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THE DIOPHANTINE EQUATION if-k = x*.

By L. J. MORDELL.

[Bead December 14th, 1912.—Received January 13th, 1913.—Revised May 14th, 1913.]

1. This equation was brought into prominence by Fermat,* who had
proposed as a problem to the English mathematicians, to shew that there
was only one integral solution of the equation ?/2-f 2 = xB. Concerning
this he I says : " Peut on trouver en nombres en tiers un carre autre
que 25, qui, augments de 2, fasse un cube'? A la premiere vue cela
parait d'une recherche difficile, en fractions une infinite de nombres
se de*duisent de la me"thode de Bachet; mais la doctrine des nombres
entiers, qui est assur6ment tres-belle et tres-subtile, n'a 6t6 cultivee ni
par Bachet, ni par aucun autre dont les ecrits venus jusqu'a moi." He
did not publish his method, which is not known at present.

We shall consider the equation from three points of view. Firstly,
we shall find general formulae for k, for which there are no solutions (we
consider integral values only of the unknowns throughout our paper);
secondly, we shall apply ideal numbers ; and, finally, we shall make use
of the arithmetical theory of the binary cubic.

In a series of notes and papers published by Lebesgue, t Gerono, §
Jonquieres, Realis,r and Pepin,**tt various values and formulee have
been given for k for which our equation is insoluble. These results can
be considerably extended. Moreover, the same method supplies us with
a very useful tentative method for solving such equations, t +

* Ball, Mathematical Recreations, p. 40.
t Brassinne's Precis, p. 122, or Format's Diophantvs, Bk. vi, Prop. 19, p. 320. N

X Nmwelles Annales de MatMmatiques, 1st series, Vol. 9, 1850; 2nd series, Vol. 8, 1869.
§ Ibid., 2nd series, Vol. 8, 1869 ; Vol. 9, 1870; Vol. 10, 1871; Vol. 16, 1877.
|| Ibid., Vol. 17, 1878.
f Ibid., Vol. 22, 1883.

** Liouville, Journal de Math, pures et appliqxiies, 3rd series, Vol. 1, 1875.
It Annales de la Sociiti Scientifique de Bruxelles, 1882, Pt. 2.
+% Cf. Cunningham, Educational Times Reprints, Vol. 13, Question 15697, and Vol. 14,

Question 16408.



1912.] THE DIOPHANTINE EQUATION y2—k = xH. 61

2. A few preliminary considerations are necessary. It is well kuown
that if p is any odd prime factor of x2—ky2, then x2 = ky2 mod p ; so
that, if p is prime to ky, (k/])) = 1. Thus, by the use of the law of
quadratic reciprocity and the supplementary laws, we find that p is
congruent to certain residues to mod k or mod ik. And any prime q
such that (k/q) = — 1 cannot be a divisor of x2 — ky2 unless it divides
both x and y. Hence any odd number t such that (k/t) = — 1 cannot
be a divisor of x2—ky2 unless all the prime factors q of t, for which
(k/q) = — 1, divide both x and y.

Consider now the equation

,f-klb2 - x*-k8as

= (x-ka)N, (1>

where k has no square factors and is prime to hi. Moreover,
N = x2-\-kax-\-k%a2 is essentially positive, and a will be hereafter so
chosen that N is odd.

Then ,f = klb2 mod N,

and so (kl/N) = 1 if N is prime to klb2. Now AT is prime to k if x is so,
and from (1) we see that this is the case, since k is prime to bl. As to AT

being prime to Z(̂ = ± 1), this is best postponed to the stage when
particular values of I are considered ; but this will always be the case.

If now N is prime to b, then, since (N/k) = 1, we find

(l/N) = (k IN) (N/k)

if k is positive, and it is also true if k is negative. If, therefore, values of
a and b can be chosen such that for given k and I, (2) is untrue, it will
follow that (1) is insoluble. In particular, when 1=1, (1) is insoluble,
if N = 3 mod 4 and k = 3 mod 4. If, further, k = — 1, (2) is replaced
by (—1/N) = 1, and here again (1) is insoluble if N = 3 mod 4.

Now suppose (2) is untrue, i.e. (kl/N) = — 1, then from (1), since
if—klb2 EE 0 mod N, it follows that b and N have a common prime factor
q such that (kl/q) = — 1. Putting y = qyv b = qbu we have

y\ - hlb\ = (x - ka) Nlq2. (8)

But, since N = x2-\-kax-\-k2a2 = 0 mod q,

(x—ka)2+3kax = 0 mod q.
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Hence x—ka is prime to q if Skax is so. Now a is prime to q if
a and b have no common factors of the type q; 8 is prime to q if
b j£ 0 mod 8 when (&Z/8) = —-1; k is prime to g, since b and & are prime
to each other. Moreover, x is prime to q, since ka is so. Hence
x—ka is prime to g, and hence N = 0 mod g2. But, putting iV = M^2,
we see that (kl/MJ = — 1.

Continuing this process, we can remove all the factors of b typified
by q, and finally arrive at an equation of the form

where (kl/M) = — 1; but B and M have no common factors q such that
(kljq) = — 1. Hence the equation is impossible. But (kl/N) = (kl/M).
Hence, if (2) is untrue the equation (1) is insoluble if a and b have
no common prime factors q such that (kl/q) = — 1, and b ̂  0 mod 3
if (kl/8) = — 1. We may note that the equation (1) is still insoluble even
if a and b possess common factors of the type q, provided the indices
of these factors satisfy certain conditions which are easily found in any
particular case.

Let us now consider (1) when I = 1, so that our equation becomes

•y*-W = xs-ksa\ (3a)

We suppose k = 8 mod 4, free from square factors and prime to b. Also
a and b have no common prime factors q for which (k/q) = —1, and
6 ^ 0 mod 8 if (&/8) = — 1. Hence (8a>) is insoluble if a and b are such
that N = 8 mod 4.

We now solve the congruence

x2-\-kax-\-k2a2 = 8 mod 4 (or since k = 8 mod 4),

a2— arc+ a2 = 3 mod 4.

Hence, if a = 1, then x = — 1, 2\

„ a = 2, „ s = - 1 , 1 I. (4)
„ a = 8, „ a; == 1, 2j

If we now take any one of these values of a mod 4 and can find values
of b such that x satisfying (8) must be congruent to one or both of the
•corresponding residues mod 4 given in (4), then (3) is insoluble for these
values of a and b.

But y2 = x9+a?-b2 mod 4,
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and if we Jake a = — 1 mod 4 and 6 = 0 mod 2, then x = 1 mod 4.
Hence we have the first insoluble equation

tf = x8-fc8 ( 4 a - l ) 8 + 4kb\

Take a = 2 mod 4 and 6 = 1 mod 2, then a; — 1 mod 4, and hence the
insoluble equation

/ 8

Take a = 2 mod 4 and 6 = 0 mod 2, then & — 1 mod 4 or even; so if we
can find values of a and 6 satisfying these congruences, and also such that
x cannot be even,* then (8) is insoluble.

Now when A = 4 mod 8, and

if = x*+A

admits of even values for x, we have y == '2 mod 4, whence

A = 12 mod 16 or = 4 mod 32,

i.e. A ^ - 1 2 mod 82.

Hence the values of a and 6 needed are given by

-k3a?+kb2= - 1 2 mod 82,

from which we obtain

a = —ft—3 mod 8 and 6 = 2 mod 4,

and hence the insoluble equation

Finally, taking a = 1 mod 4 and 6 = 0 mod 2, then x — 8 mod 4 or
even. The equation (8) becomes, writing 4 a + l for a and 26 for 6,

z/2 = z8-F(4a+l)8+4A;6a = x3+A,

say, and x cannot be even if A = 5 mod 8. This gives us

4 a + l = 462+8ft mod 8,

and we have the insoluble equation

* We shall have frequent occasion to use equations of the form i/2 = x3 + ft, which do not
admit of even values for x. This is the case when ft •= 5 mod 8, ft = — 12 mod 82 and also
ft = - 1 6 or 82 mod 64.
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which is equivalent to the two equations

if = .r8-A-

In particular, by taking k = — 1, we find some of the known insoluble
equations if = x?+AB—B2, say, and our conditions become B ^ 0 mod 8,
and A and B have no common prime factor congruent to 8 mod 4. We thus
find the insoluble equations y*-\-k = a;8 where k = 9, 8, 12, 48, 91, 99.
and -k = 95, 47, 39, 11, 67, 58, 18, 20.

8. Taking now I = 2 in equation (1), and following the same pro-
cedure as before, we find the insoluble equations

if = x3-k3a8+Mb\

when (1) a = 2, 4 mod 8, 6 = 1 mod 2,

(2) a = 4 mod 8, 6 = 4 mod 8,

(8) a = 2+4(- l ) 4 ( *" 1 ) mod 16, 6 = 2 mod 4,

and k is odd, free from square factors and prime to 6. Also 6 5= 0 mod 8,
when (k/S) = 1, and a and 6 have no common prime factor q for which
{2k/q) = — 1 . As particular cases, when k = + 1, we find the insoluble
equations y*+k = a8, where k = 62, 98, and — k = 62, 46, 82, 66, 90, 90.

When I = 8, we find the insoluble equations

if = x*-k9as+2kb\

when (1) a = 1 mod 4, 6 = 0 mod 2,

(2) a = 2 mod 4, 6 = 1 mod 2,

(8) a = 2(-l)*<fr+8> mod 8, 6 = 2 mod 4,

(4) a = 5&-2(—l)46 mod 8, 6 = 0 mod 2,

where ft = 1 mod 4, free from square factors and prime to 86. Also
a and b have no common odd prime factor to q such that (3k/q) = — 1,
and 6 is prime to 8. When k = 1, we find the insoluble equations
y*~-k = xB, k = 75, 84.

Finally, when I = 6, we find the insoluble equations

if = x*-ksa9+Gkb\
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when , (1) a = — 2, 4 mod 8, 6 = 1 mod 2,

(2) a = 4 mod 8, 6 = 4 mod 8,

(8) a = 6+4(- l )"*- l > mod 16, 6 = 2 mod 4,

where k is an odd number possessing no square factors, and k and 6 are

prime to each other and to 8. Also a and b have no common prime

factor q, such that (6k/q) = — 1.

4. These results can be immediately extended to equations of higher
degrees. Thus we have the insoluble equation

y2 _ .X2n + l_k2a+la2n + l + k b ^

where a = 2 mod 4 and 6 = 1 mod 2, and k satisfies the conditions of
equation (8a). Further 2; i+l , a possible common factor of x—ka, and
(a^ft+i—£2H.+ia2n+iy x̂— â̂  plays the same part in the remaining condi-
tions that 3 does.

Another insoluble equation is

where a = — 1 mod 4, 6 = 0 mod 2, and with similar conditions to
those above. The proof of these equations is very simple. We give no
more of them as it is simply rewriting our previous results with slight
changes. We may, however, notice the insoluble equations

when (1), k = — 1—462 and b and 4-H + S have no common prime factors
congruent to 8 mod 4 ; (2) k = —1 + 1262, 6 is prime to 8 and 6 and
4n+3 have no common prime factors congruent to ± 5 mod 12 ; and
finally when k = 1 + 12(26-|-1)2 and 26 + 1 is prime to 8, and 26+1
and 4n+8 have no common prime factors congruent to ± 5 mod 12.

5. The preceding impossible equations which we have given are very
simple. We can obtain more complicated ones as follows. Suppose

Here x = — 1 mod 4, i.e., x = — 1, 3 mod 8.
If this equation can be written, in the two ways

2/2—262 = (x+a)(x2—ax+a*), where a = 3 mod 8, 6 = 1 mod 2,

and

if-8cP = (z+ c)(x2—cx+ c2), „ c = — 3 mod 8, d = 1 mod 2,
SBB. 2. VOL. 13 . NO. 1194. " F
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where our usual conditions are satisfied by a, b and c, d, we see that
x = — 1 mod 8 is excluded by the first form of the equation, while
x = 8 mod 8 is excluded by the second form. Hence the equation is
insoluble.

To find values for k, we have

We can easily find an indefinite number of solutions of this equation.
We easily find a = c mod 2, and take any values for a and c consistent
with this condition. We then split £ {cB—a8) into two factors p and q say,
and take

b—2d = q.

In particular we may take

2p = c—a and q =

or, again, 2p = cB—as and <? = 1.

Thus we find insoluble equations, provided that the value we find for b,
viz., £ (p-\-q) and the assumed value of a; and likewise d and c satisfy
our usual conditions.

As a particular case of this equation consider

y* = z8+45.

We note that x is prime to 8, and throwing the equation in the two forms

2/2-18 = 2

we see that when x ==•—1 mod 8, x2—8x+9 = 5 mod 8, and prime
to 8. This excludes x = — 1 mod 8. Similarly, when x = 8 mod 8,
from the second form of the equation. Hence it is insoluble.

By similar methods we can shew y2 = xz-\-k is insoluble for

k = — 24, 29, —86, 51, 59, 85, ± 88, —92, 98.

Many of these can also be proved by the methods introduced in the latter
part of the paper.

6. We can now give a tentative method for finding solutions of

y* = x»+k.
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We find x = p,q,r, ... mod 8. If the equation can be written in any of
the forms 0 q , « 7o O * , Q , n J o

if = x
3+a?—b2 or if = z 3 +a 3 ± 2b2,

we may be able to exclude x—p, q, ... mod 8, and are left with
x = s, ... mod 8.

We now carry out the same process with other moduli, say 3, 5, 7, &c,
giving UB x = t, ... mod 3, &c. We then gather our results together
and find x = A, B, ... mod N, where the density of the values of x is
considerably diminished. We now test the values of x as follows. We
take another modulus M say, find the residues of x mod M and reject
those for which xd-\-k is a non-quadratic residue of M. We may also
find additional information, if the equation can be written in the form

v/2 + 2, 3, 5, ... Mb2 = xz+d\

Finally, if the necessary conditions are satisfied for many moduli M, we
test the value of x by actual substitution. When h = — 31, we find that
there are no solutions with x < 109.

7. We shall now pass on to other methods, and give the first direct
method for determining in many cases, sufficient conditions for the in-
solubility of our equation. We shall also shew the existence of new
classes of equations of our type admitting a limited number only of
solutions.

It would be interesting to know, if the method given below was that
used by Fermat for his equation z/2+2 = x3. He knew, it is thought,
that all factors of numbers of the form a-2+262 are of the same form, but
further proof is required before one can say that the complete solution of
his equation is given by

As a matter of fact, Euler* himself has fallen into error on this point,
with a similar equation. It is very curious that the application of ideal
numbers has been overlooked, especially as Pepin'st paper is chiefly con-
cerned with the equation

2+k2 = xm,

and DirichletJ had considered similar equations.

* Algebra, Pb. 2, Chap. 12.
f Liouville, 1875.
X Collected Works, " De Quelques Equations du cinqui&me degrV Vol. 1, p. 31.

F 2
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8. We suppose k negative, free from square factors, and congruent to
2, 8, mod 4, so that x is prime to 2k. Further let h, the number of
classes of ideal numbers of determinant k, which is here the number of
properly primitive classes of determinant k, be not divisible by 8. Then
the equation has no solutions, unless — k = 8a2 + 1, when it has but one.

Since y3—k = a;8, writing 6 = */k, we have

(y+6)(y-6) = z8.

But any common factor of y+6 and y—6 is a factor of 26, and since x is
prime to 20, it follows that any prime ideal factor of x cannot be a factor
both of y+6 and y—6; consequently its cube must be a factor either of
y+6 or of y—6. And since the only units in the domain of 6 are ± 1,
and i t when k = — 1, and as —1 and ±« can be absorbed in T?, we
obtain «,

y+6 = T?f

where ^ and T2
 a r e ideal numbers in the domain of 6. But since

h ^ 0 mod 8, 21! and Ta are primary numbers, and we can write

T1 = a-\-b6, T2 = a-b6,

and so y+6 = (aH-60)8, and a; = a2—kb2.

Therefore 1 = 6(8

whence i = p̂ 1,

and - & = Sft2±l,

also x = 4aa + 1.

As illustrations,

for A; = — 2, the only solution is x = 8, y = 5,

„ fc = - 1 8 , „ „ a? = 17, y = 70,

„ A: = - 7 4 , „ „ x = 99, y = 985,

while there are none for —k = 5, 6, 10, 14, 17, 21, 22, 80, 83, 84, 37, 41,.
42, 46, 57, 58, 65, 66, 69, 70, 78, 77, 78, 82, 85, 86, 90, 98, 94, 97.

Similar results hold when k == 5 mod 8, k =£ — 8, for which h is
equal to the number of improperly primitive classes of determinant k (or
$ the number of properly primitive classes of determinant k). Also when
k = 1 mod 8, for which h is equal to the number of properly primitive



1912.] THE PIOPHANTINE EQUATION y*—k = xB. 69

classes of determinant k. But now there is great difficulty in dealing
with the case of x being even, though our method applies to the odd
values of x.

We have y+B = {a+b<p)*,

where 1<f> = — l + y ^ ' ,

and x = d2-ab+\{l-k)b\

Therefore 8 = 6 [8(2ft-6)2+fc&2].

Hence either b — + 1 and —k = 8(2a ± l)a + 8,

or 6 = + 2 and —fr = 8 ( a ± l ) a ± l .

Thus the equation is insoluble for

— k = 43, 51, 91.

Also .— k = 11 gives only x = 8, y = 4, and .» = 15, y = 58,

— k = 19 „ x = 7, y = 18,

— A- = 85 „ x = 11, y = 36,

— & = 67 „ a; = 23, ?/ = 110.

These results can be extended to equations of the form

yt-kf = X\

where / is such that x is prime to 2kf, and k satisfies the previous condi-
tions. Thus when k = 2, 8 mod 4, we must have

f=b(3a?+kb2),

x = a2—kb*,

and when k = 1, 5 mod 8, A; =£ — 8,

8 / = 2 2 ]

and the equation either has no solutions or only a limited number.
In particular, when / = 4, and k = 2, 8 mod 4, # is prime to 2/c,

whence 4 = 6(8d2+A;62), which is easily seen to require & = ^ 1 and
— & = 3a2 + 4. Thus we have no solutions of y2-\-16k = xa for
k = 1, 2, 5, 6.

Or, again, when fc = 5 mod 8, a n d / = 2, x is prime to 2&, hence
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hence, if b = T 1, - k = 8(2a±l)*± 16,

6 = + 2 , - & = 8 ( a ± l ) 2 + 2,

6 = - 4 , - 4 f c = 8 ( a + 2 ) 2 + l .

Thus, for ?y2+4fc = a;8,

k = 11 gives only a; = 5, y = 9,

A; = 19 „ a* = 5, y = 7, and a? = 101, ?/ = 1015.

Other illustrations are given by

if+52 = a8 and ya+68 = a;a.

For, if x is even, a; = 2 mod 4, and this value is excluded by putting the
equations under the forms

?/a+25 = (a;-3)(aj2 4-3a5+9) and ?/2+4 = (a:-4)(a:2+4z+16),

and noting that x —8 = 8 mod 4,

and that z2+4a;+16 = 12 mod 16.

Further, h for 18 or 17, ^ 0 mod 8, and 2 = b (a2+kb2) for — k = 18,17
has no solutions, and hence the equations have none.

9. The simplicity of these results is due to the fact that the only units
are ± 1, except for the determinants — 1, where no inconvenience is
caused, and —8 which was excluded from the discussion. We have, how-
ever, interesting results when the units must be taken into account.

Thus, let y2—kf2 = a:8, where k = 2, 8 mod 4, free from square
factors and positive, h ̂  0 mod 8, and / is such that x is prime to 2kf
(e.g., if / = 1). Also let the unit for which XJ* hab its least non-zero
value be given by T2—kU2 = 1. We easily find

x = a?—kb2 and y+f</k =

which will give none, or a finite number of values for x ; or

This is fairly obvious if T + XJ^/k is the "fundamental unit e. If it is not,

• We refer to this as the flrst solution, and similarly for the equation T* — klP= 4.
Solutions for the first equation may be found in the tables at end of Vol. 1 of Legendre's
Thtorie des Nombres. For T2-kZF= 4, see Cayley, Crelle, Vol. 53, p. 871.
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putting ee1 = — 1, we have

Also e = e8e2, and e8 can be absorbed in {a

We now consider different cases arising from the residues of kf2 mod 9.
Thus, let kf = 4, 7 mod 9. This gives x = 0 mod 8, and k = 1 mod 8.

Hence x = aa—62 = 0 mod 8,

/ = U(a*+9kab2)+T (Qa*b+kb8).

But since T2— &U2 = 1,

and A; = 1 mod 8 ; U = 0 mod 8 and T2 = 1 mod 9.

Hence / = Tkb* mod 8

= Tkb „

Thus b = Tf

and a2 = 1 „

Hence / = Ua*+ST*a*f+Tif9k mod 9,

or f=ua*+*f+fk

or O=?7a
3+/(2+A/2)

Hence our equation is insoluble if

fe/9 = 4 mod 9, and D" = 0 mod 9,

kf = l mod 9, and U = ± 8 mod 9.

And in particular the equations

y*-k = x», ft = 7, 84, 58, 70.

If, however, k = 1, 5 mod 8, we find

x =

and also the same equation with Tx = 1, Ĉ  = 0. We dispose of this by-
saying, it can give only a finite number of values for x.
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Putting a =

b = blt

we find

- 1 7 = Ult

2 / = W+8&a&2) + :T(8

x = a2—J2 = 0 mod 8,

mod 9,

Hence C7 = 0 mod 8, T2 = 4 mod 9, b = — Tf mod 8,

and 0 = Ua*-f(5+lkf) mod 9.

Hence our equation is insoluble if

kf = 4 mod 9 and U = 0 mod 9,

hf = l mod 9 and *7 = ± 8 mod 9.

It will be noticed that these results are of the same form as the previous
ones. We thus find the particular equations

For

and

Then

and either

y*-k = x\ k = 61, 85.

= —4,—l mod 9, h = 2, 8 mod 4,

T*-JcU*=l.

T a +l7 a = l mod 8,

T or IT = 0 mod 8.

Carrying out the same process as before, we find if T = 0 mod 8, our
equation is insoluble if

kf = — ± mod 9 and T = ± 8 mod 9,

kf = —l mod 9 and T = 0 mod 9.

We find exactly the same results when U^= 0 mod 8, if we replace T
by U in the above conditions. We also find the same results when

k = 1 mod 4,

but of course T and If are now given by

= 4.



1912.] THR DIOPHANTINF. EQUATION ?/2—A: = a;3. 78

We now find the particular insoluble equations

if-k = x8, k = 14, 28, 59, 83, 86.

For kf = ± 8 mod 9, i.e., f = 1 mod 3, and k = ±S mod 9,
and for k = 2, 8 mod 4, we have, as before,

T2-kU*= 1,

/ = ma*+&kab*)+Ti&a*b+ktf) mod 9.

Thus our equation is impossible if U = 0 mod 8. If this be not the case,
and we take k = — 8 mod 9, we find

a =fU mod 3.

Thus f = fU*+8bfU*T—BTb* mod 9,

or fa—fU4) = S&ZW2 —d2) mod 9.

And since biU^—b2) = 0 mod 8 as U^O mod 3, our equation is in-
soluble if fUA^ 1 mod 9, i.e., / ^ ± C / u i o d O .

When k = 1 mod 4, we find by putting 2/ for / , the conditions
U = 0 mod 8 o r 2 / ^ ± 1 7 mod 9, where T2-kU2 - 4.

In particular we have y2—k = xn impossible for

k = 6, 21, 42, 69, 78, 87, 98.

10. Another illustration is given by if—60 = xs. The even values of
x satisfy x = 2 mod 4, and this is excluded by putting the equation in
the form .•> , . ,

-+4 = (a;

and noticing that the last factor is congruent to 12 mod 16. Hence x is
prime to 80, and h for determinant 15 is 4. Also / = 2, U = ± 1, and

fU2 ^ ± 1 mod 9. Hence the impossibility of the equation.
And finally consider y2—27 = xs. Firstly, let x be not divisible

by 3. Then we have

( T = ± 2, U=±l\
\T-±1, U=0 J '

Thus 8 =

For 21 = ± 2, this gives a = 0 mod 8, contrary to our supposition
For U = 0, there are no solutions.



74 MR. L. J. MORDELL [Dec. 14,

Secondly, put z=dg, ij = 9i/, then

Thus V3 *+l = (T+ U"V3)(a+V3)8,

or 1 =

For T — ±% this gives 1 = ± 2a8 mod 9, which is absurd.
For T = ± 1, this gives x' = — 8.

11. Other results may be found by considering congruences to mod 7.

?/2—&/a = x
3, k = 2, 8 mod 4,

where A; and/satisfy our usual conditions and kf2 = 4 mod 7, we easily

a; = a2—kb2 = 0 mod 7,

or a2/2 = 462 mod 7.

Thus a = 2c „

6 = ±/c „

Also / = U(a*+Skab2) +2T(8a

and we can shew that this equation is impossible if U = 0 mod 7. We
have then . _ „, 77ih

/ = rCSa^+ftfi8) mod 7,
or / = ± ( 1 2 / + & / 3 ) c 8 mod 7,

or 1 = ± 2c8 mod 7,

which is absurd.
The same result holds when k = 1 mod 4, but of course U is now

given by T2-kU2 = 4.

12. We can also prove our results by the theory of the binary cubic,*
which also has the advantage of throwing additional light upon our ex-
ceptional case, when the class number is divisible by 8.

Thus, let y2—kf* = x8, where k possesses no square factors, and / is
such that x is prime to 2kf. Then when this equation has solutions, /
can be properly represented by a binary cubic of determinant 4ft (or what
comes to the same thing, such cubics exist whose first coefficient is / ) ;

• All that we need is contained in a paper by Arndt in Crelle, Vol. 58, p. 309.
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and conversely, if such representations of / exist, our equation has
solutions.

Taking the latter part first, consider the binary cubic (/, b, c, d) of
determinant 4k. Calling its Hessian (F, G, H), where

F=b*-fc, 2G = bc-fd, H = C*-bd, k = G2-FH,

we have by equating the coefficients of a?3 in the syzygy of the cubic,

{bF-fGf-kf = F3,

which proves the second part.
Now suppose we have a solution of our original equation in the form

q*—kf* = FB. Hence we can find binary quadratics of determinant k,
whose first coefficient is F. Let (F, G, H) be one of these, where we
suppose G given by fG = —q mod F. We shall now shew that we can
find a binary cubic (/, b, c, d) of determinant 4k, with {F, G, H) as its
Hessian. It will be found that b, c, d are given by

It is easily seen that b is an integer. Also

fG*) = f(k-\-G2?-4kfG2 mod F\

= 0

And these two factors have no factor in common with F since 4qG is
prime to F; and remembering fG = —q mod F, we find

kf+2qG+fG2 = 0 mod F,

and hence mod F2, so that c is an integer. Similarly, we can shew that d
is an integer, which proves the first part of our theorem.

18. When k is negative, and the class number (now and hereafter we
mean by this the number of properly primitive classes of binary quad-
ratics of determinant k) is not divisible by 3, the binary cubics are com-
prised in the class (0, 1, 0, k), and hence we have either none or a limited
number of proper representations of / , and hence none or a limited number
of solutions of our original equation.

When k is positive, there are three classes of binary cubics corre-
sponding to our given Hessian, and when the class number is not divisible
by 3, only one of the classes consists of reducible cubics. while the other
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two are improperly equivalent, and it suffices to consider only one of
them.

Again, when k is negative and congruent to 2, 8 mod 4, and the index
of irregularity for k ^ 0 mod 8, then besides the principal form, there
will be two other subtriplicate binary quadratic forms of determinant k.
These two will be improperly equivalent, as also the binary cubics corre-
sponding to them, and it suffices to consider only one of the latter. Now,
if q, p is a solution of q2—k=pa, (1, 0, — p, Zq) is a binary cubic of
determinant 4&, and if p is not represented by the principal quadratic
form, which occurs when — k = 8a2 ± 1, p = 4a2 ± 1, ± q = Qa* ± 8a,
this cubic and the one derived from it by changing the sign of q, consti-
tute our classes of irreducible cubics of determinant 4&. Hence under our
conditions, when — &=£ 8a2+l» all the solutions of yi—kf2 = x9 are
given by x=pni2—2qmn-\-p2n2, where m8—8jp?;i/i2+2gr;i3 = / . It is easily
seen, that whatever be the index of irregularity, there will always be a
finite number of expressions of this sort, giving all the values of x. When
— k=- 8a2 ± 1 , there are a finite number of others given by the above
expressions with p = 4a2 + 1, +q = 8a,8 + Sa, since the cubic has then
the factor m ^ 2an.

We may note that in all cases, the values of m and n furnish us with
solutions of our equation.

Thus k p q m n x y
( 1 7 , - 2 , 8, - 2 8 , 26, 5284, 878661

* ~ i 24, - 2 , 4, - 8 1 , 28, 8158, 786844

Now suppose k is negative and equal to — 8>i—8, n =£0, then it will
be found that the classes (2w-f-l, +1 ,4) , produce by triplication the
principal class, and these three classes will be the only ones to possess
this property if the index of irregularity is not divisible by 8, which of
course includes the case of regular determinants. The cubics correspond-
ing to these classes are (n, + 1 , —2, 0) and (0, 1, 0, k), and are all re-
ducible. Hence there will be a finite number of representations of / by
the cubics ; and we have the interesting result that the equation

where k = — 8 mod 8,

negative, and free from square factors, and / is such that x is prime to
2kf, and also the index of irregularity for proper binary quadratics of
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determinant +&, ^0 mod 34 has none or limited number of solutions.*
The case n = 0 is no exception, for then there is only one properly
primitive class. In particular when / = 1, the only solutions are when

871+8 = 3ft2 ± 1, for which x = ±a2 ± 1,

or 8n+8 = 3a2 + 8, „ x = ft2 ± 2.

Instead of y2—kf2 = a;3, we might have considered y2—k = x3, where
k may have square factors, but is such that x is prime to Zk. It can be
shewn in exactly the same way, that the solution now depends upon the
representation of unity, by binary cubics of determinant 4ft.

I have since shewn that the solution of y2 = x3-\-Ax+B, depends
upon the representation of unity by binary quartics with invariants
0a. 93 = — 44, — 4B.

14. At present, there is no general method of determining whether or
not a given number can be represented by a given binary cubic ; but, as
before, we can obtain interesting results by considering congruences to

various moduli.
Let (F, G, H) be a subtriplicate binary quadratic of determinant k.

This class belongs to the principal genus, and hence we can take

F =1 = G mod 3.

If (a, b, c, d) is the cubic having this for its Hessian, we find if

a=p, b=p+q, cEE(k+l)p+2q, d =

to mod 9. We may suppose that F is prime to Zkp, and incapable of
representation by the principal class, as the cubic is then reducible, ana
we can easily see if it supplies us with values of x. Now let kf2 == 1 mod &
in our equation, then k = 1 mod 3 and q2—p2 = 1 mod 3, whence

p = 0 mod 3, q = + 1 mod 9.

Taking the positive sign (the negative one leads to the same results), we
have from the representation of / by this cubic

s =f mod 9.

Taking / = 1 mod 3 (the value / = — 1 mod 3 leads to the same re-

* For application to irregular determinants, see note in Messenger of Math., Dec. 1912.
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suits), we find n == 1 mod 8, whence

pm*+Sm2+Qm+4p+3+k =f mod 9,

or m*+ls(p+6)w = i ( / - 4 p - f t - 8 ) mod 8,

and if p = 0 mod 9, this congruence is impossible if

f-k-9 = 8 mod 9,

or f-kf=-Sf mod 9,

or fc/2 = 4 mod 9.

This applies to all the values of p, and if it holds for all the subtriplicate
binary quadratics, our equation y2—kf2 = xa is impossible.

So, if p = ± 8 mod 9, the corresponding congruence is impossible if
kf = 7 mod 9.

Similarly, if F = — 1 mod 8, we find q = 0 mod 8, and that the
above results hold if jp is replaced by q.

Proceeding similarly with the various values of kf2, we have the
following scheme for impossible equations :—

kf2 = 4 mod 9 and p = 0 mod 9 (or q if F = — 1 mod 8),

= ± 8 „
kf=-S „ 1 > ^ ± / »
kf = 8 „ ^ = 0 mod 8.

Also q*—kp2 = FB, where F = 1 mod 8, except in the first two cases
where we may take F = — 1 mod 8. Further, F is prime to 2kp.
When k is negative, we can take F to be a prime, and there will be only
two values for p, differing only in sign. Thus for k = — 29 and
ga+29#a = 1 2 5 , q = 8, and for ft = - 38, q*+38p2 = 848 and p = S,
and hence the two equations y2—k = x3, — k = 29, 88 are impossible,
as the principal binary quadratic form of determinant -\-k gives rise to a
reducible cubic giving no values of x, and further there are only two
irreducible cubics (which are improperly equivalent) arising from two im-
properly equivalent quadratics.

15. When k is positive, there are an infinite number of values for p.
In particular, when the class number is not divisible by 8, we can take F
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equal to 1, and hence q2—kp2 = 1. If either q ov p in the first solution
is divisible by 9, this will be the case with every solution, but if q or
p = ± 3 mod 9, this will also be the case with all solutions except those

The corresponding cubic, however, belongs to the reducible class, and our
scheme will be found to agree with the results of § 9.

When k = 5 mod 8, we have for kf2 = 4 mod 9, the condition
p = 0 mod 9, where q, p is the first solution of q*—kp2 = 1. But since
the class number is not divisible by 3, T and U are both odd in the first
solution of T*—kU2 = 4, and we have the relation

Hence 82? = U(ST2+kU2), but U = 0 mod 3, and hence

p = 0 mod 9,

so that our equation y^—kf2 = x3 is impossible. It is easily seen that a
similar result holds when kf2 = 2, + 3 mod 9.

16. As before we can obtain some results by considering congruences
to mod 7. Thus, let (F, G, H) be the Hessian, where we may take
F == 1, 2 or 4 mod 7 and G = 1 mod 7. Then for the representation
of / by the corresponding cubic, we have

(Fw+Gn+n</kf (q +p*/k) - (Fm+Gn—?i*/k)3(q —p^/k) = 2F9f<s/k,

where q2—kp2 = F3.

If kf2 = 4 mod 7, then since F3 = 1 mod 7, kp2 = 0, 1 mod 7, and
we can shew that if p = 0 mod 7, our equation is impossible. For then
q = ± 1 mod 7, /V& = ± 2 mod 7, and hence the above equation can
be written P3+Q3 = 4 mod 7, which is impossible.

If k is positive, we may take F = 1, and if in the first solution
p E= 0 mod 7, this will be true for all the values of p, and our equation
is impossible. In particular if k = 5 mod 8, then since the class
number is supposed not divisible by 3, we have for the first solution^?, q,

8p = U(3T2+kU2),

where T, U is the first solution of

T2-kU2-4.

But since kf2 = 4 mod 7, we find either [ 7 = 0 mod 7, or U = ±f,
T E= + 1 mod 7, and in both cases p = 0 mod 7, and the equation is
insoluble.



80 THE DIOPHANTINE EQUATION i/—k = a;8.

17. We can now draw up a scheme, giving the values of k between
± 100 for which y2—k = x* is soluble or not. Thus, for

-k = 7, 15, 18, 20, 28, 25, 26, 28, 89, 40, 45, 47, 48, 58, 54, 55, 56, 60,

61, 68, 71, 72, 79, 88, 87, 89, 95, 100,

there are, I believe, an infinite number of solutions. For the other values
ol —k between 1 and 100 there are none or a finite number of solutions,
except when — k = 81, 84, and in these cases, whether or not the equa-
tions are insoluble I cannot say. When

k = 1, 4, 6, 7, 11, 18, 14, 16, 20, 21, 28, 25, 27, 29, 82, 34, 89, 42, 45,

46, 47, 49, 51, 58, 58, 59, 60, 61, 62, 66, 67, 69, 70, 75, 77, 78,

88, 84, 85, 86, 87, 88, 90, 98, 95, 96,

the equations are insoluble or admit only a limited number of solutions.
For the remaining values of k, there are an infinite number of solutions,
except when k = 74, in which case nothing can be said about the equa-
tion. When k is a perfect square, we may note that the solution* of
y* = xB+k involves that of x3+ys = 2\/k and vice versa. We have
made use of this when k — 1, 4, . . . .

I take this opportunity of acknowledging my great indebtedness to the
referees who have suggested many improvements.

* Due to Lucas, I believe, Nouvelles Annales, 1878, p. 425.


