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THE CHARACTERISTIC NUMBERS OF A REAL 
ALGEBRAIC PLANE CURVE. 

I. k. C o o l i d g e (Cambridge, Mass.). 

Adunanza del 22 aprile Igi 7. 

In the study of algebraic plane curves fundamental importance is attached to 
certain numbers, called PL0CKER'S numbers or characteristics, which are invariant 
when the curve is subjected to any projective transformation of the plane. In the 
present article we shall, for simplicity of statement, limit ourselves to those curves 
which have at most, point and t~gen t  singularities of the second order. This limi- 
tation is one of form only, our main theorem deals with identities holding for all 
curves whatsoever. We shall denote the PL0CKER characteristics by the following 

numbers 
n 

m - - -  

p =  

~ =  

k =  

the order of the curve 
the class of the curve 
the deficiency 
the number of double points 
the number of cusps 
the number of double tangents 
the number of inflections 

These numbers are connected by certain equations, called PLOCKER'S equations, in 
virtue of which, if the values of three be known, the others may always be expressed 
rationally in terms of them. There is no account taken of the distinction between 

real and imaginary in defining these numbers. 
Suppose, however, that we are especially interested in a real curve. In trying to 

draw such a curve, what is of first importance is not the total number of double 
points or inflections, real or imaginary, but the number of real singularities of one 
sort or another. There is a certain arbitrariness in the choice of those real cha- 
racteristics which are worthy of attention. We give here the list which we shall 
follow in the present article, and which certainly seems to include all that could be 

desired 



T H E  C H A R A C T E R I S T I C  N U M B E R S  O F  A R E A L  A L G E B R A I C  P L A N E  C U R V E .  2 6 ~  

n t ~ . _  

m r 

81= 

k P _._,  

the apparent order of the curve, i. e. the maximum number of real intersections 
with any one real line, multiple intersections counting according to their multiplicity 
the apparent class of the curve, definition corresponding to above 
the number of real double points, each lying on two real branches 
the .number of conjugate or isolated double points, each lying on two conjugate 

imaginary branches 
the number of real cusps 

v ' , - - t h e  number of real double tangents 
v' - -  the number of conjugate or isolated double tangents 
~' --- the number of real inflections 
c' --- the number of real circuits, open or closed. 

Taking the two lists together we have sixteen characteristics. The first seven are 
connected by PL0CKER'S equations. Some of the first and some of the others are con- 
nected by a well known equation due to KLEIN, namely ' )  

m --[- k '  21 - 2 8 '  - -  n + t '  -l t- 2v'~. 

This equation has been put into a particularly elegant shape by SCHUH is a to 
little known article 2). ScguH considers a point as singular if every fine in the plane 
through it have more than one intersection with the curve at that point, or if, even 
though it be not singular in this sense, it is yet the point of contact of a singular 
tangent. Corresponding definitions can be given for singular tangents. The order of" 
a singular point is the minimum number of intersections which a straight line through 
that point will have with the curve the/'e. A similar definition will hold for the order 
of a singular tangent. This premised, Scaun's equation reads 

In words: The class of a curve plus the sum of the orders of all the real singular po- 
ints is equal to the order plus the sum of the orders of all real singular tangents. 

This relation is more elegant in form than Kr.EIN'S and is readily extended to 
include imaginary curves, and higher singularities. Curiously enough in the case of a 
real curve it reduces to KLEIN'S equati6n by cancellation. 

We come now, naturally, to the highly interesting question ~Are there any 
other equations of this sort connencting real or PL0CKv.R characteristics, not derivable 
from those already given ? ,~ There are, certainly, new relations in the case of special 
types of curves. For instance, in the case of a non-singular curve we easily find 

I) F. KLEIn, Eine i*eue Relation zwischen den SingularitMen einer algebralschen Curve [Mathema- 
tische Annalen, Bd. X (I876), pp. I99.2o9]. 

a) F. SCHUH, Eerie realiteit~vergelijking z'oor bestaanbare en onbestaanbare vlakke krommen met 
hoogere singulariteiten [Koninklijke Akademie van Wetenschappen te Amsterdam. Verslag van de ge- 
wone Vergaderingen der wis-en natuurkundige Afdeeling, t. XII (i9o1-x9o4) , pp. 845-854]. 
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This amounts to saying that in the case of a rea[ non-singular curve, not more than 

one third of the inflections can be real. Various relations have been established for 

curves of low order, notably the fourth. There are also certain relations valid in the 

case of unicursal curves a). With regard to the general question are there any other 

relations independent of these, valid for all curves, no pronouncement .of a final sort 
has yet been forthcoming. JueL seems to have believed that there were such, if we 

may judge by the folioving remark 4). ~c Ich mOchte noch hinzufiigen dass die Formel 
(I) ,  selbstverstandlich, nicht als die einzig m~gl[che Relation zwischen den reelen Singula- 
rit{tten einer ebenen algebraischen Kurve anzusehen ist J~. 

It is the object of the present paper to show that this opinion is not well founded 

by proving the following. 

FUNDA~I~NTAL THEORESi.--The only algebraic identities involving any combination 
of real or total singularities as here defined, which are valid for all real algebraic plane 
curves, are those which are deducible from the known equations of PL0CKEf~ and KLEIS. 

The proof is based upon the following. 

ALG~a3t~.~IC LEMMA. ~ Given a polynomial in any number of variables, equal to 
zero. If it be possible to give to each variable in turn without altering the value of any 
of the others, a number of values greater than the degree of the polynomial with regard 
to that variable, then the polynomial is identically equal to zero. 

The lemma is certainly true in the case of a polynomial in one variable. Assume 

that it has been proved for one of n -  i variables. Let us arrange according to the 

powers of the n th. variable. We have an equation in this variable with more roots 
than the degree allows. Hence the coefficients" of each power of this variable vanish 
identically, for each is a polynomial in n -  I variables vanishing for a large number 
of values of each variable independently. 

Let us now suppose that we have a universally valid equation 

8' ~' ' ' ' , l , ( n , m , p ,  8, k ,~ ,  ~, n ' , m ' , c ' ,  ,, ~ , , : , , ~ , k , ~ ' ) = o .  

Making use of the equations of PLUCKER and KLEIN, we eliminate m, p, % t, and v' 

0 )  k, n ,  k, e, ,, c', m,  o. 

We shall assume that the highest power to which any one variable appears is iV. 

We proceed to construct a curve which can be altered in such a way that each of 

these arguments can be given more than N values without altering the values of any 

of the other arguments. 

3) Fr. MEYER, Ueber Discriminanten und Resultanten der Glelcbungen fiir Singularitiiten yon alge- 
braiscbe Raumcurven, mit Anwendung auf ReaZitgztsverh;iltnisse [Monatshefte fiir Mathematik und Physik, 

t. IV (I893) , pp. 229-276, 331-363], p. 359. 
4) C. JuEL, Ueber einen neuen Beweis tier KLEI~scben Relation zwisctDn den Singulirit~ten einer 

ebenen algebraisclaet~ Kurve [Mathemati~che Annalen, Bd. LXI (19o5) , pp. 77-87], p. 86, 
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The equation of ~he curve in question shall ,be 

(2) f(x, y) ? (.,:; y) + e  (x - -  a) ~ r3 q, (x, y) = o. 

We proceed to describe it very carefully. 
The curious expression 13 indicates that the degree of the second part is less by 

3 at least than n the degree of the first, e is a real infinitessimal, and % though 
possessed of a real equation, has no real non-singular points. Hence the curve lies intl- 
nitely close to f and follows the general shape of the latter. Moreover, by varying ~ we 
have a linear system of curves, and the general curve of a linear system has no sin- 
gular point which is not a fixed singular point for all curves of the system. We shall 
assume that the compoun d curve f ?  has no singular point on 4, the singular points 
of the general curve are thus the singular points of f ?  on the line 

(3) x - - a = o  

or on the line at infinity. Moreover, since (3) and the equation of the line at infinity 
appear to the third degree in (2) all curves of the system have the same tangents at 

each point of these two lines. 
q~ and ~ are taken as real in the sense that their equations are real, but they 

are not supposed to have any real non-singular points. It remains to describe ]'. This 
is supposed to consist in: 

a) Finite quartic loops of three types to be described presently 
b) Pairs of conjugate imaginary lines meeting in real points on (3) or o'n the 

line at infinity. We shall imagine that n is so very large that we have these loops 
and lines in great profusion. 

Types of quartic loop in f.  
I ~ Elliptic loops or ovals. We get the equation of such a loop by multiplying to- 

gether the equations of a real and a self-conjugate imaginary ellipse, the imaginary 
asymptotes of the two not being parallel. A goodly number of these ovals shall in- 
tersect in pairs on (3) and we shall have at least one nest of N--~ 2 of these ovals 
surrounding one another, all very small, and none meeting (3). There may be other 
elliptic loops scattered elsewhere in the plane. 

z ~ Lima bean loops. We obtain one of these by an infinitesimal change in the 
coefficients in the equation of a cardioi'd. Note that each of these has two real inflec- 
tions, one real double tangent, but no singular point. 

3 ~ Moon shaped loops. Each of these has two real cusps, the horns; two real 
inflections, near the cusps on the limb, but only. one double tangent, and no other 
real point inflection. We construct such a curve as follows. Starting with the equation 

+ x + y)2 _ , .y  + = o 

where ,~ is a real intlnitessimal, we see that we have a quartic with a cusp at the 
end of" each axis, but no other singular point besides. By turning the axes through 
an angle of 45 ~ we easily find one conjugate tangent, and PL0CKZR'S equations show 
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that this is the only double tangent, and that the class is 6. Hence we find by 
KL~nV's equation that there are just two real inflections. A linear transformation of 
this curve will give us just what we require. 

Let us next see what each of the arguments in ( I )  will depend upon in the 
case of a curve of type (2). 

n. This dependes upon the total degree of fq~. 
8 and k. These depend upon the total number of double points which f and ? 

have on (3) and on the line at infinity. They will not be altered by a change in f 
which replaces a pair of real double points or cusps by a pair of conjugatei maginary ones. 

8'=. This depends upon the number of pairs of conjugate imaginary lines which 
go to make up ? and which meet on (3) or on the line at infinity. It will not be 
affected by a change from one kind of pair to the other. 

n'. This is the maximum number of real intersections with any one real line. 
The line (3) is supposed to meet as many loops in real points as does any other 
real line; in addition it is supposed to contain a number of conjugate points, so that 
the number n' may be assumed to depend uniquely upon the number of points of 
our curve on (3). 

k'. The only real cusps are pairs of horns on (3). 
~'. The only real inflections are on the moon-shaped or the bean-shaped loops. 

A n  alteration in the curve which replaces one of these loops by another wiU not 
alter t'. 

~i- This depends upon the number of pairs of loops intersecting on (.3). It will 
not be altered by any alteration in the curve which leaves these intersections undi- 
sturbed. 

c'. This depends upon the number of loops, as a conjugate point is not counted 
as a loop. 

m'. This is the most troublesome of alt the arguments. Its value will not be ap- 
parent at all from the form of the curve (2). The number of real tangents from 
any point will be made up of the lines through that point which touch the curve in 
real points, and those which touch it in pairs of conjugate imaginary points, i. e. 
conjugate tangents. The total number of these latter is determined by KLEIS'S equation, 
not so their positions. We may imagine that m so far overtops n that "r is well 
above N + I and then require f ?  to touch the line at infinity in a large number of 
pairs of conjugate imaginary points, so that this line is a conjugate tangent of high 

order, and m' will depend upon this multiplicity and upon the number of real tan- 
gents in any one direction. 

"~'~. This will depend upon, first the number of lima-bean loops, and secondly 
upon the number of pairs of loops whereof the one is not everywhere concave to 
the other, the intersections of such loops, and the relations of their inflectional tan- 
gents. 

At last we are able to put through our formal proof. 
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A) Independence of -~'. We assume that n is so very large that we have one 
nest of small ovals, separated from all other loops by such a considerable distance, 
that small alterations in their position will not affect the number of real tangents 
common to one of them and to a distant loop. Remove the innermost loop and place 
it near the nest outside. No loop shall meet (3) in real points after its removal. Going 
through our list of characteristics, we see that the only one to be altered is "~i, wich 
has been increased by four times the number of loops left in the nest. We then take 
out a second, a third, etc. each time adding to ,r' and leaving the other arguments 
unaltered. Thus 'r' can take N +  I different values without altering the values of the 
other arguments. It appears then, that either ( I )  is independent of the argument "r' 
or else the coefficient of each power thereof vanishes for a curve of type (2). Under 
either hypothesis, if ( I )  subsist for the general curve, there must be in the case of a 
curve of type (2) one or more similar equations lacking the argument "~'. 

B) Independence of m'. We have pointed out that if we assume m sufficiently 
greater than n, we may give to the line at infinity a high multiplicity as a conjugate 
tangent, and alter this multiplicity by N +  I different values, without altering the 
aspect of the curve in any visible way. It appears then, that m' can be given N +  I 
different values without altering any of the other arguments in' ( i) .  We may reason 
on m' exactly as we did on ~" and our conclusion is that if ( I )  subsist for every 
curve, then for a curve of type (2) there must be one or more such equations in- 
dependent of the arguments "r: and m'. Our proof consists in showing, by means of 
the lemma, that these equations can only be o - - o  so that the same must be true 
of (i). 

C) Independence of c'. This argument is altered by replacing elliptic ovals which 
do not intersect (3) in real points, by self conjugate imaginary loops. The equation 
of such a loop is obtained by equating a definite quartic form to zero. It is true that 
this process alters "r I and m', but we have just seen that they may be ignored, the 
other characteristics will be unaltered, and c' may be given N ~ i different values, 
hence it does not enter in the case of our present curves. 

D) Independance of ~'. Th i s  characteristic depends solely upon the number of 
pairs of loops meeting on (3). If we replace such a pair by one where each member 
meets (3) in two distinct real points, and make good the reduction in ~ by giving 
to f or 9 and extra pair of conjugate imaginary double points at infinity, then no 
characteristic has been altered but 8' which has been reduced by 2. Thus continuing 
the process, ~' can take N q-- I values, and so does not enter. It is well to repeat 
that we assume n so very large in comparison with N that we may put N ~ -  I 
pairs of extra double points on the line at infinity without overloading the latter 
with intersections. 

E) Independence of ~'. This is shown by replacing N-+- I lima beans successively 
by elliptic ovals. Care must be taken that the bean and oval shall meet (3) in the 
same number of real points, so that the bean abolished must not be one that has 

Rend. Circ. Ma~em. Palermo, t. XLII ( [ 9 ' 7 ) ' - - S t a m p a t o  il ~ aprile ,9i 9. 34 
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four real intersections with (3)- Alterations ill "r' or m' involved in this process have 

been shown to be immaterial, and ~' is the only other characteristic affected. 

F) Independence of k'. The contribution of a :noon loop to our curve is two 

cusps and two inflections. If we replace a moon by a lima bean having the same 
number of real intersections with (3) and restore k to its pristine value by giving to 

f or ,~ an extra pair of conjugate imaginary cusps at infinity, then the only charac- 
teristic affected is k' which has been reduced by 2. Renaembering our remarks under 

D) about not overloading the line of infinity, we see that k' can be given N + I 
values, so it too does not enter. 

G) Independence of ~'=. This number depends upon the pairs of conjugate ima- 

ginary lines meeting on (3) or on the line at infinity. The former we shall leave 

unaltered as they affect n', with regard to the latter, if we replace two pairs of co- 

njugate imaginary lines meeting at infinity, by two imaginary ellipses with parallel 

asymptotes, but no finite intersection on (3), we have reduced ~; by 2, but left a as 

it was. Thus ~'= can take N-}- i independent values, and so does not enter into the 
equation. 

H) Independence of n'. This characteristic depends upon the number of real in- 

tersections with (3) and can be altered by transferring conjugate points from the 

overworked line at infinity to (3). We easily see that n' can thus be given N o r- I 

different values, without altering in the least any of the other characteris6cs in (I). 

Hence n' does not enter. 

I) Independence of n, a, k. The aspect of our curve is not in the least altered 
by giving to ? extra definite quartic factors, or extra pairs of conjugate imaginary in- 
finite double points or cusps, and these three operations are independent of one 
another. Hence each of the arguments n, ~, k can take N n t- i independent values, 
no one of them can enter. 

Conclusion. We have shown that if any such equation as ( I )  hold in the case 
of the general curve, then for a curve of type (2) there must be an equation of this 

sort where the arguments -r' and m' did not enter, and we have shown, by means 

of our lemma, that no such equation other than 0--" 0 does exist for all curves of 

type (2). Hence ( i )  must also be illusory, and the only equations which do subsist 

are those which are derivable from the known equations of PL0C~eR and KLF.IS. 

Cambridge Mass., february 1917 . 

J. L. COOLIDGE. 


