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What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Data
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Choice of kernel

The kernel function K is typically

• everywhere non-negative: K(x)≥ 0 for every x

• symmetric: K(x) = K(−x) for every x

• decreasing: K′(x)≤ 0 for every x > 0.

Gaussian Box Tri Triweight
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Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).
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Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.
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Choice of bandwidth - Silverman

Silverman’s rule of thumb computes an optimal h by assuming that
the data is normally distributed. Good starting point in many cases.
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Choice of bandwidth - ISJ

The Improved Sheather Jones (ISJ) algorithm is more robust with
respect to multimodality.
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Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.
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Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

Data
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Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.
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Extension to d dimensions
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Kernels in 2D

An approach to d-dimensional estimates is to write

f̂ (x) =
1
hd

N

∑
i=1

wiK
(∥x− xi∥p

h

)
, where

N

∑
i=1

wi = 1.

'box', 2-norm 'tri', 2-norm

'biweight', 2-norm 'gaussian', 2-norm
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The effect of norms

The choice of norm comes in to play when d ≥ 2, the p-norm is

∥x∥p :=
(

∑
i=1

|xi|p
)1/p

.
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The effect of norms

The shape of kernel functions in higher dimensions depend on the
value of p in the p norm.

'box', 1-norm 'box', 2-norm

'box', inf-norm 'box', 3-norm
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The effect of norms

The shape of kernel functions in higher dimensions depend on the
value of p in the p norm.
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Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.
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Example with data

As the number of samples grow, the choice of both kernel K and
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A fast algorithm
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Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Data
Grid
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Sample the kernel

Sample the kernel function K at equidistant points. The n binned
data points and the kernel are then convolved, this runs in
O(n logn) time, for a total time of O(N2d +n logn).
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Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.
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Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.
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KDEpy
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KDEpy

If you’re interested in KDE in Python, I’ve written a library.

• GitHub: https://github.com/tommyod/KDEpy
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