la SocUU Mathematique de France, t. 17, p. 205
f Some of these results are contained in an additional note which is in part due to Borel.
J The notation is that explained in my tract cited above and my paper " Properties of

Logarithmico-Exponential Functions," Proc. London Math. Soc, Ser. 2, Vol. 10, p. 54.
§ Lemons sur les fauctions definies par les equations diffirentielles du premier ordre} Paris,

Gauthier-Villars, 1908.
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4. In this paper I consider first the equation (7); but, like Borel and
Lindelof, I consider it exclusively from the point of view of the real
variable. I am thus able to obtain results very much more precise than
those stated in the preceding sections. I show that all solutions of (7)
are ultimately monotonic, and specify their possible modes of increase by
simple asymptotic formulae. I also show that substantially the same re-
sults hold for the equation

(8) y'» = P(x, y)/Q(x, y),

where fx is odd.
I then return to the general equation (1). I find asymptotic formulae,

more precise than Lindelof's, for the solutions which behave at infinity
like exponentials, and I prove that any oscillating solution is ultimately
less in absolute value than a power of x—in symbols,

y = O (xs).

In particular I show that, in the case of the equation (8), with /u. even,
every oscillating solution remains finite, i.e.,

y = 0(1).

Finally, I discuss certain particular types of oscillating solutions.
Much of the argument is capable of extension, and results still more

accurate may be obtained without the intervention of any fresh difficulty of
principle. But, after a certain point, the work becomes too tedious to be
justified by the interest of the results.

It would, however, be exceedingly interesting to see how far the
methods used in the paper will go in proving the analogous results
immediately suggested for equations of order higher than the first. Here
I do not go beyond the first order, but I hope to return to the subject at
a later opportunity.

II.

5. Let us consider the equation

(7) y' = P(x,y)IQ(x,y).

I shall prove first that it is impossible that y' should vanish for a
series of values of x whose limit is infinity, except of course in the trivial
case in which (7) has a solution y = const. In other words, every solution
is ultimately monotonic.

Suppose the contrary. Then the curves y = y (x), P = 0 intersect at
points corresponding to an infinity of values of x surpassing all limit.
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But P =• 0 consists of a finite number of branches, and so y = y(x) must
intersect at least one of these infinitely often.

Now the branches of P = 0, which extend to infinity in the direction
of the axis of x consist of (i) a finite number of straight lines

y = cs (ys),

(ii) a finite number of branches

y = 4H(X) (St),

along which y ultimately increases or decreases steadily.
In the first place, y = y(x) cannot cut any St in an infinity of points.

Suppose, for example, that y ultimately increases along 8t> and let P, Q be
two successive points of intersection. Then y = y(x) crosses St at P and
Q, in each case from above to below (Fig. 1), and a glance at the figure is

Pro. 1.

enough to show that this is impossible.*

We have now to consider the possible intersections of y = y (x) and ys

These fall under the four types represented in Fig. 2.

(*) ' W (c) (4)
FIG. 2.

Of these we can at once rule out {a) and (c), since at such points //'
would change its sign, and P would not. For a similar reason we can
rule out (6) and (d), unless the factor y—cs occurs an even number of times
in P . If this is so, and an intersection of {e.g.) type (6) occurs, it can

* We can suppose x large enough to ensure that P and Q cannot vanish simultaneously.
Then it is easy to see that y is regular for a value of x which makes P = 0, and hence that
there cannot be an infinity of intersections for values of x in the neighbourhood of any finite
value. Hence there must be successive intersections. We need not elaborate this kind of
point in future.
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occur once onhj, so far as ys is concerned ; for ^when y has once passed
above ys it can plainly only come back to y, after an intersection of type
(a) with some other ys.

Hence y is ultimately monotonic.

6. We can go further and say that every derivative y^ is ultimately
monotonic. For, by differentiation and substitution, we find

where Pr, Qr are polynomials, and in fact Qr = Q2r+1. Our assertion will
therefore follow as a corollary from the following general theorem :—

THEOREM.—Any rational function

H(x:y) = K(x,y)IL(x,y)

is ultimately monotonic along the curve y = y (x)—unless L = 0 is a
solution of the equation (7).

This theorem I shall now proceed to prove.

7. We have

ax ox ay W

where U and W are polynomials, and d/dx implies differentiation along
the curve (2). If dH/dx is not ultimately of constant sign on the curve
(2), it must vanish or become infinite infinitely often on (2). In the first
case (2) must have an infinity of intersections with at least one of the
finite number of branches of

(9) U = 0.

Now this branch may, for sufficiently large values of x, be represented
in the form

(9') y = Ao

a convergent series of (not generally integral) descending powers of x.
If 8/Sx refers to differentiation along (9),

(10) | | = ^ a o z

Again, along (9), B(x, y) is an algebraic function of x, which may, for
sufficiently large values of a;, be expressed in the form

(11) R = B
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another series of descending powers. And, unless the series (10), (11) are
identical, we shall have, at all points of (9) from some definite point on-
wards, - »

? > B or S/< B.
ox 6x

From this it follows that, at the points of intersection, (2) always crosses
(9) from one and the same side to the other and the same side; which is
plainly impossible.

On the other hand, if the series (10) and (11) are identical, we have

and U = 0 is a solution of (7). In other words, H is constant along (2).
There remains only the possibility that

an i -r uJx TT aj-i \ / -r 2U/J.J. _ _ I y IA/J-X. -rr IA/J-I I I T j

dx ~ \ dx dx)I

should become infinite infinitely often, as we describe (2). This cannot
be true owing to K or L or

dK_ _ dK , dK dy
dx dx dy dx

or dL/dx becoming infinite, and so can only occur if L vanishes infinitely
often. But then we can show as above that L = 0 is a solution of the
equation (7).

Thus the proof of the theorem is completed.

COROLLARY.—Any rational function

H(x, y, y')

is ultimately monotonic, unless its denominator vanishes identically in
virtue of (7).

The same is true of H(x, y, y', y", ..).

8. We can obtain much more accurate information concerning the
increase of the solutions of

(7) Qy' = P.

The ratio of any two terms is of one of the forms

Axmyn, Axnyny';
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and is consequently ultimately monotonic, and so, between any two terms
X{, Xj, there subsists one of the relations

Xi >- Xj, Xi ^ Xj, Xi -< Xj.

It follows that there must be one pair of terms at any rate such that

-X* X Xj.

If these two terms come from the same side of (7), we obtain at once

(12) y ~ Ax\

where s is rational. If they come from opposite sides, we obtain a rela-
tion of the form

(18) ymy' ~ Axn.

Here four cases present themselves. If m =£ — 1, n=j= — l, we obtain a
relation of the type (12). If m=fc — 1, n = — 1, we obtain a relation

(14) y~A(\ogxyi*>,

where p is an integer. If m = — 1, « f̂c — 1, we obtain a relation

log y ~ Axp,

(15) y = eAx"<1+<\

Here p may be supposed a positive integer, as if p is negative y ~ 1.*
Finally, if m = — 1, n = — 1, we obtain

log y ~ A log x,

(16) y = xA+\

9. The relations (15), (16) are less precise than (12) and (14). We
shall now proceed to examine them more closely.

Let us consider first the exponential solutions (15). We have

y

where Po, ..., Qo, ... are polynomials in x. It is clear that. s=r—1,
and that, for sufficiently large values of x, we have

• p is clearly at most equal to r + 1, where r is the degree of (1) in x—this, of course,
agrees with Lindelof's result quoted in §2.
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where Bo, R1 are rational functions of x. Hence

where 11 is a polynomial and A a constant (not necessarily rational).
Hence, integrating, we deduce

(17) y^Axaenix>*

It is clear that this form includes the form (12).

10. We have now to consider the last case of § 8, which is rather more
difficult. There are two terms

(18) Aatyy, fjix'-'y^

of equal order :t obviously we may suppose that no other term is of
greater order. We may go further, and suppose that no other term i6 of
equal order, since the contrary assumption leads at once to a relation
of the type (12). We have also

y = x*+% A = nl\.

If follows from the theorem of §§ 6, 7 that, if Xi is any third term in the
differential equation, the quotient

tend8 to a limit as x -> oo. In other words, the difference of the two
principal terms is definitely of order greater than, equal to, or less than
that of any third term. We can now distinguish two possibilities.

(a) There is a third term whose order is equal to that of the difference
of tJie principal terms.

In this case we have a relation of one of the forms

(19) Xxsyty'—/jLXs-1yt+

(20) Wify'—ttx-1^

First, suppose (19) holds. Putting

y = xAu =

* Not, of course, with the same A : of. Proc. London Math. Soc, Ser. 2, Vol. 10, p. 54.
t We say, of course, that Xi is of order greater than, equal to, or less than that of X

according as Xyxit Xt H 3 , , or X-t -< X .
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and substituting, we obtain

But, as u = x% this is only possible if

<r—s+{r—t—1)A = — 1,

which shows that A is rational, its denominator being i—t—1. Also,
. +1 XT1integrating, .

Thus

(21) y — A (xp log a;)1'9,

where p and # are integers.

Next, suppose (20) holds. Making the same substitution, we obtain

{\x8+«+i)Aut—MX*HT+1)AUT\U' ~ MAx'-l+(T+1)AuT+1.

But xsyl >- xay\

and so ii'-^u' ;

and the argument may now be completed as before.
(b) There is no third term whose order is equal to that of the differ-

ence of the principal terms.

Let us denote the principal terms by Xx, Xv Then there must be at
least one term Z2, such that

.Xg z*- Xx—X1;

and therefore another term X^, such that

and we may suppose, as in the case of Xv Xlf that these terms come from
opposite sides of the equation. We may also suppose that Xj, X^ are of
higher order than any other terms other than Xx, Xx. Further, we may
suppose them to be of the form

where M2/A2 = M/^ = A.

Putting y = xAu, we obtain

M', X2-X2 =

* If they were not thus related, the increase of y could be determined at once as in §§ 8, 9.
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from which it at once follows that

Xi—Xi )>- X2—X2.

But in this case there must be a fifth term X3, whose order is greater

than that of Xx—Xv and a sixth term X3, such that

X3 ~ X3,
and we can prove that

Xi )*• X% ^- X3, Xi—Xi )*• X$—X% ^- A 3 — A 3 .

And as this argument may be repeated indefinitely, and the number of
terms is finite, we must find sooner or later that the supposition (6) leads
either to the conclusion we desire or to a contradiction.

11. We have thus proved the following theorem :—

Any solution y* of the equation

dy = P(s, y)
dx ~~ Q(x, y)

is ultimately monotonic, together toith all its derivatives, and satisfies
one or other of the relations

y~ Ax«en<*>, y~A(x»logx)y\

where U{x) is a polynomial, and p, q are integers.

These rates of increase are naturally included among the standard
asymptotic forms for logarithmico-exponential functions of order l,t of
which they are quite special cases.

12. It is natural to attempt to extend our results to the more general

equation

(8) y"l = P(x,y)IQ(x,y).

* We are, of course, confining ourselves to continuous solutions : see § 1.

Examples.—The solution of x'tf = (x +1)2 y is

the solution of 2x (x +1) yy' = xy2 + (» +1)"-' is

t/ = N/{(a; + l)(logz + 4)} -

| Proc. London Math. Soc, Ser. 2, Vol. 10, p. 76.
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If fi. is odd this offers no new difficulties : all our arguments apply, with
appropriate modification of detail.*

But if fi is even our results are obviously no longer true. Thus

possesses the oscillating solution

y = sin x.

I shall now proceed to consider the general equation (1), and the particular
equation (8), with ft even, with the especial idea of discovering to what
limitations the existence of oscillating solutions is subject.

III.

13. I return now to the general equation (1). We can distinguish
various possibilities.

(a) It may be possible to find a positive p such that

(22) y > e*,

for an infinity of values of x surpassing all limit. In this case Lindelof
has shown that this inequality holds for all sufficiently large values of x,
and that y and all its derivatives are ultimately monotonic.t

In this case any rational function

H(x, y, y')

is ultimately monotonic. For, if we eliminate y' between

H = H(x,y,y'), f(x,y,y')=0,

* The standard forms of increase are

y ~ AxaeBxt""+c^""+--, y ~ A (XPIX)^, y~

In the first of these xa can occur only if p/n is integral. The form

y ~ A {xHx)>"i,

can only occur if n = 1 or p = 0.

j Lindelof (I.e.) shows that if y = y (x) cuts y = e ' at points whose abscissae surpass all
limit, we can find values of x surpassing all limit for which

y' = pxf-ly, y>e*.

Substituting in (1), we obtain fx (x, X"-1, y) = 0,

where fx is a polynomial; and it is impossible that fx should vanish for an infinity of pairs of
values , * „

unless it vanishes identically.
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we obtain an algebraic relation

F(x, y, H) = 0 ;

and so the points at which —- = 0
dx

lie on an algebraic curve, which plainly contradicts (22).

We can now argue as in § 8. The equation (1) must contain two terms
of equal order, and so we deduce

ify' - Ax\

Here fx and v are rational, and /x must plainly be — 1 . Hence

(28) y-eAx'(X+t\

It is clear that s can be at most greater by unity than the degree of (1)
in x*

(b) It may be possible to find a number K such that

y = O(xK).

14. It is obvious that (a) and (b) do not exhaust the a priori possi-
bilities. It is our object now to prove that no other case is really
possible.

If we are not in Case (6), it is possible, however large be A, to find
values of x such that . A

y>x*.

We can therefore choose an increasing sequence (A,,), whose limit is
infinity, and a corresponding sequence (xv), such that

y{x) > x*° (x = xv).

We shall now construct a curve

(24) y = x^x) = e^x)losx = fi*(a°,

passing through the points (xv, x$v) and satisfying certain conditions.
In the first place, we can suppose A'(a), and a fortiori <j>'{x), positive

and continuous. And we may suppose 0-< x8, and a fortiori A -< a;6,
since otherwise we should find ourselves again in Case (a).

• We can treat similarly the case in which y is ultimately negative.
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Further, since we are at liberty to suppose the increase of the
sequence (A,) as slow as we like, we may suppose that

a^- 'A'fcWO
for any positive 8.*

A(aONow

Hence

(25)

(x) — A'(x) log #4-
x

oo 0.

15. We have

(26) y (x) >

for an infinity of values of x surpassing all limit. We shall now show,
by a modification of Lindeldf's argument, that this inequality must hold
for all sufficiently large values of x.

FIG. 3.

If this is not so the curves (2) and (24) must intersect in an infinity of
points such as P, Q, BA

At P (Fig. 3), we have

y = e*, y' > 0'e* = <f>'y,

and at Q we have y = e*, y' ^ 0'e* = <f>'y.

As y' — <t>'y is continuous, there must be a point between P and Q where

y' = 0'y. y > **.

* A supposition equivalent, in ordinary cases, to A (x) •<( z \
| The argument is not affected if some of these points are points of contact.
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and so there must be values of x surpassing all limit for which these
relations hold. For these values of x,

/(*, y, <p'y) = 2Ax»tf+*t" = 0.
All the terms in this equation (except those for which n = 0, p = 0) are
large compared with any power of x,* and it is clear that, for any value of
x for which the equation holds, there must be two terms such that

where H and K are numbers depending only on the form of the equation.
Further, it is clear that . , . ,

n+p = n +p',
and so we have Hx < xm'~m<j>'p'-* < Klt

say. But this plainly contradicts the relations (25), unless m = m',
p = p't which is impossible.

16. The inequality (26) therefore holds for all sufficiently large values
of x. But we can now prove, as in § 18, that any rational function
Hi:*, y, y') is ultimately monotonic, and thus arrive at the equation (28).
We have thus proved the following theorem :+—

If y is any solution of the equation

f(x, y, y') = 0,

we have either y — 0 (x*)

or y = eAx'<1+t\

where s is rational. All solutions of the latter class are monotonic, to-
gether with all their derivatives.

IV.

17. I shall now resume the consideration of the special equation

(8) y'» = PIQ,

where A* is even—if ix is odd, we have already seen that there can be no
oscillating solutions.

• Since y ^ x" M and A (x) -*• oc .

f It is hardly necessary to point out again that we are considering only continuous
solutions.
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We have seen that any oscillating solution of the general equation (1)*
must satisfy _ . K.

When the equation has the special form (8) we can go much further, and
assert that any oscillating solution satisfies

y = 0(1),
i.e., oscillates finitely.

In fact if, as in § 5, we denote by y,, St the branches of P = 0 which
stretch to infinity in the direction of the axis of x, we can still show, by
the argument used there, that y = y(x) cannot cut any 8t infinitely often.
It follows that y cannot (for sufficiently large values of x) increase beyond
the greatest of the numbers cs. For if it did so it would necessarily con-
tinue to increase until y = y(x) met one of the branches 6t. Hence y
can oscillate at most finitely.

We can go further, and assert that, along any branch which does not
remain finite, H(x, y), any rational function of x and //—and so also any
H{x, y, y')—is ultimately monotonic. For

dx ox oy

Let 6 = (3—) — M (3—
\dxj \dy

and suppose, if possible, that y = y{x) meets a branch of S = 0 infinitely
often.

Along such a branch we have, as in § 7,

(26) f - = AoaQx«'>-l+A1alx">-l + ... A

Also, along this branch JR = BQX

(27) ^ = 2 * ^ = o

as .RI/M has two real values, equal and opposite.
We can now prove without difficulty that the assumption of an infinity

of intersections leads to a contradiction. Let P, Q, B, ... be successive

• Such as y = isinx, which is a solution of

(xy'-y)2 = x2(.c2-v2).

t As in §7, Sy/Sz refers to S = 0, and dyjdx to y = y (x).

8KB. 2. VOL. 10. NO. 1127. 2 H
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intersections. These must correspond alternately to the two signs in (27).
For, if, e.g., P and Q corresponded to the same sign, y = y(x) would cross
S = 0 in the same sense at P and Q (Fig. 4a), which is manifestly im-
possible. On the contrary hypothesis (Fig. 4b) it is clear that we could
find a system of values xv, tending to infinity, and such that

#(£„)-> eo, y'{xv) = Q;

FIG. 4a. Fio. 46.

and this possibility has already been excluded. Thus it has been shown
that, unless y remains finite, H{x, y), H(x, y, y'), ... are ultimately
monotonic.

We can now show, as in §§ 8, 13, that any solution of (8), which does
not remain finite, is determined asymptotically by one or other of the

obtained in §§ 11, 12.

18. I shall conclude this paper by considering a few cases in which it
is possible to obtain more precise information concerning the oscillating
solutions.

First, let us suppose, in the equation (8), that P has no factors

(y—cs)
k;

in which ks is even. Then y = y(x) cannot cross a line y = c,, since
this would involve a change of sign on the part of P. Thus y remains
continually between two adjacent lines y = cs, attaining in succession
maxima on the upper line and minima on the lower. In Borel's
terminology, the oscillation of y is of a simple and regular sinusoidal
type.

Suppose, in particular, that /u = 2. Then it can be proved that, if y
attains the value cs> y—ct can occur in P as a simple factor only. For, if
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y= ct for x = g, we have, near x = i,
y-c, = A(x—i¥+...,

and 2jp—2 = jp&s, which is only possible if p = 2, &s = 1.*
We may suppose, without loss of generality, that the lines between

which y oscillates are y — 1 = 0 and y-\-l = 0. We have then

where S > 0. Further,
e_PQ

Q

where Po, Plf ..., Qo, ... are polynomials in y. Suppose, to avoid com-
plications of detail, that Po > 0, Qo > 0 for — 1 < y < l.t Then

where BQ is a rational function of y. Putting y = sin 6, we obtain

0'2 = .Bo (sin 6) z*<i

or
f
J V -"o

say. This involves a relation of the type

e~Bxs.\
Thus y behaves, to put it roughly, like

sin

19. When /* > 2, we can, of course, obtain more complicated types of
oscillating solutions.

* Consider, for example, the equation
y'* = (l-yYx.

We find as the general solution y — ± tanh (§x£ + C),
and y never attains the values ± 1 . This is an example of a finite non-oscillating solution.

t PolQo cannot change its sign, but Po or Qo might vanish, when we should have to take
account of the other terms.

X If 0 = 2v* + <f>, where 0 < <p < 2ir,

§ A simple example of such a solution is provided by the trochoidal curve

x'" = e—a cose, y = sind ( | o | < l ) ,

which satisfies the equation w'2 = *!!? L_Z.V.J.
H J a + ayy-

2 H 2
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It is easily~Trerified that y-= sin3 x

satisfies y'*-+Ntfy'*+M3yiy'a= 729?/4 (I—?/2).

This suggests that the equation

ylfi=AyHl— tf)

has an oscillating solution of the "type -shown in Eig. 5, and it is easy to

- 1

1

FIG. 5.

verify that this is the case. If we take theTnore general equation

y'»=A?f(l—y2)b, {a,b>0),

we find, as the conditions for the existence of continuous oscillating solu-
tions

where p, q, r, s are integers. These cannot be satisfied if p. is odd (as is
of course to be expected). For even values of fi we find, as possible cases,
H= 2, a=0, b= 1 ; /*= 6, a^= 0 or 4, b^= 1, 8, or 5; and so on.
The case mentioned above corresponds to fi = 6, a— 4, 6 = 1 .

[It is only since writing this paper-that I have become acquainted -with an important
series of memoirs by Kneser and Horn,-which deal-with a variety of questions concerning the
asymptotic behaviour of functions defined by differential equations. These memoirs are for
the most part developments of the work of Poincare on linear differential equations. The
point of view adopted is very different from that of Borel and Lindelof, and so far as I know
none of the preceding results are contained in any of them. But the bibliographical indica-
tions of §§ 1-4 would be incomplete if I did not refer to them, and I accordingly add the
following references, without professing that the list is complete:—

A. Kneser.—Math. Annalen, 42, p. 409. Crelle's Journal, 116, p. 178 ; 117, p. 72 ; 120, p.267.
J. Horn.—Math. Annalen, 49, p. 453; 50, p. 525; 51, p. 346 and p. 360; 52, p. 271 and

p. 340. Crelle's Journal, 116, p. 265 ; 117, p. 104 and p. 254 ; 118, p. 257; 119,
p. 196 and p. 267 ; 120, p. 1.

Added January, 1912.]


