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On the Existence of a Root of a Rational Integral Equation.
By E. B. ELLIOTT. Read and received March 8th, 1894.

1. It maybe that a proof, not depending on the theory of functions
of a complex variable, of the theorem that every rational integral
algebraic equation has a root is still a desideratum. It is at all events
worth while to examine whether such proofs as have been given are
or can be made sound. I have recently been studying two simple
apparent proofs depending on the theory of elimination, one by the
late Professor Clifford (Math. Papers, p. 20; Gamb. Proceedings,
Vol. ii.), and one by Mr. J. C. Malet (Transactions of the Royal Irish
Academy, Vol. xxvi.), and find both to be wanting in completeness.
I have also, and I hope successfully, endeavoured to construct a proof
of the same character free from the corresponding defects.*

Clifford's method is to show that a quadratic divisor x%+px + q of

aox
H + ajaj1-1+OJOJ"-2 + ... + a,,

can be found if a root q exists of a certain equation of degree
U n » ̂ e r e s u ^ °^ eliminating p between JM" = 0 and N = 0,

2
where Mx + N is the remainder when the w-ic is divided by the
quadratic, the corresponding p being the common root of the equa-
tions M = 0, N = 0, with that value inserted for q in them. Now, n

being m times even, i.e., of the form 2'" X an odd number, n ' n ~ ' is
a

only m—1 times even. Thus the argument is that, if every equation
of degree m—1 times even has a root, every equation of degree m
times even has a pair of roots. Now every equation of odd degree
with real coefficients has a root. Hence every equation with real
coefficients of degree once even has a root. It is then concluded by
induction that every equation whatever has a root.

The successs of the induction is considerably interfered with by
the question of imaginary roots and coefficients. There is, however,
a far more fundamental objection to the validity of the method.
Everything depends cm the uniqueness of the value of p found as
corresponding to a known q. There is no reason to assume that, when
the g-eliminant of M 'and N vanishes, the G.C.M. of M and N is
linear. What is proved as a basis for mathematical induction is at

• Cf. Gordan, Math. Ann., x., pp. 573, &c, for a proof in which the essential
argument is similar. [June, 1894.] .'
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most that an equation of degree n = 2m x odd number has a root, if
one of degree 2m"1xodd number has one, and if every equation of
degree less than n—1 has.

The idea that the vanishing of the eliminant of u and v is sufficient
to ensure that u = 0, v = 0 have a common root is one altogether
subsequent to and dependent upon that of the fact that an equation
has roots. The eliminant approached without previous idea of roots
is, as will be seen later, the criterion only for a common factor of
unknown degree of u and v. To assume that such a common factor
implies a common root or roots is to assume the theorem of which a
proof is desired.

2. Mr. Malet's argument is almost identical, though different in

analytical form. His method is practically to show that p is deter-

mined if an equation of degree n\n~~ ) can be solved, and that a;9,
a

where a; is a root, then follows as the common root of two equations.
His induction proceeds exactly as Clifford's. His tacit assumption
which needs justification is that of the determinateness of a common
root of two equations when p is known, just as Clifford's was that of
the determinateness of p when q is known. He does not ignore the
question of the imaginary.

In the following articles I do not endeavour to perfect either of the
two proofs criticised in the form in which it stands, but find it con-
venient to adopt a somewhat different (and in one respect more
cumbrous) analysis leading to the same essential argument.

3. Since the ordinary theory of the order of eliminants is based on
the assumption that an equation of the w01 degree has n roots, it is
in the first place necessary to have a clear idea of what is necessitated
by the vanishing of the dialytic determinant of two forms when we
are not entitled to make any such assumption.

For simplicity's sake, I write down only

b e d

d

a b o d e

a b' c d'

a b' c d'

a b' c d'

a b' c' d'
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the dialytic determinant of the quartic and cubic

ax*+bx*+ex2+dx+e,

the argument for this case applying generally.

It is convenient to consider the determinant from Euler's rather
than Sylvester's point of view. Its vanishing necessitates that
yv y.2, ya, yi and #„ z2, zs, not all zero, exist, such that

azx — a'yu

czx + bz% + aza = cyx + b'y%

dzx + cz% + bzs = d'y,

ezx+d«a + C2;8 = d'y% + c'y,

i.e., that an auxiliary cubic yxa^+... and quadratic ^as'-H... exist,
such that

and this implies that
ax* +bx*+ex* + dx + e,

bW + cx+d'

have a common measure of the first or some higher degree in x.

Thus in all cases the vanishing of the dialytic determinant of two
binary forms expresses that those forms have a common factor.

In case the two forms can be expressed as products of linear
factors, the product of all differences between roots of the one and
roots of the other, made integral by the smallest adequate powers of
a and a' as factors, is, by the usual theoxy, of the same order in the
coefficients as the dialytic determinant, and expresses by its vanishing
the same property. The two are then in such a case identical.
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4. Now consider the dialytic determinant

A =

,_ap", a,,_ip, a,,

aopn

a,,, aiP
n aoP

n

aoP"

of aoP

and a

The condition A = 0, if it can be satisfied by a value of p, will
necessitate that these two forms with that value of p inserted in them
have a common factor involving z.

A is of degree 2n* in p. To examine its form, let us for a moment
take for a0, a,, ... a,, the coefficients â , a[, ... a'n in ari equation

= 0,

•which has been so formed as to have n roots. This imposes no
relation on a£, a[, ... an. Otherwise . a£, as,, xt, ... xu, of which they
are functions, must be connected by a relation, whereas they may be
taken absolutely independent of each other. Thus the form of A is
not affected by the substitutions.*

• [This must not be misunderstood. To say that no relation connects an, ai,"... a,'
is not to say that there is no restriction upon t i e values of those letters. That there
is no restriction is what we are about to prove.

The distinction may be illustrated by reference to other theories. Thus, for in-
stance, no relation connects the coefficients in azs + 2A# + 6<= 0 when its roots,
supposed to exist, are real. Otherwise three perfectly arbitrary real quantities, a
and £,, x.t the two roots, are connected by a relation. But there is a restriction on
the values of a, b, e; viz., their values must be such that ac— 48 is negative. Any
function of 0, b, 0 and other letters, which we may call p, <r, T, ..., will have its
algebraical form in all the letters perfectly independent of any such restriction on
the ranges of values to which we may consider them open, though a relalinji in
^heux .might make the form special. The question in the text is one of algebraical
form in certain letters, and not of arithmetical form when numbers are substituted
for those letters.]



1894.] Root of a Rational Integral Equation. 177

Now, when two equations have numbers of roots indicated by their
degrees, their dialytic determinant is the product of all the differences
between a root of one and a root of the other, made integral by a
product of the lowest adequate powers of their leading coefficients.

The dialytic determinant A' of

and anz" + a» - ipzn~l + •

is then equivalent, but perhaps for a numerical and sign multiplier, to

r and « having separately given them all values from 1 to n
inclusive, i.e., to

a'*>Il(xrxt-p*).

Now, in this product, a factor x\—p% in which r = s occurs once,
but a factor in which r and s are different occurs twice, once as
XrXf—p*, and once as x,xr—p%. Thus A' is equivalent to

i.e., to / (p) / ( —p) X perfect square,

the squared function being of degree >• —^ in p1, with coefficients

which, by the theory of symmetric functions, are rational and integral
in ĉ , au a£, ... an.

This form is preserved when for a'^ a[,... a'm are written a,, fl^, ... an,
as above explained. Thus a factor of A is a rational integral func-
tion in p1 of degree > — ' , its coefficients being rational integral

J
functions of a^ a^, ... an.

Consequently, if a certain rational integral equation of degree

—*-jr—£ in p1 has a root, the two forms

, M.,p .zH'l +

with that value of p* substituted in them, have a common factor.
VOL. xxv.—NO. 486. N
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5. Now, every equation of odd degree with real coefficients has
certainly a real root. We proceed to consider an equation,

with real coefficients whose degree n is twice an odd number,

= 2 (2m +1), say. For this n ( w ~ 1 ) = (2m +1) (4m +1) is odd.

By the above a real />*, and consequently a l'eal or purely imaginary
p, exists, which makes

have a common factor. The two cases must be regarded separately.

Firstly, if p* be positive, and so p real, the two expressions in z
have real coefficients. Their Gr.C.M. (proved to exist) has then real
coefficients, as the ordinary process for finding it necessitates. Call
it P (z), and let Q (z) be the complementary factor of aop'V +
Then, writing x for pz, the equation

aox
n + aix

n •* + ...+a,, = 0

is equivalent to P ( — J Q( — ) = 0 ,

or, say, to P' (x) Q'(x) = 0,

the coefficients in P1 and Q' being all real.

Secondly, if p* be negative, and so p a pure imaginary r v — 1 , the
two forms in z may be written, multiplying the second by (v/ —1)",
i.e., by —1, and putting £ for z</—1,

These two expressions in '(, with real coefficients have a common
factor which can be found by the G.C.M. process. Call it P (£) and
let Q (() be the complementary factor of the first form. The
coefficients in these are found as real quantities. Thus, writing

— for £, the equation
r
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is the same as P (—) Q (—\ = 0,

or, say, as ' .F (a;) Q'(x) — 0,

where the coefficients in the factors are real.

6. Two cases again arise. Either P' may be of degree w, i.e., be
the whole form, and Q' a constant, or P' may be of degree between
1 and n—1 inclusive.

The former case would mean that the two equations
1*"- 1+. . .+a / , = 0,

P z'-1 + ... + ao,>" = 0,

or the two equations

as the case may be, are identical. This being so, each of the first
pair would be

+2ainJn = 0,

1
which is an equation of degree —, i.e. odd degree, in z H— ; or else
each of the second pair would be

which vanishes when £ = ± v^—1,

since n, n—4, w—8, ... 2 are twice odd numbers, and n - 2 , w—6,
n—10, ... 4 are twice even numbers. In this case our equation of
degree n has the roots ± r \ / — 1 . In the former case, a real value of

z+ — is given by an equation of odd degree |« , and consequently two
z

values, real or of the form o+/3 y/ — 1, of zt i.e., two x*oots ps, real or
of that imaginary form, of our equation in x.

In the more general case, P* and Q' have complementary degrees
both between 1 and n — 1 inclusive. Now, these degrees cannot both
be divisible by 4. Otherwise their sum n would be, as by supposition

N 2
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it is not. Either then one of the two degrees must be odd, that of
Q', say, in which case Q' = 0 has a real root, or one at least, that of
Q, say again, must be twice an odd number less than the odd num-
ber \n.

Thus an equation aoar" + ... + a,, = 0,

whose coefficients are real and whose degree is twice an odd number
2m+l , has certainly a root, real or of the form a+/?\/—1, if every
equation Q' = 0 whose coefficients are real and whose degree is
twice an odd number less than 2m -f-1 has. Now a quadratic, whose
degree is twice the smallesc odd number, can be solved, its two roots
being real or of the form a+fi>/—1. Thus induction establishes
that every equation with real coefficients whose degree is twice an
odd number has a root, real or of the form a + / 3 v / - 1 .

7. The next step in the argument is to prove that every equation
of odd degree whose coefficients are of the form a+b y/ — 1 has a root,
real or of that form.

If f (x) + S~l <p (x) = 0

be such an equation, where the coefficients of / (a;) and <p (x) are real,

- ^ ^ 1 0 (»)} = 0

is an equation of degree twice an odd number with, real coefficients.
It has then a root, real or-of the form a+ftv'—1. This root must
make one of the two factors vanish, for the product of two non-
vanishing quantities cannot vanish even though both be of the
form

If the root be real and make

it must make f(x) = 0 and <p (x) = 0 separately, and so also be a
r 0 O t 0 f /

If, on the other hand, it be of the form a+fl>/—l, there must also
be a conjugate root a— /5\/— 1; and if
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be the factor which a+/3\/—1 makes vanish, then a—/3\/—1 satisfies

/(a) + v ^ l ? ( a ) = 0,

for, if A + B v/^1 - - /^T (C+D N / ^ I ) = 0,

then ^

Thus every equation of odd degree with coefficients of the form
a + b </ — 1 has a root, real or of the form a +/3 >/ — 1.

8. Now, let it be assumed that every equation whose degree is m— 1
or fewer times even, i.e., contains the factor 2, if at all, not more than
m — 1 times, and whose coefficients are real or of the form a + b</—1
has a root, real or of the form a + /3v — 1.

Consider the equation

ao(C
n + a1a!"-1+...+an = O (1),

in which a0, Oj,... a,, are real, or of the form a + 6 ^ — 1, and in which

i.e., is m times even.

By § 4 and our assumption, a value of p1, and consequently two
values of p, real or of the form a-f/3\/ —1, given as a root of an
equation of degree

2

which is only m—1 times even, exists, the substitution of which in

anz"+ a,,_ipzM-| + .

makes them have a common factor. This common factor, found by
the ordinary G.C.M. process, will have coefficients real or of the
form a + b*/ — 1.

If this G.C.M. be of degree n, the two expressions are identical, but
for a factor free from z, with

o0p» (s" + l) +alP"-* (z»-l + z) +a 4 p - a (zn-2+z*) +...,

and this equated to zero is an equation of degree £n, i.e., m—1 times

even only, in z+ —, and is accordingly by our present assumption
z
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satisfied by a value of z-\ , real or of the form a+/3v/—1, and
z

consequently by two values of z real or of that form. In other words,
the equation (1) is satisfied by two values pz of x, real or of the form

On the other hand, if the G.C.M. be of degree less than n, call it
P (z). Then the left-hand side of equation (1) has the factor

P (—), or, say P'(#). Let Q' (x) be the complementary factor.
\p I

We have thus (1) resolved into

the coefficients in P ' and Q being real or of the form a+b-J—1.

Now the degrees of V and Q' cannot both be divisible by 2m+1, for
their sum n is only divisible by 2"'. One or the other of them, the
degree of Q\ say, must then be TO times even at most.

On the assumption therefore that every equation of degree TO—1
or fewer times even, and that every equation of degree TO times even
and less than n, has a root, it is proved that any equation of degree n,
which is TO times even, has a root.

Take now 2™ the smallest number which is m times even. An
equation of this degree has, by the same argument, a root if one of
degree 2"1"1 (2m—1), which is TO—1 times even, has a root, and if
every equation Q' (x) = 0 of degree less than 2m has. On our
assumption this is the case, no such degree being so many as m times
even* We thus proceed to degrees 2m .3 , 2m. 5, ... 2"* (2p + l ) , ..., so
that the following general statement is accurate.

" If every equation with coefficients real or of the form a+ 6 v—T,
whose degree is m—1 or fewer times even, has a root, real or of the
form a+fi-Z-l, then every equation with such coefficients and of
degree TO times even has such a root."

In this TO may be any positive integer, unity included. Now, the
last article has established the existence of a root for odd degrees,
i.e., for the case TO = 1. It follows, then, successively for the cases
TO = 2, 3, 4, ..., i.e., for equations of degrees once, twice, three times,
and generally any number of times, even.
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[April Ylth, 1894.
As some doubt has been thrown on the argument of § 4, I proceed

to show otherwise that

aop".«n + a1pn-1.^-1 + ... + an = F (pz, 1)

and anz
n + a,,_ip . zn~x + ... + â o" = F (p, z)

can be made to have a common factor if p9 can be determined so as
to satisfy an equation of degree \n (n —1).

As in the applications required n is always even, I, for simplicity,
confine myself to this case.

The two will have a common factor if, and only if, their sum and
difference have.

Now, the difference of F (pz, 1) and F (p, z) is divisible by z9 — 1,
n being even. The complete condition that a factor of z9—1 be the
common factor in question is

FQ>,l)F(-p, l)=0,

i.e., is (a0p
n + a2pn-2+...+a,,)9-(a1pn-l + a3pn-3+... + a,,_1p)9 = 0,

of which the left-hand side is a function of p9.

Also the sum of F (pz, 1) and JP (p, z) may be written

»-1 z+ ...

and the difference, after the removal of the factor z%—1, may be
written

where B,... K, B\ ... K' are of degree n in p. Thus the remaining
factor of the criterion required is the dialytic determinant of

Pu+an) i*n + Bfi*-l + . . . + K

and (aoP
n-an) *»»-1+2ft*-9+... +£- ,

whose degree in p is at most n (-^-+-75- ~~1)> *-e-> w (n—1), and will
\ u 2 /

be seen below to be exactly this number. Call this dialytic deter-
minant I.

Accordingly the complete condition expressed by A = 0 of § 4,
whose degree is 2w* in p, is expressed also by the alternatives

F(P, l)F(-P, l)=0, 3 = 0,

whose degrees are 2n, and at most n (n—1), respectively.
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Moreover, A is a function of p9, for the result of changing p into
—p in it is to alter the signs of alternate columns, and then the signs
of alternate rows, i.e., is to multiply it by ( -1)2", i.e., not to alter it.

Also F (p, 1) F(—p, 1) is a function of p*. Consequently so is S.
Now the degree of $ in p, seen above to be not greater than

n (n—1), cannot be less than n (n— 1). This will certainly be true,
Oo, a,, a,, ... an being unrestricted, if it is true even when particular
restrictions are imposed on them, for a function of any degree in p
cannot have that degree raised by supposing its coefficients made
special. Now, when a,,, a,, Oj, ... an are so chosen that the equation

F(x, 1) = aoa;n+a, a""1+ a8a5"-a+ ... + »„= 0

has n roots, as may certainly be done by taking it to be

<h ix-^\)(x—xt) ••• 0»—<O = °>
there are £n(»—1) values of p1 which must satisfy o = 0, namely,

the £w (»—1) products of two and two of â , â , ... xn. For instance,

the value */xxx% of p makes .F(ps, 1) and F(p, z) have the common

factors z— W — , « - • / — . | [These |re(n—1) products with the
V x% V a;, J

squares as?, «|, ... a;*, i.e., the values of p* which make

make up all the solutions of the equation in p1, A = 0. J
The condition 8 = 0 is then, in the general case, no less than in the

one which has at present to be taken as special, One of degree exactly
\n(n—1) in p\

b is, of course, the square root of the quotient A/.F (p, 1) F (—p, 1).
It is unfortunate for the simplicity of the argument of this paper

that the property of such a determinant as A, that, after division by
its obvious factors,

F{p, 1) = a0p
n + alP

n-i + aiP
n-2+...+an

and F (—p, 1), it leaves a perfect square as quotient, is one which
direct algebraic methods have as far as I know not yet supplied.
For low values of n the proof is, of course, easy, but I have not yet
succeeded in giving a general form to such proofs as I have obtained
and had given me by my friends. ]|




