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1. In the application of expansions to definite integrals, either the
whole integrand or one of its factors is replaced by an infinite series. The
new infinite series, now constituted by the integrand, is then integrated
term-by-term. The special case in which the integrand consists of a
single function will not be discussed here ; the problem of determining
whether the substitution is in that case allowable is merely the general
problem of the term-by-term integration of infinite series. In the more
general case, the series which we substitute for one of the factors may
converge everywhere to that factor as sum, or it may do so except at a set
of content zero, or it may not have that function as sum, or even converge
other than at exceptional points. We have an example of the last-named
case when we substitute for one of the factors its series of Fourier; if the
factor in question is a function of a general character, its Fourier series
will not converge at all. On the other hand, the series got by integrating
the Fourier series term-by-term always converges ; it converges, in fact,
uniformly to one of the integrals of the function associated with the
original series. The example given by the application of the Fourier
expansion suggests the general problem. Let the integraud of the in-
tegral to be considered be f{x)g(x). If fix) can be expanded in a con-
verging series, may we integrate this series when multiplied term-by-term
by gix) ? If we cannot conveniently replace f(x) by such a series, expand
its integral F(x) and differentiate the series so obtained term-by-term.
Can we then integrate term-by-term the series got by multiplying term-
by-term this last series by g(x), and, if so, shall we in this way obtain

\ fix) gix)dx ? If Fix) cannot be conveniently expanded, and its integral

can, take the series representing this latter integral and differentiate it
twice. Can the new series, when multiplied term-by-term by gix), be

integrated term-by-term, and is the sum in this case j fix) gix)dx ?
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This problem is of great practical importance, and its solution enables
us to deal in a systematic manner with integrals whose treatment by
ordinary methods involves special artifices.

In the case when f(x) itself is capable of expansion the problem has
already received partial solution, but, for completeness, I have given here;
with indications of proof, the enunciations of the corresponding theorems,
as well as the enunciations and detailed proofs of those that are new. I
denote by sn(x) the n-th partial summation of what I call the original
series; this is the series representing /(*), when such a series exists,
and otherwise is the series got by differentiating term-by-term a series

giving the value of f f(x)dx or F{x); or, more generally, is the series got

by differentiating p times a series giving the p-th integral of f(x). With
this understanding, the process in question is always allowable as a
means of evaluating the integral under the following circumstances:—

(i) If sn(x) is a monotone function of x, and the succession sn(x) is
a sequence,* while g(x) is any function possessing a Harnack-Lebesgue
integral.

(ii) If sn(x) converges boundedlyt as n increases, while g{x) may be
any function possessing a Lebesgue integral, proper or improper.

(iii) If sn(x) converges, not necessarily boundedly, and j \sn{x)fdx is

a bounded function of (x, n), while g(x) is any function whose square has
a Lebesgue integral, proper or improper.

(iv) If the functions |s»(«)| form an integrable sequence, while g (x) is
any bounded function.

(v) If J sn(x)dx converges to \f(x)dx, and J \sn(x)\dx is bounded,
while g(x) is any bounded function possessing only discontinuities of the
first kind.

(vi) If \sn(x)dx converges boundedly to \f{x)dx, while g(x) is any

function of bounded variation.

* For brevity we have not usually distinguished between a sequence and a succession
which converges except at a set of content zero. For the same reason I have not specially
called attention to the fact that the functions which occur in the theorems or in the processes
may, under certain circumstances, only exist at a set complementary to a set of content zero.

| We say that a sequence converges boundedly if sn(x) is a bounded function of the
ensemble (z, n), so that there are no points of non-uniform convergence with infinite measure;
in other words, that the peak and chasm functions are finite. The boundedness must, of
course, be without exception, even when non-convergence is allowed at a set of points of
content zero, in accordance with the previous footnote.
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(vii) If at the limits of integration g{x) = 0 or | sn(x)dx converges to

the integral F(x), and the repeated integral ^dx^sn(x)dx converges every-

where to the integral of F(x), while g(x) is any function which possesses

a differential coefficient of bounded variation ; and so on.

In all these cases we notice that the convergence of the new series
when integrated is a bounded convergence, and it is under circumstancea
which are specified—uniform convergence. The theorems are also true,
with, in certain cases, limitations which are given, when the range of
integration is infinite.

I have purposely, in the present account, kept m}rself aloof from
questions connected with the various methods in existence of attaching
a conventional sum to a non-convergent series. To have done otherwise
would have taken me too far afield. I hope none the less that the results
obtained will be found interesting and useful, as well as systematic.

I have not thought it necessary to give more than a couple of examples ;
those selected will, perhaps, sufficiently serve the purpose of justifying the:
discussion here carried out. The first of these examples has been recently
given* as illustrating the existence of one of " a number of compara-
tively simple cases that present themselves in practice, and do not come
under any really general theorem." The second, almost equally simple,
example has been specially constructed with the view of illustrating the
final theorem of the present paper.

2. In the first four theorems which follow, it is immaterial whether we
suppose the given function fix) to have itself been expanded in a series
which converges everywhere except at most at a set of content zero, whose
partial summation is s,,(x), or whether we suppose sn{x) obtained by
differentiating the corresponding partial summation Sn(x) of the series
which represents an indefinite integral of fix). In the latter case we
must, of course, suppose that Snix) is an integral, so that it is the integral
of its differential coefficient snix). In fact, in all four theorems, snix) is.
seen to trace out an integrable sequence.

Calling its limiting function six), we have therefore

\s(x)dx = Lt \snix)dx = Lt Sn(x) = \f(x)dx.

Hence six) and fix) differ at most at a set of content zero, so that
fix) may, under the sign of integration, replace the limit of sn{x) when
n increases indefinitely.

• T. J. I 'A. Bromwich, Introduction to the Theory of Infinite Series (1908), p. 451.

SKB. 2. VOL. 9. NO. 1096. 2 H
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8. THEOREM 1.—If the partial summations sn{x) are monotone ascend-

ing (or descending) functions of x and form a convergent sequence* and

g(x) possesses a Harnack-Lebesgue integral, the sequence of Harnack-

Lebesgue^ integrals \ sn(x)g(x)dx converges to \ f(x)g(x)dx, and the

convergence is uniform when the interval is finite. The convergence still
holds when the interval is infinite, provided only the sequence is bounded
at infinity. J

We may evidently assume slv(x) to be monotone decreasing, since in
the alternative case we only have to change the variable from x to — x.
The upper bound of the sequence sn(x) is then the upper bound of sn(c),
and is therefore either the value of sn(c) for some integer n or the limiting
value s(c); in either case it is finite. Similarly the lower bound of the
sequence is finite.

Again, adding a finite constant A, we get a bounded sequence of mono-
tone decreasing positive functions. It follows then, by a theorem proved
recently by myself in the Messenger of Mathematics,^ that the functions
g(x) \A-t-sn(x)\ form a sequence which is integrable term-by-term in the
Harnack-Lebesgue manner. That is

Lt \'g(x){A+8*{x)}dx = [ g(x)\A+f(x)\dx,

whence also Lt \ g(x)sn(x)dx = \ g(x)f(x)dx,
n=oo Je Je

where f(x) has been written for the limiting function of su(x) under the
integral sign in accordance with § 2.

Thus the convergence of sn(x) g(x)dx to its limit f(x)g(x)dx has
Jc Jc

been proved. In order to discuss the uniformity of the convergence, it
will be convenient to re-prove the theorem quoted from the Messenger.
Instead of employing Moore's conditions, I shall use the theoremjj relating
to the uniformity of approach of the defining sequence of integrals to the
Harnack integral, defined as the limit of that sequence.

* See first footnote above. There may be oscillation, but it must be finite.
f That these are Harnack-Lebesgue integrals follows from the conditions of the problem.

See E. W. Hobson, "The Second Mean-Value Theorem in the Integral Calculus," Proc.
London Math. Soc., Ser. 2, Vol. 7 (1908), p. 21.

* It is, of course, assumed in this case that g (x) has a Harnack-Lebesgue integral in the
whole infinite interval, that is, that the integral over a finite interval has a unique finite limit
as the upper limit of integration moves off to infinity.

§ "On a Theorem in the Harnack Integration of Series" (1910), Messenger of Mathe-
matics, pp. 101-106.

|| See Hobson's Theory of Functions of a Real Variable, p. 383.
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Assuming any positive quantity e, the theorem asserts that we can
find a set of intervals d, surrounding the Harnack points, such that, if
gd denotes the function which is equal to g, except in. the intervals d,
where it is zero, then . *z

I ig—gd)dx < e,
\ Jo

for all values of z in the range of integration. Hence, by the Second
Theorem of the Mean,

esn(c) (1)sn(g—gd)dx

for all values of z. Here it has'been supposed, for convenience, that the
functions .<?„ are positive and monotone decreasing.

Similarly,
f(x)(g—gd)dx ef(c). (2)

But, since the function ga has no Harnack points, it has a Lebesgue
integral; therefore, by Theorem 2 of the present paper, we can find m so
that, for all values of n greater than m and all values of z,

I [z

9d(f—Sn)dx
I Je

From (1), (2), and (3) it follows that

I f*
g(x)(f—sn)dx

e. (8)

< eA,

where A is a finite quantity, independent of n or z. This proves that the
left-hand side converges uniformly to zero, whence the required result at
once follows for the special kind of sequence considered, and therefore,
by the argument used above in the first instance, the theorem holds in
all its generality for a finite interval of integration. To prove the con-
vergence for an infinite interval, we have recourse to the general theory
of change of order of limits, and make use of the Second Theorem of the

Mean. In accordance with this theory, I sn(x) g{x)dx will have its

repeated limits, when z and n become infinite, equal, provided only that

Lt Lt 1 sn(x)g(x)dx
z=w n=oo I Jz

= 0.

But, if B is the upper bound of the absolute value of sn(x) for all values

of the ensemble (n, x), the modulus of the integral < B g(x)dx , and

2 H 2
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therefore, since g(x) possesses a Harnack-Lebesgue integral in the whole
infinite interval, the repeated limit in question is clearly zero.

Hence we may write

f fix) g(x)dx — Lt f f{x) g(x)dx = Lt Lt f* sn(x) g(x)dx
Je z=aa Je - = x n—<x Je

— Lt Lt I sn(x) g{x)dx = Lt I sn{x)g(x)dx,
n=<w ; = » Je «=» Je

which proves the theorem.

4. The following theorem is now well kuown, but it is rarely stated
in its most general form.

THEOREM 2.—If sn(x) converges* boundedly as n increases and g{x)
is any function possessing a Lebesgue integral, proper or improper, the
sequence of Lebesgue integrals j sn(x) g(x)dx converges to I f(x) g{x)dx, the

limits of integration being finite or infinite. Moreover, the convergence
is uniform throughout any finite interval.

For, if U be any quantity greater than the upper bound of |sft(a0|, for
all values of n and x, sn{x) g{x) lies between U\g(x)\ and —U\g(x)\,
which are both functions possessing Lebesgue integrals in the finite or
infinite interval considered. Hence, by a known theorem,! since the
functions sn{x)g(x) form a sequence, the unique limiting function of which
may, for the purposes of integration (§ 2), be taken to be f(x)g(x), this
sequence is integrable so that

( f(x)g(x)dx = Lt I sn(x) g{x) dx,

which proves the theorem as far as the convergence itself is concerned.
The uniformity follows, for example, from the fact that.t if a sequence
of functions, bounded below, is integrable, the sequence of integrals con-
verges uniformly, for it is plain we shall obtain such a sequence if we add
to each term of our sequence U \ g(x) \.

* See first footnote above, § 1.
f W. H. Young, "On Semi-integrals and Oscillating Successions of Functions" (1910),

§§ 31 and 31, supra, pp. 286-325.
% Vitali, "Sulle Funzioni Integrali" (1905), Atti di Torino, Vol. LX, pp. 1021-1034.

Cp. " On Semi-integrals and Oscillating Successions of Functions," § 25.
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'5. The next theorem is easily seen to follow from one given by myself
elsewhere, and modified from Lebesgue.*

THEOREM 3.—If sn(x) converges) and ^{sn(x)}*dx is bounded, tlien

Lt | sn(x)g(x)dx = \f(x) g(x)dx,

provided the square of g(x) possesses a Lebesgue integral, proper or im-
proper ; the limits of integration may here be finite or infinite. More-
over, the convergence of \s]l(x)g{x)dx to its limit is uniform throughout
any finite interval.

For, since j \sn(x)\'2dx is bounded, and the integrands, being positive

and converging to \_s(x)f, form a sequence which is semi-integrable below,
we have

which proves that [s(x)]2 possesses a Lebesgue integral, proper or im-
proper. But, by hypothesis, [g(x)~]2 also possesses a Lebesgue integral,
t h e r e f ° r e Z\[S(x)J+[g(x)J\

also possesses a Lebesgue integral. Hence, since this latter expression is
e q u a l t 0 \8(x)+g(x)\*+[8(x)-g(x)\*,

both the squares in this expression have Lebesgue integrals, and therefore
the same is true of half their difference, that is, s(x)g(x).

Thus the conditions required in the theorem referred to in the foot-
notel are satisfied, so that the sequence of functions sn(x)g(x) is integrable.
That is, f f

s{x) g(x)dx = Lt sa(x) g(x)dx.

Putting g(x) = 1, it appears that the sequence of functions *:;(x) is in-
tegrable, so that (§ 2) for purposes of integration we may replace s{x) by
f(x), which proves the theorem as far as the convergence is concerned.

* Lebesgue's enunciation is as follows:—lif(x)g(x) and [<7(x)]" arc summable, and if,
further, [f(x) — s,,(x)]- is summable, and such that its integral is in the whole interval con-
sidered bounded, then the sequence slt(x)g (x), supposed to converge to f(x) (j(x), is integmble
tenn-by-term (Sur Us Integrates Singulidres, 1910, Fac. de Toulouse, 3e Serie I, p. 50).

| See first footnote above, § 1.
J The theorem given in my paper on Semi-integrals, § 30, refers to successions of functions

which do not. necessarily converge anywhere. The special case of this theorem which we here
require is the following:—If f(x)g(x) and [</(x)]2 are summable, and if, further, [s,,(x)J-' is
summable and such that its integral is bounded in the whole interval considered, then the
succession slt(x)g(x), supposed to converge, except at a set of content zero, ro f(x)g(x), is
absolutely integrable term-by-term.
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That the convergence is uniform follows also from the theorem quoted,
since the succession sn(x)g{x) is absolutely integrable. This theorem
holds still when the limits of integration are not both finite, for in. this
case, by Schwarz's lemma,*

where B is any positive quantity greater than the upper bound of [ s\dx.
Now <72 possesses an integral from c to oo, so that when z moves, off

to infinity, z remaining greater than z, the right-hand side has zero as
unique limit, find therefore so has the left-hand side; therefore sng has
an integral from 0 to oo.

A g a i n /(•:' \ 2 (V rz-

( I (s—sn)gdx) < J (s—s,,)adzj ^afZx

S
2- f^+2|ssH|)^| 'p2r fx. (2)

But f" 12ssn\dx < [ s2dx+ T s^a;;
therefore the left-hand side of (2) is

Again, s; > 0, so that the sequence traced out by s\ is semi-integrable
below. Hence /v r-'

s2dx < Lt s\.dx < B.
Jz ?!=» JZ

(s—Sn)gdx\ < IB g2dx.
z I Jz

As before, this shews that the left-hand side has zero as unique limit
when z moves off to infinity, and proves that (s—sn)g is integrable from
c to infinity, und therefore, since sng has the same property, that sg is
integrable from c to infinity.

NOW « rs po
(s—sn)gdx = (s—sn)gdx+ (s—sn)gdx.

Jc Jc Jz

Here the first integral has, when z is fixed and n increases indefinitely,
the unique limit zero, and the second integral is, by (3), such that, if n is
fixed or not, provided only z moves off to infinity, this integral has the

* See, for instance, my paper on " A New Method in the Theory of Integration " (1910),
Proc. Londvn Math. Soc, Ser. 2, Vol. 9, p. 37.
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unique limit zero. Thus, given any positive quantity e, we can find z and
n so that «o

{s—sn)gdx < e,

and this will be true for all greater values of n. Thus
,00

Lit 1 (s—sn)gdx < e.
«=oo JO

Since e is at our disposal, this shews that the limits on the left all coincide
and have the value zero. Thus

)oo roo

s(x) g{x)dx = Lt j sn(x) g(x)dx.
c n=oo Je

6. The next theorem has, as far as I know, not been stated, but it k
an immediate consequence of the theorem, given in my paper on Semi-
integrals, that a sequence is integrable if two integrable sequences can be
found, between which the given sequence everywhere lies.

THEOREM 4.—If \sn(x)\ traces out an integrable sequence and g(x) is
any bounded function, then

Lt sn(x) g{x)dx = f(x)g(x)dx,
7t=oo Jc Je

the limits of integration being finite or infinite. Moreover, the con-

vergence of J sn(x) g{x)dx to its limit is uniform throughout any finite

interval.

For, if U is any quantity greater than the upper bound of
sn(x)g(x) lies between U\sn(x)\ and — U"|sn(a;)|. Hence, by the theorem
referred to above, the sequence traced out by sn(x)g(x) is integrable. In
particular this is the case if g{x) = 1, so that, for purposes of integration,
we may replace s(x) by f(x). Thus

Lt sn(x)g(x)dx = f(x)g(x)dx,
ii—-co Je Je

which proves the theorem as far as the convergence is concerned.
That the convergence is uniform follows in precisely the same way as

in Theorem 2, except that we now add the sequence U | sn (x) \ term-by^
term to the given sequence. Since the sequence so obtained, as well as
the sequence added, is bounded below, each when integrated gives rise
to a uniformly convergent sequence: hence the same is true of their
difference, which proves the theorem.
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7. The last theorem suggests a remark which it may be advisable to
make. The theorems obtained state that the process in question can be
carried out if, under the circumstances alleged, g(x) is any member of
a certain class of functions. It may, of course, also be allowable if g(x)
be a suitably chosen member of a different class. Thus in the last
theorem it may be possible in a particular case to find an unbounded
function g(x) for which the result is true. An obvious example is that

in which |sn(x)| is a monotone function of n, and Lt [|<7(a0l \sn(x)\dx

exists or j | g (x) \ \ f(x) \ dx exists.

This follows, for instance, from the theory of monotone sequences.

8. In the remaining theorems of the paper we may suppose that f(x)
cannot be conveniently expanded, and that instead we have recourse to the
expansion of its integral or one of its repeated integrals. This may arise
from the fact that f(x) cannot be expanded in a series which satisfies any
of the requirements of the Theorems 1-4 just given. In Theorems 5 and 6
we suppose Sn(x) to be the partial summation of the expansion of F(x),
that is, \f(x)dx, and write

S»(X) = — Sn(x).
dx

In the most general case Sn{x) must be an integral, so that sn{x) exists
everywhere except at most at a set of content zero, where we may, if we
please, attribute to it the value zero. With this understanding, we have
the following theorem.

THEOREM 5.—If \\sn(x)\dx is bounded for all values of the ensemble

(x, n) considered, and Jsn(z)efo or Sn(x) converges to ^f(x)dx or F(x),

while g(x) is any bounded function possessing only discontinuities of the
first kind, then ~z ,.

Lt 1 sn{x)g(x)dx = f(x)g(x)dx.
n=oo Jc Jc

This theorem remains true when one or both tlie limits of integration are
infinite, provided only the original series when integrated represents
a continuous function in the wliole closed infinite interval.

Further, the convergence of \ sn(x)g(x)dx to its limit is necessarily

bounded, and it is uniform if the convergence of sn(x)dx to its limit
is uniform.
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Since g (x) has only discontinuities of the first kind, it has only a finite
number of discontinuities at which the jump on one side at least is !> 1/JP,
for at a limiting point of points of this kind the upper and lower limits on
one side at least would differ by at least 1/p, so that such a limiting point
would be a discontinuity of the second kind. If we take the interval
between two adjacent discontinuities ^ 1/p and replace the value of g{x)
at the end-points by its limiting values on the sides towards the interval
considered, so that these discontinuities are to be replaced by continuities,
all the jumps in the closed interval will be less than 1/p, so that, cor-
responding to each point we have an interval containing the point in
which the oscillation of g(x) is less than 1/p. Hence, applying the Heine-
Borel theorem, we can divide the interval into a finite number of parts
in each of which the oscillation of the function is less than 1/p.

Thus, when we have to do with a function g{x) having only dis-
continuities of the first kind, we can always divide the continuum into
a finite number of segments, such that the oscillation of g (x) inside each
segment is less than ljp, the oscillation inside the segment being supposed
to take no account of the values of g(x) at the end-points of the segment,
but only of the limiting values there.

If we define a function gp(x) as equal to g{x) at all the points of divi-
sion, and equal to the upper bound* of g{x) in each open segment at each
point of that open segment, we shall have

\g(x)-gp(x)\< 1/p,

so that the functions gp(x), &sp increases, converge uniformly to g(x).
Also, by the Second Theorem of the Mean or otherwise,

II \g(x)—gp(x)\sn(x)dx < U/p, (li

provided I | sn(x) \dx is, for all values of z and n, numerically less than

U. Hence any limit of the left-hand side when n increases indefinitely is
<; U/p, so that, proceeding after taking the limit to let p increase indefi-
nitely in such a way as to give a unique limit, we see that any repeated
limit Lt Lt of the left-hand side is zero. Thus

Lt f g(x)sn{x)dx = Lt Lt [ gp(x)s»{x)dx = Lt 1 gp(*)f(x)dx. (2)

* Or any other value between the upper and lower bounds inclusive.
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But the functions gp{x) form a bounded sequence, and/(a;) is a summable
function; therefore, by a known theorem, already frequently used, the
functions gp(x)f{x) form an integrable sequence, so that the last member
of (2) is equal to r.

g(x)f(x)dx.
Jc

Hence also Lt I g{x) sn{x)dx = I g(x)f{x)dx,
11=70 JC JC

whatever sequence of values of n be taken so as Jo give a unique limit to
the left-hand side of the inequality last given. Thus the limit in the pre-
ceding equation is unique, which proves the theorem.

That the convergence is always bounded and that it is uniform when

the convergence of \sn(x)dx to its limit is uniform, maybe seen as follows.

From (1) we deduce that this is the case for g(x) if it is true for gp(x) for
every value of p. But for fixed p, the result obviously holds, since gp is
constant in stretches.

If z is infinite the above reasoning still holds down to the inequality
(1), in which we may put z = oo, if we alter the sign < to ^ , or which
may be written

Lt I [g{x)—gp(x)']sn(x)
r—» | Jc

dx < U/p.

Hence, by the same reasoning as before, we get the equation correspond-
ing to (2), which may be written

or

Lt Lt If [g{x)-gp(x)]sn(x)
)}='jj H=OO I Jc

Lt Lt Lt \[[g(x)-g(p)]sn(x)
}> = » n=/> .: = » I Jc

dx = 0,

dx = 0,

f" f*
or Lt \ g{x)sn{x)dx = Lt Lt Lt I gP{x) sn(x)dx;

n = oo J<; J> = oo' 11 = 00 j = oo J c
( Cz'p Cz \

this we may write = Lt Lt Lt - I gp{x)sn(x)dx-\-\ gp(x)sn(x)dx [ ,
J3 = CO 11 = 00 2 = 0 0 \ Jc Jz'p I

where z'p is the nearest of the points of division to the point infinity (with
proper sign) considered. The first integral gives us no trouble, since it
falls under the former case. In the latter integral gv is constant, so that
we may write the term

f*Lt gP(x) Lt Lt i sn{x)dx,
))= •» « = oo 2=oo Jz'
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which is equal to

Lt gp(x) Lt Lt sn(x)dx = Lt gp(x) Lt f(x)dx
p = oo 2 = 00 n = oo Jz' p = oo Z — a> J z '

= Lt Lt I gp(x)f{x)dx,
p = <*> 2.00 J/p

if, and only if, the condition given in the enunciation holds, that is, if

Lt 1 s,,(x)dx represents a continuous function of z up to and including
n=oo Jz'

the point infinity. In this case, therefore, we have

Lt f
71=00 Jc

r
g (x) 8n (x) dx = Lt gp (x)f(x) dx,

p=ta Jccorresponding to equation (2) in the first case. The rest of the argument
is unaltered.

9. In the preceding proof I have followed Lebesgue's argument in a
kindred matter closely.* It would have been a little simplified if we had
been content to state the theorem on the hypothesis that g(x) is continuous,
but the gain would not have been great. In the theorem about to be
given the whole difficulty consists in the fact that we only require from
g(x) that it should be the most general kind of function of bounded varia-
tion. The proof of the theorem when g(x) belongs to that particular sub-
class of the class of functions of bounded variation which are obtained by
Lebesgue integration of other functions is immediate. The whole diffi-
culty consists in the gradual extension of the theorem, first to continuous
functions of bounded variation, and then to discontinuous functions of the
same class. In the case which ordinarily arises g(x) will have not only
its first differential coefficient, but this differential coefficient will be finite,
in which case g(x) itself is an integral, viz., the integral of that differential
coefficient; the importance of the theorem is then only matched by the
simplicity of its proof. For theoretical purposes, however, the theorem is
required in all its generality; I again follow Lebesgue in bis treatment of
a similar problem.

10. THEOREM 6.—If \sa(x)dx converges boundedly to \f(x)dx, and

g(x) is any function of hounded variation in the interval considered, then

Lt \sn (x) g (x) dx = \f(x) g (x) dx.
71 = 00 J '

* Sur les Integrates Singulidres, p. 59 seq.
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Further tlie theorem remains true when one or both of tlie limits of inte-

gration is infinite, provid d only that either (i) Lt \s*(x)dx is continuous

at the point, or points, infinity, i.e., provided I f(x)dx exists, and is

equal to the sum of the limits of the separate terms in the expansion of

\f(x)dx, or (ii)g(x) converges to zero as x increases. Moreover, the con-

vergence of \ sn(x)g(x)dx is necessarily bounded, and it is uniform if that

of \s'll{x)dx is uniform.

Note.—In the above theorem, when the interval of integration is
infinite, we must make the obvious convention that a function which is of
bounded variation in every finite interval is only of bounded variation in
an infinite interval, if the limits (necessarily unique) of the positive and
negative variations, are, as x increases or decreases indefinitely, finite.

If g(x) be an integral we are able to use at once the theorem of inte-
gration by parts, and the required result follows by the reasoning below in
an abbreviated form. Next, let g (x) be a continuous function of bounded
variation; we must then take a new variable, viz., t. the arc of the curve
IJ = g(x).* Then t is a monotone continuous function of x, and therefore
x is a monotone continuous function of t, and we may suppose it to be
monotone increasing; y is also a function of t, so that we may write

x = x{t), y = y{t).

Now the derivates of y(t) lie between —1 and + 1 ; therefore, by
Lebesgue's theorem, dy/dt necessarily exists, except possibly for a set of
values of t of content zero, and y(t) is the integral of any one of its
derivates. Thus

[-] \ ^ (1)

which shews that </[(«, £)] is an integral with respect to t.

Also 1 sn{x)dx = Sn{x);

and therefore, since x is a monotone increasing function of t,

[x(t)]^dt = Sn[x(t)l (2)

80 that the integral on the left has F(x) as unique limit, when n increases

• Young's Theory of Sets of Points, p. 266.
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indefinitely. Hence

Lt \Zsn(x)g(x)dx= Lt \{sn[x(t)]\^ g[x(t)]dt
d = oo Je n=oo J CLt

g^)Sn(z)-g(c)Sn(c)-^Sn[x(t)-]j-tg[x(t)]dt]j ,

(3)

since, by (1) and (2), both g[x(t)~\ and 8n[x (£)] are integrals with respect to t.

Since,* by hypothesis, the convergence of the integral series to S(x) is
bounded, 8n(x) is a bounded function of the ensemble*(#, n); and therefore
Sn[x{t)~\ is a bounded function of the ensemble (t, n). Therefore

•rig(x, t) is numerically less than A 7*9[*iti] , where A is any
dt

quantity greater than the numerical values of the upper and lower bounds
of Sn[x{t)\ for all values of the ensemble (t, n); that is, the integrand of
the integral on the right of the preceding equation is numerically less than
a summable function. Hence, by the theorem so frequently used, the
sequence of functions of t,

is integrable, so that the limits in the preceding equation all coincide, and
we have

Lt ['sn(x)g(x)dx = g(z)F(z)-g(c) F(c)-\F[x(t)]-§-g[x(t)]dL (4)

Now F{x) = \f{x)dx,

that, by substitution, F[x(t)~\ = [f[x{f)\^dU (5)so

Thus F\x{t)~\, as well as g[x{f)~\, is an integral with respect to t, so that,
integrating by parts, we get from (3) the equation

since the differential coefficient of JP, regarded as a function of t, is the
integrand of the expression for F as an integral on the right-hand side of
(4), except for a set of values of t of content zero.

* We hore repeat the argument used in proving Theorem 2, instead of merely quoting that
theorem, with a view to the subsequent extension to an infinite interval given below.
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Hence, by the formula for integration by substitution the required
result follows, ,g .a

Lt sn(x)g(x)dx = g(x)f(x)dx. (6)
»=0O Jc JC

Finally, let g(x) be discontinuous ; it has then only a countable set of
discontinuities, and these are of the first kind. Let these, arranged in
some order, be plt p2,

Since a function of bounded variation is the difference of two monotone
increasing functions, we may assume that g(x) is a monotone increasing
function; if we prove the required formula (6) in this case, it will then
follow, by subtraction, for the case when g(x) is any function of bounded
variation.

Let Jr{x) denote the sum of those of the first r jumps which lie in the
closed interval (c, x), where the jump at c is

g(c+O)-g(c),

and at x is g(x)—g(x—0),

while at any intermediate point x' it is

g(x>+0)-g(x'-0),

always supposing these points belong to the first r discontinuities. Then
Jr{x) is a monotone function of x, constant in each of the half-open
intervals, open on the right, into which the whole interval is divided by
the first r discontinuities, and having .at each of those discontinuities the
same jumps on the left and right as g(x) itself.

As r increases, Jr increases at each point x; therefore the monotone
increasing sequence of functions Jr{x) defines a unique limiting function
Jix), which, like the constituent functions of the sequence, is a monotone
increasing function. J(x) is evidently the sum of all the jumps of g(x) in
the closed interval (c, x), and is therefore not greater than g{x)—g(c).

Hence J{x-\-h)—J(x) is the sum of all the jumps in the closed
interval {x, x-\-h); therefore

g(x+O)-g(x) < J(x + h)-J(x) < g(x+h) -g (x),

whence, moving h up to zero,

J(x+0)-J(x) = g(x+0)-g(x), (7)

which shews that J{x)—g{x) is continuous on the right, and similarly on
the-left, and is therefore a continuous function, which, since both g and J
are monotone ascending functions, is a function of bounded variation. By
what has already been proved, therefore, the theorem is true when g is
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replaced by J—g. It is therefore true, provided it holds when g(x) is re-
placed by J(x).

The formula certainly holds when g(x) is replaced by Jr(x), since
Jr(x) is constant in each of a finite number of segments making up"the
range of integration. Thus we have

Lt 1 sn(x)Jr(x)dx = f(x)J,(x)dx. (8)

Now J(x)—Jr(x) is the sum of all the jumps after the >*-th in the com-
pletely open interval (c, x), together with the left-hand jump at x, if x is
neither a point of continuity, nor one of the first r discontinuities of g (x).
Hence J(x)—Jr(x) is a monotone function of x, so that, by the Second
Theorem of the Mean,

u(x) [J(x)—Jr(x)~\dx ^ U\J(c)—Jr(c) I, (9)

where U is the finite upper bound of the absolute value of Sn(x). Hence
the repeated limit, or limits Lit Lit of the left-hand side are not greater

than the limit of the right-hand side when r increases without limit.
We have therefore

Lt Lit sn(x)[J(x)—Jr(xy]dx = O,

whence, by (8), Lt I sn(x) J(x)dx = Lt g(x) J,r(x)dx. (10)
n=oo Je y-=ooje

Now Jr(x) is bounded, say numerically less than A, and g(x) is summable,
therefore g(x)Jr(x), lying between Ag(x) and — Ag(x), is, by the theorem
already quoted, the general function of an integrable sequence. Hence,
by (10), {! f3

Lt sn{x)J(x)dx = g{x)J(x)dx,
n=m Jc )•:

which proves the required formula when g{x) is replaced by J(x), and
therefore, as pointed out above, proves the theorem.

We have next to shew that the result continues to hold under the
additional conditions stated, when the interval of integration is no longer
finite. Let us first prove that condition (i) is sufficient. Evidently the
proof holds as it stands when z is infinite, provided only we secure that
equation (8) continues to hold. This requires

to exist when tne upper limit of integration is infinite. But this is the
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case, since the integrand is less than A -37 0 [»($], whose integral in any

finite interval is the total variation of g(x), and therefore has a unique
finite limit as the interval stretches out to infinity. Since therefore the
hypothesis (i) enables us to pass from (3) to (4), it is a sufficient condition
for the truth of the theorem.

Next to shew that condition (ii) is sufficient. We may now suppose
g(x) expressed in the form gx{.x)—g${x), where gx{x) and gz(x) are both
monotone decreasing with zero as limit; it will therefore be sufficient to
prove the theorem on the hypothesis that g(x) itself is monotone de-
creasing and has the limit zero. Now the necessary and sufficient condi-
tion that the repeated limits

Lt Lt I sn(x)g(x)dx and Lt Lt I s»(x)g{x)dx,
C = oo 11=09 Jr. H = oo ; = a o j c

should exist and be equal, is that

Lt Lt I sn(x)g(x)dx
: = x n=oo Jz

should exist and be equal to zero.
By the Second Theorem of the Mean, this integral is, on the suppo-

sition stated, equal to

g(z) .sn{x)dx.

]>ut I sn{x) dx is a bounded function of the ensemble {n, z, z') by the con-
ditions of the theorem in the whole infinite interval. Also g {z) converges
to zero as z increases. Hence the required result follows.

This proves the convergence of

sn{x)g(x)dx to I f(x)g(x)dx.

That the convergence is always bounded, and that it is uniform when that

of s,,(x)dx to its limit is uniform, follows, almost in the same manner

as in the proof of the preceding theorem. From (9) it follows that the
convergence will be uniform for J(x), if it is so for Jr(x) for all values of r.

But for fixed r the convergence of \ Jr(x)sn(x)dx to its limit is of course

uniform, if \ sn(x)dx converges uniformly, since Jr is constant in stretches.

Hence I sn{x)J(x)dx converges uniformly to \ f(x)J(x)dx,
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Since g(x)—J(x) is a continuous function of bounded variation, it only
remains to prove the result in the case first treated (p. 476), and it will be
true generally.

Now, by the same reasoning as before,

f [sn(x)-f(x)]g(x)dx = g(z)[Sn(z)-F(z)-]-g(c)[Sn(c)-F(c)]
Jc

and when the convergence of Sn(x) to F(x) is uniform, we can confine our
attention to such values of n that for all values of x

\Sn(x)-F(x)\<e,

so that the preceding equation gives

j * [*»(*) -f(x)]g(x)dx < e [l g{z) \ + \g{c) |

where J7 is a finite constant. This shews that the left-hand side con-
verges uniformly to zero, and therefore that the convergence of

I sn(x) g{x) dx in this case to its limit is also uniform. This completes the
Jc

proof that, when sn(x)dx converges uniformly, so does I sn(x)g(x)dx.
Jc Jc

The same argument proves, without any condition, the boundedness of
the convergence, e being now any quantity greater than a certain finite
quantity. Thus the whole theorem is proved.

11. The preceding theorem is the first of a chain of similar theorems.
The integral series, that is, the expansion of

F(x) = \f(x)dx,

may be distinguished as the first integral series. Integrating a second
time and expanding, say,

\dx [f(x)dx = Lt Tn{x),

the new series, whose partial summations are denoted by Tn{x), maybe
called the second integral series; what we shall call the original series is
then the series got by differentiating the second integral series term-by-
term twice, so that , \ m», \

Sn{x)=Tn{x).

8EB, 2, VOL. 9. NO. 1097. 2 I
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Here, as already remarked, the equality may fail at a set of points of con-
tent zero without affecting our results, since the quantities involved only
occur under the sign of integration. The functions T'n(x) are therefore
supposed to he differentiate, except possibly at a set of points of content
zero.

The series got by differentiating the second integral series term-by -
term will not in general be what we have called the first integral series,
nor does it even necessarily converge. If, however, the individual term or
the individual partial summation T'n (x) is an integral, this series may be
got by term-by-term integration of the original series; in particular this
is the case if sn (x) is finite and summable. With this understanding we
have the following theorem:—

THEOREM 7.—If Tn{x), the partial summation of the second integral
series, is a bounded function of the ensemble ($, n), and T'n(x) is an integral,
the series got by multiplying the original senes term-by-term by a function
g(x) possessing a differential coefficient g'(x) which is a function of
bounded variation, when integrated term-by-term, converges to

\ g(x)f(x)dx,
Jc

provided at the limits of integration g{x) is zero, or T'n(x) converges to

\f(x)dx\

For, by Theorem 6, denoting as before 1 f{x)dx by F(x),
Jc

{x)dx. (1)Lt [Z T^,{x)g'(x)dx= ( F{x)g'
n.=oo Je J

But, since g'(x) is a bounded function, g(x) is an integral; also F(x) and
Tn{x) are integrals ; therefore, integrating by parts,

T'n(x)g'(x)dx = [T;,(Z) £ ( * ) ] - jV»f (x)g(x)dx, (2)

and j* F(x) g'{x) dx = [ F ( ? ) g {x)~j- |*/(») g(x) dx. (8)

From (1), (2) and (8) the theorem follows, under the conditions given in
the enunciation, remembering that, under the sign of integration T* (x)
may be replaced by sn(x).
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12. In precisely the same manner we can prove the following
theorem :—

THEOREM 7'.̂ —If Tn, the partial summation of the third integral series,
is a bounded function of the ensemble {x, n), and T'n(x) exists and is
an integral, the series got by integrating term-by-term the original
series multiplied term-by-term by a function g(x) possessing a second
differential coefficient g"(x) which is a function of bounded varia-

tion, converges to 1 f (x) g(x)dx, provided at the limits of integration either
Je

g'(x) = 0, or T'n(x) converges to f dx \f(x)dx, and either g(x) = 0, or T"{x)

converges to \f(x)dx.

The general theorem is at once evident:—

THEOBEM 7(n~2).—If Tn, the partial summation of the r-th integral
series, is a bounded function of the ensemble (x,n), and T£~l)(x) exists and
is an integral, the series got by integrating the original series tervi-by-term
after multiplying term-by-term by a function g{x), possessing an (r—l)-th
differential coefficient which is a function of bounded variation, converges to

I g(.%)f(%)dx, provided at the limits of integration either g^k~l) = 0, or

converges to T^'^ix), for all values ofk between 1 and (r— 1) in-
clusive.

Here T^r~k) denotes the &-ple integral oif(x).

It is unnecessary to write out the proofs of these theorems at length,
as no new principle is involved.

13. We conclude the paper with two illustrative examples.

Ex. 1.*—Consider the integral I xv logx (1+x)"2 dx, where p + 1 > 0.
Jo

Here let f(x) = (l+a?)"2 = l-2x+8x3-..., (1)

g(x)=xp log x, (2)

and divide the integral into two parts, writing

[f(x) g(x) dx = \Cf(x) g(x) dx+ [ f(x) g(x) dx.
J0 Jo Jc

* Bromwicb, loc. cit., p. 451.
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If x lies between 0 and c, where c is less than unity, the series (1) con-
verges boundedly, so that, by § 2, we may take it to be the original series.
Also, by Theorem 2, if g(x) is a summable function we may integrate term-
by-term. This is the case in the first of the two integrals, which may
accordingly be evaluated by term-by-term integration.

In the second integral the original series does not converge for x = 1,
but the second integral series, viz., the expansion of — log(l+a;) in a
power series, converges boundedly (in fact uniformly). Hence, by
Theorem 7, we may integrate term-by-term provided g (x) has an in-
tegral for differential coefficient, which is certainly the case, since xp log x
possesses finite differential coefficients of every order, and provided secondly
g(x) is zero, or the first integral series converges, at the limits of integra-
tion. Now at the point x = 1, g(x) is zero ; and at the point x = c the
first integral series converges to — (1+c)"1. Therefore the conditions of
Theorem 7 are fulfilled, and we may evaluate the second integral, as well
as the first by term-by-term integration, and therefore we may evaluate
the given integral by term-by-term integration.

Ex. 2.—Let f{x) = (1+*)"1"9,

and g{x) = ^ (log x)9.

Here, as before, we write

0 g(x) dx=\C f(x) g(x)dx+ P/fe) g(x)dx.
JO Jc

(1)

In treating the first of the two integrals on the right, we remark that g(x)
is summable; it has, in fact, for integral

Also the series 1 - (1+j) x+

converges boundedly to (l+z)"1"0'. Hence, by Theorem 2, term-by-term
integration is allowable in dealing with the first integral.

In dealing with the second integral on the right of (1), we remark that
the (l-\-q)-th integral series of/(x), i.e., the expansion of log(l+a;) multi-
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plied by a constant, converges boundedly, while g(x) possesses differential
coefficients of each order, so that the g-th is certainly an integral. More-
over all the differential coefficients up to the (q—l)-th inclusive are zero
at x = 1, while at x = c the k-th integral series converges to (l+a;)~1~'2+fc,
for all values of k from 1 to q inclusive. Therefore, by Theorem l^-v,
term-by-term integration is again allowable.


