(ii.) The envelope of the circumcircle $A B C$ is a Limaçon having S for a donble point.

Otherwise, the circumcircle $A B C$ cuts a given circle J orthogonally, and its centre moves on the circamference of another given circle tonching J.
4. The envelope of the radical axis of the circamcircles $D E F$ and $A B C$ is a conic of which the centre of the orthogonal circle J is a focus. In other words, this focas of the conic is also a focus of the Limaçon.

The conic meets the Limaçon in eight points which lie on the circle $D E F$ and another given circle.

On the Harmonics of a Ring. ByW. D. Niven. Read February 9th, 1893. Received, in revised form, December 11th, 1893.

1. This paper may be regarded as an extension of the work contained in the first memoir on "Toroidal Functions" in the Philosophical Transactions, by Professor W. M. Hicks, an attempt being here made to show how the problems solved by Mr. Hicks for a single anchor ring may be dealt with when there are two rings having the same rectilineal axes.

It is obvious that with two such rings, in order to satisfy the surface conditions for each ring, it is necessary that the harmonics of either should be capable of being expressed in terms of those of the other. This is accomplished as follows :-

It is first shown that the harmonics of any degree, referred to a circle A in dipolar coordinates, may be derived from their predecessors, one degree lower, by certain differentiations with regard to the radius of the circle and the distance of its plane from a fixed point.

The potential at any point due to a coaxal circle B of uniform line density is next found in terms of A 's harmonics.

Finally, the zonal harmonics of B can all be deduced from this
potential by the system of differentiations just referred to, and therefore they can all be expressed in terms of the harmonics of A.

The present communication is confined to a discussion of the quantities arising in the process indicated, and deals, for the most part, only with zonal harmonics, although the methods employed will also apply to the general tesseral and sectorial system.
2. I begin with the potential at any point due to a circle loaded with matter of line density $\cos \sigma \phi^{\prime}$ at the point whose longitude along the circamference is ϕ^{\prime}. If the circle, of radins a, be in the plane of $x y$, with its centre at the origin of coordinates, the potential at x, y, z or $\rho \cos \phi, \rho \sin \phi, z$ is seen at once to be

$$
\sqrt{\frac{a}{2 \rho}} \int_{0}^{2 \pi} \frac{\cos \sigma \phi^{\circ} d \phi^{\prime}}{\sqrt{\frac{z^{2}+\rho^{2}+a^{2}}{2 a \rho}-\cos \left(\phi^{\prime}-\phi\right)}} ;
$$

or, patting $\phi^{\prime}-\phi=\theta$, adopting dipolar coordinates u, v, and discarding the term with $\sin \sigma \phi$ as a factor, as being zero, we have

$$
\cos \sigma \phi \sqrt{ } \frac{a}{2 \rho} \cdot \int_{0}^{2 \pi} \frac{\cos \sigma \theta}{\sqrt{\operatorname{coth} u-\cos \theta}} d \theta,
$$

which is the same as

$$
\cos \sigma \phi \sqrt{2(\cosh u-\cos v)} \int_{0}^{\pi} \frac{\cos \sigma \theta}{\sqrt{\cosh u-\sinh u \cos \theta}} d \theta .
$$

3. Let now the origin be shifted to a point on the rectilineal axis at a distance b from its old position; then the relations between the rectangular and dipolar coordinates are given by
or, if

$$
\frac{\rho \pm i(z-b)+a}{\rho \pm i(z-b)-a}=e^{n \mp i o},
$$

$$
a+i b=p, \quad a-i b=q,
$$

$$
\frac{\rho+i z+q}{\rho+i z-p}=e^{i-i o}, \quad \frac{\rho-i z+p}{\rho-i z-q}=e^{i+i 0} .
$$

If we suppose ρ, z to be fixed, while a, b are raried, it is clear that u, v must be regarded as functions of p, q, and it is easy to find the following results:-

$$
\begin{aligned}
& \frac{\partial u}{\partial p}=\frac{1}{2 a} e^{-i v} \sinh u \\
& \frac{\partial v}{\partial p}=\frac{1}{2 a} i\left(e^{-i v} \cosh u-1\right) \\
& \frac{\partial u}{\partial q}=\frac{1}{2 a} e^{i v} \sinh u \\
& \frac{\partial v}{\partial q}=-\frac{1}{2 a} i\left(e^{i v} \cosh u-1\right)
\end{aligned}
$$

and thence

$$
\begin{aligned}
& \frac{\partial}{\partial p} \sqrt{\cosh u-\cos v}=\frac{1}{4 a}\left(e^{-i v} \cosh u+1\right) \sqrt{\cosh u-\cos v} \\
& \frac{\partial}{\partial q} \sqrt{\cosh u-\cos v}=\frac{1}{4 a}\left(e^{i r} \cosh u+1\right) \sqrt{\cosh u-\cos v}
\end{aligned}
$$

Also, if $I(n, \sigma)$ denote the integral,

$$
\begin{gathered}
\int_{0}^{*} \frac{\cos \sigma \theta}{(\cosh u-\sinh u \cos \theta)^{n+1}} d \theta, \\
\frac{\partial}{\partial p} I(n, \sigma)=-\left(n+\frac{1}{2}\right) \frac{1}{2 a} e^{-i c}[\cosh u I(n, \sigma)-I(n+1, \sigma)] .
\end{gathered}
$$

4. Let $X(n, \sigma)$ denote

$$
a^{n-\frac{1}{2} e^{-n i c} \sqrt{2(\cosh u-\cos v)} I(n, \sigma) \cos \alpha \phi ; ~ ; ~}
$$

then, remembering that $2 a=p+\dot{q}$, we shall have

$$
\frac{\partial}{\partial p} X(n, \sigma)=A X(n, \sigma)+B X \cdot(n+1, \sigma)
$$

where $A=\frac{1}{2 a}\left(n-\frac{1}{2}\right)+\frac{1}{2 a} n\left(e^{-i v} \cosh u-1\right)+\frac{1}{4 a}\left(e^{-i x} \cosh u+1\right)$

$$
-\frac{1}{2 a}\left(n+\frac{1}{2}\right) \cdot e^{-i \mathrm{i}} \cosh u=0,
$$

and

$$
B=\left(n+\frac{1}{2}\right) \frac{1}{2 a^{2}}
$$

Similarly it may be shown that if $Y(n, \sigma)$ denote the same thing as $X(n, \sigma)$, except that $e^{\text {nio }}$ takes the place of $e^{-n i v}$, we shall find

$$
\frac{\partial}{\partial q} Y(n, \sigma)=\left(n+\frac{1}{2}\right) \cdot \frac{1}{2 a^{2}} Y(n+1, \sigma) .
$$

Next, let

$$
\begin{aligned}
& X(n, \sigma)=a^{n-\frac{1}{i}}\{U(n, \sigma)-i \nabla(n, \sigma)\}, \\
& Y(n, \sigma)=a^{n-\frac{1}{y}}\{J(n, \sigma)+i V(\dot{n}, \sigma)\},
\end{aligned}
$$

and note that

$$
\frac{\partial}{\partial a}-i \frac{\partial}{\partial b}=2 \frac{\partial}{\partial p}, \quad \frac{\partial}{\partial a}+i \frac{\partial}{\partial b}=2 \frac{\partial}{\partial q} ;
$$

then the two following relations may be deduced, viz.,

$$
\begin{aligned}
& \left(n+\frac{1}{2}\right) a^{n+\frac{1}{2}} U(n+1, \sigma)=a^{2}\left\{\frac{\partial}{\partial a} a^{n-\frac{1}{2}} U(n, \sigma)-\frac{\partial}{\partial b} a^{n-\frac{1}{2}} V(n, \sigma)\right\}, \\
& \left(n+\frac{1}{2}\right) a^{n+\frac{1}{2}} V(n+1, \sigma)=a^{2}\left\{\frac{\partial}{\partial b} a^{n-\frac{1}{2}} U(n, \sigma)+\frac{\partial}{\partial a} a^{n-\frac{1}{2}} V(n, \sigma)\right\},
\end{aligned}
$$

Here $U(n, \sigma)$ stands for the harmonic

$$
\cos n v \sqrt{2(\cosh u-\cos v)} I(n, \sigma) \cos \sigma \phi
$$

and $V(n, \sigma)$ for the same thing, with $\sin n v$ instead of $\cos n v$.
When it is necessary to express u, v, ϕ explicitls, the notation $V_{n}^{\sigma}(u v \phi), V_{n}^{o}(u v \phi)$ will also be used.
5. These results show that the successive harmonics are derivable from their predecessors by displacements similar, with some modifcations, to those usually employed in the case of the sphere. There is this difference, however, that, whereas the masses of the compound sphere are each zero, those of the compound circles, and therefore also of the distributions on the anchor ring which they represent, may not be zero. They will be zero if the expressions for the corresponding potentials contain the longitudinal factor $\cos \sigma \phi$ or $\sin \sigma \phi$, for in that case the undisplaced circle from which they all take their origin is of zero mass. If, however, $\sigma=0$, the potential ($n+\frac{1}{2}$) $a^{n-\frac{1}{2}} U(n+1,0)$ arises, as we found in $\S 4$, from displacements of two circles which produce respectively the potentials $a^{n-\frac{1}{4}} U(n, 0)$ and $a^{n-\frac{1}{2}} V(n, 0)$, the former by an enlargement of its radias, the latter by a movement of its centre along its axis. The second displacement is clearly of the same character as sphere points, and no resulting mass is thereby obtained. Bat, in the first, since the mass of the ring which
produces potential $a^{n-i} U(n, 0)$ is clearly increased to $\left(1+\frac{\delta a}{a}\right)^{n+1}$ times the former value when its radius is increased from a to $a+\delta a$, it follows that by the superposition of ring negative a and positive $a+\delta a$, there will be a residue of mass $\left(n+\frac{1}{2}\right) \frac{\delta a}{a}$ times the mass of the circle a, viz., $2 \pi a . a^{n-i}$. This residue corresponds, by the previous article, to potential

$$
\left(n+\frac{1}{2}\right) a^{n-\frac{1}{2}} U(n+1,0) \frac{\delta a}{a}
$$

Hence, the masses of the compound circles which produce the potentials $U(n, 0)$ and $U(n+1,0)$ are equal to one another, and when we pursue the argament down to the value $n=0$, are each equal to $2 \pi a$, the line density of the original circle being taken as unity.
6. The result just arrived at throws some light upon the convergence which may be expected from a series expressed in terms of harmonics of the anchor ring, and, on account of its importance, as well as for the purpose of introducing the working quantities of the subject, I shall prove it by finding the charge on the anchor ring which will produce the external harmonic $U(n, 0)$. It is first to be observed that the integral which was denoted in § 3 by $I(n, 0)$ is in point of fact $\pi P_{n-\frac{1}{2}}(\cosh u)$, i.e. the zonal spherical harmonic of fractional degree $n-\frac{1}{3}$. The pristing of the fractional suffix being inconvenient, I shall at this stage follow Mr. Hicks in representing the integral referred to by πP_{n}. We may therefore write

$$
U(n, 0) \text { or } U_{n}=\pi \cos n v \sqrt{2(\cosh u-\cos v)} P_{n}
$$

as the type of a zonal harmonic, with a similar specification for V_{n}, in which $\sin n v$ takes the place of $\cos n v$.

The harmonic U_{n} is suitable to the exterior of the ring, the corresponding inside form being given by

$$
D_{n}^{\prime}=\pi \cos n v \sqrt{2(\cosh u-\cos v)} Q_{n} \cdot\left(\frac{P_{n}}{Q_{n}}\right)_{n_{0}}
$$

where

$$
\begin{gathered}
Q_{n}=P_{n} \int_{\rho}^{\infty} \frac{d \mu}{\left(\mu^{2}-1\right) P_{n}^{2}} \\
\mu=\cosh u \text { and } \mu_{0}=\cosh u_{0}
\end{gathered}
$$

u_{0} being the parameter of the ring.

We find readily the expression for the density, viz.,

$$
\sigma_{n}=-\frac{1}{4} \cos n v \sqrt{2\left(\cosh u_{0}-\cos v\right)} \frac{1}{\sinh u_{0}} \frac{1}{Q_{n}\left(\cosh u_{0}\right)}\left(\frac{\partial u}{\partial_{s}}\right)_{u_{0}} .
$$

Now it is easy to show that

$$
-\frac{\partial u}{\partial s}=\frac{\partial v}{\partial_{s^{\prime}}}=\frac{\cosh u_{0}-\cos v}{a}
$$

$\partial s, \partial s^{\prime}$ being elements of lines normal to the surfaces $u ; v$. Also, element of surface

$$
\partial S=\rho \delta \phi \delta s^{\prime}=\frac{a^{2} \sinh u_{0}}{\left(\cosh u_{0}-\cos v\right)^{2}} \delta \phi \delta v .
$$

Hence $\quad \iint \sigma_{n} d S=2 \pi a \frac{1}{Q_{n}^{\prime}\left(u_{0}\right)} \int_{0}^{\pi} \frac{\cos n v}{\sqrt{2\left(\cosh u_{0}-\cos v\right)}} d v$

$$
=2 \pi a \quad(\S 14)
$$

7. The potential due to a circle of unit line-density with its centre on the rectilineal axis of the ring and its plane normal to that axis, may be found as follows :-Let r be the distance of a point $u_{1} v_{1} \phi_{1}$ on the circle referred to from any point $u v \phi$ on the ring; then

$$
\frac{1}{r}=\Sigma \Sigma A_{n}^{*} D_{n}^{o}(u v \phi)+\Sigma \Sigma B_{n}^{o} V_{n}^{*}(u v \phi) .
$$

The expression for the circle, since u_{1}, v_{1} are the same for every point of it, may be deduced from this by maltiplying by $2 \pi \rho$, and suppressing all the terms in $\cos \sigma \phi$ and $\sin \sigma \phi$ from $\sigma=1$ upwards.

The coefficients to be determined in the expansion of $\frac{1}{r}$ are there: fore only the following

$$
A_{0} U_{0}+A_{1} U_{1}+A_{1}^{\prime} V_{1}+\ldots
$$

Multiply both sides by $\sigma_{n} d S$, and integrate over the surface, observing that

$$
\iint \frac{\sigma_{n} d S}{r}=U_{n}\left(u_{1} v_{1}\right)
$$

and that, by § 6,

$$
\iint \sigma_{n} U_{n} d S=\pi^{3} a\left(\frac{P_{n}}{Q_{n}}\right)_{u} \int_{0}^{2 v} \cos ^{2} n \dot{v} d v
$$

Hence

$$
A_{n}=\frac{1}{\pi^{3} a} D_{n}\left(u_{1} v_{1}\right)\left(\frac{Q_{n}}{P_{n}^{\prime}}\right)_{u},
$$

except when $n=0$, and then

$$
A_{0}=\frac{1}{2 \pi^{3} a} U_{0}\left(u_{1} v_{1}\right)\left(\frac{Q_{0}}{P_{0}}\right)_{u}
$$

If Q_{n} be substituted for P_{n} in the expressions for U_{n} and V_{n}, the resulting harmonic is finite in the neighbourhood of the dipolar circle of reference. We shall denote these forms of the harmonic by \bar{U}_{n} and \bar{V}_{n} respectively. The expansion for the potential at $u v \phi$ due to the circle of the last article will then be written as follows :-

$$
\frac{\rho}{\pi^{2} a}\left\{U_{0}\left(u_{1} v_{1}\right) \bar{U}_{0}(u v)+2 \sum_{1}^{i \infty}\left[U_{n}\left(u_{1} v_{1}\right) \bar{U}(u v)+V_{n}\left(u_{1} v_{1}\right) \bar{V}_{n}(u v)\right]\right\} .
$$

Problems with Two Rings.

8. The last result, taken in conjunction with the results of §4, enables us to express the harmonics of one anchor ring in terms of those of another which is coaxal with it. For it was shown in § 4 that all the harmonics of an anchor ring could be deduced from the potential of a circle by certain rules of differentiation. We have therefore only to apply those rules to the expansion just found in order to obtain similar expansions, in terms of the harmonics of the circle a, for the series of compound circles of radius ρ, that is to say, for the complete system of harmonics pertaining to the system of anchor rings the radius of whose dipolar circle is ρ.

- In order to produce a symmetrical arrangement, we may suppose the positive directions of the rectilineal axes of the two rings to be towards one another, so that, if A and B be the two rings, the displacements of A are towards B, and those of B towards A. When this arrangement is turned round, so that A and B interchange planes, the relative arrangement of harmonics will then be the same as before. .

9. Let $W_{0}, W_{1} w_{1}, W_{2} \psi_{9}$, \&c. represent the harmonics of B, referred to its dipolar circle and expressed in térms of its own dipolar system, then, § 9,

$$
\begin{aligned}
W_{0} & \left.=\frac{\rho}{\pi^{2} a}\left\{U_{0}\left(u_{1} v_{1}\right) \bar{U}_{0}(u v)^{2}\right)+2 U_{1}\left(u_{1} \dot{v}_{1}\right) \bar{U}_{1}(u v)+\& c .\right\} \\
& =\frac{1}{\pi^{2}}\left({ }_{0} a_{0} \bar{U}_{0}+{ }_{0} a_{1} \bar{U}_{1}+{ }_{0} \bar{U}_{1} \bar{V}_{1}+\ldots\right), \text { say }
\end{aligned}
$$

where

$$
\begin{gathered}
{ }_{0} a_{0}=\frac{\rho}{a} U_{0}\left(u_{1} v_{1}\right), \\
{ }_{0} u_{1}=\frac{2 \rho}{a} U_{1}\left(u_{1} v_{1}\right), \\
\beta_{1}=\frac{2 \rho}{a} V_{1}\left(u_{1} v_{1}\right), \\
\& c .,
\end{gathered}
$$

and \bar{U}_{n} is put, for brevity, instead of $\bar{U}_{n}(u v)$, \&cc. All the coefficients which have zero for the first sullix can be readily expressed in terms of the radii ρ and a and the distance z between the planes of the circles. It may, in fact, be shown that
\dot{w} were

$$
\begin{gathered}
U_{n}\left(u_{1} v_{1}\right)+i V_{n}\left(u_{1} v_{1}\right)=2 a\left(\rho^{2}+z^{2}-a^{2}+i 2 a z\right)^{n} J_{n} \\
J_{n}=\int_{0}^{\pi}-\frac{l d \theta}{\left(\rho^{2}+z^{2}+a^{2}-2 a \rho \cos \theta\right)^{n+i}} .
\end{gathered}
$$

For, since

$$
e^{n \mp i v}=\frac{\rho \pm i z+a}{\rho \pm i z-a},
$$

we have

$$
e^{u}=r_{1} / r
$$

where

$$
r^{2}=(\rho-a)^{2}+z^{2}, \quad r_{1}^{2}=(\rho+a)^{2}+z^{2}
$$

and

$$
e^{2 i o}=\frac{\rho^{2}+z^{3}-a^{2}+i 2 a z}{\rho^{2}+z^{2}-l^{2}-i 2 a z} ;
$$

therefore

$$
\sinh u=\frac{2 u \rho}{m_{1}} .
$$

and $\quad \cos n v=\frac{1}{2} \frac{\left(\rho^{2}+z^{2}-a^{2}+i 2 a z\right)^{n}+\left(\rho^{2}+z^{2}-a^{3}-i 2 a z\right)^{i n}}{\left(r r_{1}\right)^{n}}$.
Hence

$$
\begin{aligned}
U \underline{n}\left(u_{1} v_{1}\right) & =\frac{\cos n v^{\dot{0}}}{\rho} \frac{(2 a \rho)^{n+1}}{\sinh ^{n} u} \int_{0}^{\pi} \frac{d \theta}{\left(\rho^{2}+z^{2}+\dot{a}^{9}-2 a \rho \cos \theta\right)^{n+1}} \\
& =a\left\{\left(\rho^{2}+z^{2}-a^{8}+i 2 a z\right)^{n}+\left(\rho^{2}+z^{3}-a^{4}-i 2 a z\right)^{n}\right\}: J_{n} ;
\end{aligned}
$$

similarly,

$$
V_{n}\left(u_{1} v_{1}\right)=i a\left\{\left(\rho^{z}+z^{3}-a_{1}^{3}-i 2 a z\right)^{n}-\left(\rho^{2}+z^{2}-a^{2}+i 2 a z\right)^{n}\right\} J_{n} .
$$

10. The next step is to determine the expansions of ' \dot{W}_{1} and ${ }^{\prime} \dot{U}_{i}$ ': If we put

$$
\begin{aligned}
& \pi^{2} W_{1}={ }_{1} a_{0} \bar{U}_{0}+{ }_{1} a_{1} \bar{U}_{1}+{ }_{1} \beta_{1} \bar{V}_{1}+\& c . \\
& \pi^{2} \mathscr{U}_{1}={ }_{1} \gamma_{0} \bar{U}_{0}+{ }_{1} \gamma_{1} \bar{U}_{1}+{ }_{1} \delta_{1} \bar{V}_{1}+\&<c .
\end{aligned}
$$

$$
\frac{1}{a}\left(2 \rho \frac{\partial}{\partial \rho}-1\right) \rho\left\{U_{0}\left(u_{1} v_{1}\right), 2 U_{1}\left(u_{1} v_{1}\right), 2 V_{1}\left(u_{1} v_{1}\right), \ldots\right\} ;
$$

and $1_{1}, 1 \gamma_{1}, \delta_{1}, \& c$. respectively

$$
-\frac{2 \rho^{2}}{a} \frac{\partial}{\partial z}\left\{U_{0}\left(u_{1} v_{1}\right), 2 U_{1}\left(u_{1} v_{1}\right), 2 V_{1}\left(u_{1} v_{1}\right), \ldots\right\} .
$$

11. To show, howevor, how the coefficients are formed in the general case, it should be noticed that the equations of $\S 4$ may be thrown into the form

$$
(2 n+1)\left(U_{n+1}+i \nabla_{n+1}\right)=\left(2 u \frac{\partial}{\partial a}+2 n-1+i 2 a \frac{\partial}{\partial b}\right)\left(U_{n}+i \nabla_{n}\right) .
$$

If the harmonics be those at the point ρ, z, ϕ, referred to the circle A, it is clear that we may write $-\frac{\partial}{\partial z}$ for $\frac{\partial}{\partial b}$ in this relation. Next, putting Ω for the operator $2 a \frac{\partial}{\partial a}-i 2 a \frac{\partial}{\partial z}$, and Ω^{\prime} for the same operator with the sign of i clanged, we shall have

$$
\begin{aligned}
U_{n}+i \nabla_{n} & =\frac{(\Omega+2 n-3)(\Omega+2 n-5) \ldots(\Omega-1)}{(2 n-1)(2 n-3) \ldots 1} U_{0} \\
& =f_{n}(\Omega) 2 a J_{0}, \text { sappose. }
\end{aligned}
$$

Next, as regards the harmonics W, as the displacements of B are; towards A, the sign of $\frac{\partial}{\partial b}$ in $\S 4$ must be changed, and, since b may then be put equal to z, we have in like manuer

$$
W_{n}+i \not \mathcal{U}_{n}=f_{n}(\mathbb{w}) W_{0}
$$

where wis put for $2 \rho \frac{\partial}{\partial \rho}-i 2 \rho \frac{\partial}{\partial z}$, and w' may be taken to reprosent the same operator with the sign of i changed.

If now

$$
\begin{aligned}
& W_{n}=\Sigma_{n} a_{r} \bar{U}_{r}+\Sigma_{n} \beta_{r} \bar{V}_{r}, \\
& w_{n}=\Sigma_{n} \gamma_{r} \bar{U}_{r}+\Sigma_{n} \delta_{r} \bar{V}_{r},
\end{aligned}
$$

we shall have

$$
\begin{aligned}
& { }_{n} a_{r}+i_{n} \gamma_{r}=f_{n}(\sigma) \stackrel{2 \rho}{a} U_{r}\left(u_{1} v_{1}\right), \\
& { }_{n} \beta_{r}+i_{n} \delta_{r}=f_{n}(\sigma) \stackrel{2 \rho}{\stackrel{2 \rho}{n}} V_{r}\left(n_{1} v_{1}\right),
\end{aligned}
$$

except when $r=0$, when the 2 on the right-hand side mist be omitted.
12. The equations just written down determine the coefficients completely. As a matter of convenience, however, it may happon that it is easier to find, for instance, ${ }_{n} a_{r}$ from ${ }_{n} a_{0}$ than from ${ }_{0} a_{r}$.

The coofficient ${ }^{\prime} a_{0}$ is itself to be found from

$$
\frac{1}{2}\left\{f_{n}(\varpi)+f_{n}\left(\varpi^{\prime}\right)\right\} \frac{\rho}{a} \sigma_{0}
$$

i.e.

$$
\left\{f_{n}(\varpi)+f_{n}\left(\varpi^{\prime}\right)\right\} \rho J_{0} .
$$

Now J_{0} is a symmetrical function of ρ and a, and the operation to be performed is precisely the same as that for finding ${ }_{0} a_{n}$, except that ρ and a are everywhere interchanged. Hence, if for a minute we denote the expression for ${ }_{0} a_{n}$, found above, by $F(a, \rho, z)$, that for ${ }_{n} a_{0}$ will be $F(\rho, a, z)$. Now

$$
\begin{aligned}
{ }_{n} \alpha_{r} & =\left\{f_{n}(\varpi)+f_{n}\left(\varpi^{\prime}\right)\right\} \frac{\rho}{a} U_{r}\left(u_{1} v_{1}\right) \\
& =\left\{f_{n}(\varpi)+f_{n}\left(\varpi^{\prime}\right)\right\} \frac{\rho}{a}\left\{f_{r}(\Omega)+f_{r}\left(\Omega^{\prime}\right)\right\} a J_{0} \\
& =\frac{1}{a}\left\{f_{r}(\Omega)+f_{r}\left(\Omega^{\prime}\right)\right\} a\left\{f_{n}(\varpi)+f_{n}\left(\varpi^{\prime}\right)\right\} \rho J_{0} \\
& =\frac{1}{a}\left\{f_{r}(\Omega)+f_{r}\left(\Omega^{\prime}\right)\right\} a_{n} a_{0} .
\end{aligned}
$$

13. The integral J_{n}, which constantly appears in the coefficients, is only Ω modification of $P_{\cdot n}$, and both P_{n} and Q_{n}, or their first differential coofficients, occur in the equations expressing the boundary conditions in any physical problem, connected with the ring, to which potential functions are applicable. It is therefore important to be able to ovaluate these integrals. Mi. Hicks has shown how to express them in terms of elliptic integrals; in what follows it is shown how they may be expressed in series, a form which seems to possess advantages when the section of the ring is small.

$$
\text { Ivaluation of the Integrals } P_{n}, Q_{n}
$$

The intogral $I(n, \sigma)$, which appeared in § 3 , is one factor of a tesseral harmonic, but it will be sufficiont at present to confine our
attention to zonal forms. We had .

$$
\begin{equation*}
\pi P_{n}=\int_{0}^{\pi} \frac{d \theta}{(\cosh u-\sinh u \cos \theta)^{n+1}} \tag{1}
\end{equation*}
$$

which is readily thrown into the form

$$
\begin{equation*}
2 e^{-(n+3) u} \int_{0}^{3 \times} \frac{d \theta}{\left\{1-\left(1-e^{-2 n}\right) \sin ^{3} \theta\right\}^{n+1}} \tag{2}
\end{equation*}
$$

14. The corresponding form for Q_{n} will now be found. It is to be obsorved that wo have alroady defined $Q_{n}, \S 6$, but another form can be found for it from the external zonal harmonic of a prolate ellipsoid, and wo shall, in fact, show afterwards that the two are connected by the relation

$$
\begin{equation*}
Q_{n}=P_{n} \int_{\mu}^{\infty} \frac{d \mu}{\left(\mu^{2}-1\right) P_{n}^{3}}=\frac{1}{2^{n+1}} \int_{-1}^{1} \frac{\left(1-v^{2}\right)^{n-1}}{(\mu-v)^{n+1}} \cdot d v \tag{3}
\end{equation*}
$$

where $\mu=\cosh u$.
From the second of these we at once pass to
and then to

$$
\frac{(-1)^{n}}{1.3 .5 \ldots(2 n-1)} \int_{-1}^{1} \frac{\frac{\partial^{n}}{\partial v}\left(1-v^{2}\right)^{n-1} d v}{\sqrt{2(\mu-v)}}
$$

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\cos n \theta}{\sqrt{2(\cosh \imath-\cos \theta)}} d \theta . \tag{4}
\end{equation*}
$$

\qquad
From (3) we also get

$$
\begin{equation*}
2^{-n-1} \int_{0}^{r} \frac{\sin ^{2 n} \theta}{(\cosh t u-\cos \theta)^{n+1}} d \theta \tag{5}
\end{equation*}
$$

and a still more useful exprossion for Q_{u} may be obtained by employing a transformation similar to Landen's, viz.,

$$
\sin (\psi-\theta)=e^{-t} \sin \psi
$$

We thus find, on reduction,

$$
\begin{equation*}
Q_{n}=e^{-(n+\xi) u} \int_{0}^{*} \frac{\sin ^{2 n} \psi}{\sqrt{1-e^{-2 i} \sin ^{2} \psi}} d \psi . \tag{6}
\end{equation*}
$$

This corresponds to the expression (2), § 13, for ' P_{n}, and furnishes a convenient expansion in powers of e^{-1}.
*15. I slinll now find the expansion of P_{n} in powers of $e^{\prime \prime}$ and e^{-1}.

[^0]If y be put for Q_{n} / π, which may be written

$$
e^{-2 u}\left(a_{n} e^{-n u}+a_{n+2} e^{-(n+2) u}+\ldots\right)
$$

where a_{n}, a_{n+2}, \&c. are known coefficients, then y satisfios the differential equation

$$
\frac{d^{2} y}{d u^{3}}+\operatorname{coth} u \frac{d y}{d u}-\left(u^{2}-\frac{1}{4}\right) y=0
$$

and, after Cayley (Elliptic Functions, §77), there exists another' solution of the form

$$
(\log 4+u) y+z
$$

where z satisfies tho differential equation

$$
\begin{align*}
\left(e^{n-}-e^{-u}\right) \frac{d^{3} z}{d u^{3}} & +\left(e^{n}+e^{-u}\right) \frac{d z}{d u}-\left(n^{2}-\frac{1}{4}\right)\left(e^{u}-e^{-u}\right) z \\
& =-2\left(e^{u n}-e^{-u}\right) \frac{d y}{d u}-\left(e^{u}+e^{-u}\right) y \cdot \ldots \tag{1}\\
& =-e^{-b u}\left(b_{n-1} e^{-(n-1) u}+b_{n+1} e^{-(n+1) u}+\ldots\right) \text { suppose }
\end{align*}
$$

where b_{n-1}, b_{n+1}, \&c. are known cocfficients.

$$
\text { Let } \begin{aligned}
z=e^{-d "}\left[A_{n} e^{n u}+A_{n-2} e^{(n-2) u}\right. & +\ldots+\dot{A}_{n-2 r} e^{(n-2 r) u}+\ldots \\
& \left.+B_{n-2 r} e^{-(n-2 r)}+\ldots+B_{n+2 \varepsilon} e^{-(n+2 s) u}+\ldots\right)
\end{aligned}
$$

If n be even, there will be a term A_{0}, or \mathcal{B}_{0}, which means the same. thing; if n be odd, there will be a term $\Lambda_{1} e^{n}$ and a term $B_{1} e^{-\prime \prime}$. Tho values of r may range from $\frac{n}{2}$ (n even) or $\frac{n-1}{2}$. $(n$ odd) to 0 , and s from 1 to ∞.

Entering the value of z in the differential equation, we find
and

$$
\begin{align*}
& \Lambda_{n-2 r+2}=A_{n-2 r} \frac{4 r(n-r)}{(2 r-1)(2 n-2 r+1)} \tag{2}\\
& B_{n-2 r-2}=B_{n-2 r} \frac{4 r(n-r)}{(2 r+1)(2 n-2 r-1)} \tag{3}
\end{align*}
$$

One or other of these equations holds from the top of the scries Λ_{n} down to B_{n-4} inclusive. After that we begin to take account of the second side of equation (1). It will be found that

$$
\begin{equation*}
B_{n-2}=-\frac{b_{n-1}}{2 n-1}=\frac{2 n}{2 n-1} a_{n} \tag{4}
\end{equation*}
$$

but aftor this point we shall have equations of the form

$$
(2 s-1)(2 n+2 s-1) B_{n+2 s-2}-4 s(n+s) B_{n+2 s}=b_{n+2 s-1}
$$

which it" will be impossible to solve unless wo can assume the valuo of one B of the system to be known. To get over this difficulty, I
suppose B_{n} temporarily withdrawn, and all the coefficients after it determined by the equations (5). We may then restore B_{n} in the form of π term $B_{n} y$ in the expression for z, whero y is the solation referred to at the boginning of this article. All tho coefficients in z are now found from the equations (5). solved successively, with the exception of B_{n}, and this may be determined by taking $k^{3}=k_{1}^{2}=\frac{1}{2}$, calculating independently the corresponding values of P_{n}, Q_{n} for this value of l^{2}, and entering these values in the equation

$$
\pi P_{n}=\left(B_{n}+\log 4+u\right) Q_{n}+\pi z
$$

where z does not now include B_{n}. The term B_{n} may, however, be oasily found in the cases $n=1,2$, by differentiation of $F(k)$ with regard to k^{9}.

When n is evẹn, (2) gives

$$
A_{n}=A_{0} 2^{2 n-1} \frac{n!n!}{(2 n)!}
$$

and

$$
B_{0}=B_{n-2} \frac{2^{n-1}(n-1)!}{1.3 \ldots(2 n-3)}=\frac{2^{2 n} n!n!}{n(2 n)!} a_{n}=\frac{1}{n} ;
$$

therefore

$$
A_{n}=2^{2 n-1} \frac{n!(n-1)!}{(2 n)!}
$$

The same expression holds when n is odd, the transition from the $\Lambda^{\prime} s$ to the B 's being effected by the equation

$$
n^{2} A_{1}=\left(n^{8}-1\right) B_{1}
$$

except when $n=1$.
16. When n is large, the first term is the most important in the expansion; the series will therefore conveniently proceed from that term.

If we put $e^{-u}=k_{1}$ and $h^{9}=1-k_{1}^{2}$, then, § 14 , $\pi P_{n}=2 k_{1}^{n+k} F_{n}(k)$,
$F_{n}(k)$ being writien for

$$
\begin{aligned}
& \int_{0}^{1 \pi} \frac{d \theta}{\left(1-k^{3} \sin ^{2} \theta\right)^{n+1}}, \\
& \text { and } \begin{aligned}
& F_{n}^{\prime}(k)=2^{2 n-1} \frac{n!(n-1)!}{(2 n)!} k_{1}^{-2 n} \cdot\{1+\frac{1(2 n-1)}{4.1(n-1)} k_{1}^{2} \\
&\left.+\frac{1.3(2 n-1)(2 n-3)}{4^{2} \cdot 1.2(n-1)(n-2)} k_{1}^{4}+\& c .\right\} \\
&+\left(B_{n}+\log \frac{4}{k_{1}}\right) \frac{(2 n)!}{2^{2 n} n!n!}\left\{1+\frac{2 n+1}{n+1} k_{1}^{2}+\ldots\right\},
\end{aligned}
\end{aligned}
$$

where B_{n} is to be determined by the method of $\S 15$.
17. T_{n}, being $\quad=\frac{1}{r^{2 n+1}} 2 \int_{0}^{\frac{1}{2}} \frac{d \theta}{\left(1-k^{2} \sin ^{2} \theta\right)^{n+1}}$,
where

$$
k_{1}^{2}=1-k^{2}=r^{2} / r_{1}^{2},
$$

is also found by this expansion. A few torms of the enrlier values of J_{n}, in which B_{n} appears at an early stage of tho scries, mny bo obtained by the method of differentiation proviously reforred to. The serics are arranged in powers of r / r_{1}, supposed small :-

$$
\begin{aligned}
& J_{0}=\frac{2}{r_{1}} \log \frac{4 r_{1}}{r}+\frac{1}{2} \frac{r^{2}}{r_{1}^{3}}\left(\operatorname{lng} \frac{4 r_{1}}{r}-1\right)+\& c . \\
& J_{1}=\frac{2}{r_{1} r^{2}}+\frac{1}{r_{1}^{3}}\left(\log \frac{4 r_{1}}{r}-\frac{1}{2}\right)+\& c . \\
& J_{3}=\frac{4}{3 r_{1} r^{4}}+\frac{1}{r_{1}^{3} r^{3}}+\frac{3}{4} \frac{1}{r_{1}^{6}}\left(\log \frac{4 r_{1}}{r}-\frac{7}{12}\right) .
\end{aligned}
$$

18. Tho expansion for P_{n} enables us to justify the assumption mado in § 14. For let

$$
P_{n} \int_{\mu}^{\infty} \frac{d \mu}{\left(\mu^{2}-1\right) P_{n}^{2}}=A e^{-(n+1)} \int_{0}^{r} \frac{\sin ^{2 n} \psi}{\sqrt{1-e^{-2 n}} \frac{\sin ^{8} \psi}{\psi}} d \psi,
$$

whero A is a constant to bo determined. If wo suppose u to bo so largo that the first term of P_{n} noed only be considerod, and also that $2 \sinh u$ may bo put equal to $e^{\prime \prime}$, then we shall have

$$
\Lambda=1,
$$

thus proving the equality of the two expressions for Q_{n} assnmed in § 14 .

Spherc and Ring.
19. Λ similar process of solation may bo applied when, instend of the ring B, we substitute n sphere with its centre on the rectilineal axis of the ring A.

Roforring to the figure, wo suppose σ, D to be the inverted positions of Λ, B, the oxtremities of the diameter of tho dipolar axis of the ring. Let the angle subtended by this diametor at the centre O be denoted by $2 a$, and let Q be any point inside the spheres, q its voL. XXIV.-No. 474.
invorted position. Then, by similar trianglc s ,

$$
\frac{C q}{O q}=\frac{A Q}{A O}, \text { and } \frac{D q}{O q}=\frac{B Q}{B O}
$$

thorefore

$$
\frac{C q}{D q}=\frac{A Q}{B Q} .
$$

Hence, if u^{\prime}, v^{\prime} be the dipolar coordinates of q referred to $O D$, while those of Q are u, v referred to $A B$, we have

$$
u^{\prime}=u .
$$

Also, from the geometry of the figure, we readily find that, if q is below $C D$,

$$
\begin{aligned}
& v^{\prime}=v-2 a, \\
& v^{\prime}=2 a-v .
\end{aligned}
$$

and, if above,
Morcover, $O Q^{2}=\rho^{2}+(c \cot a-z)^{2}=\frac{c^{2}}{\sin ^{2} a} \frac{\cosh u-\cos (v-2 a)}{\cosh u-\cos v}$.
Hence any harmonic, say

$$
\pi \cos m v \sqrt{2(\cosh u-\cos v)} P_{n}(\cosh u)
$$

becomes, by the rulo of inversion, if q is below $O D$,

$$
\begin{array}{r}
\pi \cos m\left(v_{1}+2 a\right) \sqrt{2\left\{\cosh u_{1}-\cos \left(v_{1}+2 a\right)\right\}} \\
\times \frac{P_{n}\left(\cosh u_{1}\right)}{l-\frac{c}{l \sin a} \sqrt{\frac{\cosh u_{1}-\cos v_{1}}{\cosh u_{1}-\cos \left(v_{1}+2 a\right)}},} \\
\text { viz., } \quad \frac{c}{\text { lisin } a} \cos n\left(v^{\prime}+2 a\right) \sqrt{2\left(\cosh u_{1}-\cos v_{1}\right)} P_{n}\left(\cosh u_{1}\right) ;
\end{array}
$$

nad, if q is nhove $C D$, the same expression with $2 a-v_{1}$ written instead of $v^{\prime}+2 a$.

This result will greatly simplify tho electrostatic problom for a sphere and ring.

The following presents to the Library were received during the recess:-
" Viertoljahrschrift dor Naturforschendon Gesellschaft in Zurich," 38 er Jahrgang, Heft 1 and 2; 1893.
"Proceedings of tho Edinburgh Mathematical Society," Vol. xı.; Session 1892-3.
"Journal of the Institutn of Actuaries," Vol. xxx., Pt. 6, July, 1893; Vol. xxxi., Pt. 1, October, 1893.
"Proccedings of the Royal Secicty," Vol. uill, No. 322-325; Vol. niv., No. 326.
"Beiblätter zu den Annalen der Physik und Chemic," Band xvir., Sticke 5-8; Leipzig, 1893.
"Nyt Tidsskrift for Mathematik," A. Fjerdo Aargang, No. 3; B. Fjerdo Aargang, No. 2; Copenhagen, 1893.
" Berichte über die Verhandlungen der Küniglich Sächsischon Gesellschaft der Wissonschaften zu Leipzig," Mathematisch-Physische Classe, 1893, 2 and 3.
"Mémoires de la Société des Sciences Physiques et Naturelles de Bordeaux," 4^{mc} Serie, Tomes I. and mit, $1^{\text {tre }}$ cahier.
"Memoirs and Proceedings of tho Manchester Literary and Philosophical Society," Vol. viu, Nos. 2 and 3; 1892-3.
" Nieum Archiof voor Wiskunde," Dcel xx., Stuk 2; Amsterdam, 1893.
"Archives Néerlandaises des Sciences Exactes et Naturelles," Tome xxvir, Livraisons 1 and 2; Harlom, 1893.
"Jornal de Sciencias Mathematicne e Astronomicas," Vol. xı., No. 4; Coimbra, 1893.
"Bulletin de la Société Mathématique do France," Tome xxi., Nos. 4, 5, 6.
"Bulletin of the New York Mathematical Society," Vol. in., Nos. 9 and 10 ; 1893.
"Bulletin des Sciences Mathématiques," Tome xvir., Avril, Mai, Juin, et Juillet; Paris, 1893.
"Mathematical Questions, with thoir Solutions," edited by W. J. C. Miller, Vol. six. ; London, 1893.
" Treatiso on the Kinctic Theory of Gases," by H. W. Watson, 2nd edition, 8vo; Oxford, 1893.
"Trentiso on tho Mathematical Theory of Elasticity," by A. F. H. Love, Vol. in., R. 8 vo ; Cambridge, 1893.
"Ueber cinigo Eigenschaften der Dessel'schen Function erster Art, insbesondero für ein grosses Argument," von Dr. J. II. Graf. (OCfprint from " Zeitselrift für Mathematik und Physik," nus dom 2 Hefte des 38 Jahrgangs.)
" Ueber dic Addition und Subtraction der Argumente hoi Bessel'schon Functionen, nebst einer Anwendung," von Dr. J. H. Graf. (Offprint from "Math. Annalen," Vol. xliII., pp. 136-44.)
"Wiskundigo Opgaven met de Oplossingen," Zesde Deel, Stuk 1; Amsterdam, 1893.
"Revue Semestricllo des Publications Mathématiques," Tome i., $2^{\text {eme }}$ partie; Amsterdam, 1893.
"Observations Pluviométriques et Thermomótriques dans lo Départoment de la Girondo, do Juin, 1891, a Mai, 1892," par Mons. G. Rayot ; Bordeaux, 1892.
"Prace Matematyczno-Fizyczne," Tom. ıv.; Warsaw, 1893.
"Sphärische Trigonometric, orthogonalo Substitutionov, und elliptische Funotionen," von E. Study ; Lecipzig, 1893.

Mons. M. d'Ocagno.-"Sur la détermination géométrique du point lo plus proballe donné par un systime de droitcs non convergontes." (Extrait du "Journal do l'Ecolo Polytechnique," s.xin.e cahior, 1893.)
"Jahrbuch iiber dio lortschritto der Mathomatik," Bd. xxir., Heft 3; Berlin, 1893.
"Journal of tho Japan College of Scienco," Vol. v., Part 4; Vol. vi., Part 2; Tokyo, 1893.
"Sitzungsberichte der Küniglich-Prcussischen Akademio der Wissenschaften zu Borlin," Parts 1-38, 1893.
"Atti della Realo Accalemin dei Lincei," $b^{\text {n }}$ Scrio, Rondiconti, Vol. ir., Fasc. 1, 2, 4, 5, 6, 8, 0, 10, 11, 12 : Roma, 1893.
"Atti delln Realo Accademin dei Lincei," Anno ccxc., Rendiconti; Romn, 1893.
"Journal für die reine und angewandte Mnthematik," Bd. cxir., Hefto 1-4.
" Annals of Mathematics," Vol. vir., No. 1 ; May, 1803 ; University of Virginia.
"Annales de la Faculté des Sciencos de Toulouse," 'Tomo vid., Année 1893, $2^{\text {me }}$ Fasc.
"Annali di Matcmaticn," Tomo xxi., Fasc. 2, 3 ; Milano, 1893.
" Educational Times," July to Octoher, 1893.
"Indian Eugincering," Vol. xur., Nos. 20-25, and Vol. xiv., Nos. 1-12.
"Rondiconti dell' Accademia dello Scienze Fisicho e Matomaticho di Napoli," Scrio 2, Vol. rit., Fasc. 5-7 ; Napoli.
"Atti della Realo Aceademia dello Scienze Fisiche o Matomatiche di Napoli," Serie 2, Vol. v., 1893.
"Electrical Engincer," No. 24, Vol. xı.; Junc, 1893.
" Annuaire do l'Académie Royalo do Bolgiquo," 1802-3, Bruxelles.
"Bulletin do l'Académio Royalo do Belgique," 1891-2, Parts 1, 2, 1893, Bruxelles.

[^0]: * Since this was written, Mr. A: B. Busset, in n paper on "Toroidal Functions," in the Amoricen Jourual of Miuthematics, has given tho expansion of P_{n}. The work in the text is, however, retained, as the method is somewhat differont.

