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Abstract
This paper provides a brief overview of dynamo scaling relationships for the degree of equipartition between magnetic and
kinetic energies. Three basic approaches are adopted to explore these scaling relationships, with a �rst look at two simple
models: one assuming magnetostrophy and another that includes the e�ects of inertia. Next, a third scaling relationship is
derived that utilizes the assumptions that the dynamo possesses two integral spatial scales and that it is driven by the balance
of buoyancy work and ohmic dissipation as studied in Davidson (2013). The results of which are then compared to a suite of
convective dynamo simulations that possess a fully convective domain with a weak density strati�cation and that captured the
behavior of the resulting dynamo for a range of convective Rossby numbers (Augustson et al., 2016).

1 Introduction
A precise rubric for predicting the nature of the saturated

state of turbulent convective dynamos remains as elusive
as tracing individual convective eddies: they can be identi-
�ed for a time, but they eventually are lost in the tumult.
Nevertheless, one can hope to approximate the shifting na-
ture of those dynamos. The e�ects of astrophysical dynamos
can be detected at the surface and in the environment of a
given magnetically-active object, such as stars (e.g., Chris-
tensen et al., 2009; Donati & Landstreet, 2009; Donati, 2011;
Brun et al., 2015). One direct way to approximate the dy-
namics occurring within such an object is to conduct labora-
tory experiment with �uids that have some equivalent global
properties, while observing their response to controllable pa-
rameters, such as the strength of thermal forcing or rotation
rate. In those cases, all the observable scales of the system
can be accounted for, from the global or driving scale to the
dissipation scales. In practice, this has proven to be quite
di�cult when trying to mimic geophysical or astrophysical
dynamos, but they are still fruitful endeavors (e.g., Gailitis
et al., 2001; Laguerre et al., 2008; Spence et al., 2009). How-
ever, recent experiments with liquid gallium have shown that
magnetostrophic states, where the Coriolis force balances the
Lorentz force, seem to be optimal for heat transport (King &
Aurnou, 2015), which is interesting given the strong likeli-
hood that many astrophysical dynamos are in such a state.
Another method is to simulate a portion of those experi-
ments, but these numerical simulations are limited in the
scales they can capture: either an attempt is made to re-
solve a portion of the scales in the inertial range to down
to the physical dissipation scale (e.g., Mininni et al., 2009;
Mininni & Pouquet, 2009; Brandenburg, 2014), or an attempt
is made to approximate the equations of motion for the global
scales while modeling the e�ects of the unresolved dynami-
cal scales (e.g., Gilman, 1983; Brun et al., 2004; Christensen &
Aubert, 2006; Strugarek et al., 2016).

These varying approaches to gathering data about the in-
ner workings of convective dynamos provide a touchstone

for thought experiments. Further, one can attempt to iden-
tify a few regimes for which some global-scale aspects of
those dynamos might be estimated with only a knowledge
of the basic parameters of the system. The following ques-
tions are examples of such parametric dependencies: how
the magnetic energy contained in the system may change
with a modi�ed level of turbulence (or stronger driving), or
how does the ratio of the dissipative length scales impact
that energy, or how does rotation in�uence it? Establishing
the global-parameter scalings of convective dynamos, par-
ticularly with stellar mass and rotation rate, is useful given
that they provide an order of magnitude approximation of
the magnetic �eld strengths generated within the convection
zones of stars as they evolve from the pre-main-sequence to
a terminal phase. This in turn permits the placement of bet-
ter constraints upon transport processes, such as those for
elements and angular momentum, most of which occur over
structurally-signi�cant evolutionary timescales.

2 Fundamental Equations
In the hunt for a simple set of algebraic equations to de-

scribe the basic processes at work, it is useful to consider the
following set of MHD equations:

∂ρ

∂t
= −∇·(ρv),

∂v

∂t
= − (v·∇)v − 2Ω×v − ∇P

ρ
−∇Φeff +

J×B

cρ
+
∇·σ
ρ
,

(1)
∂B

∂t
=∇×[v×B− ηJ/c],

∇·B = 0,

∂E

∂t
= −∇·[(E + P − σ) v + q] + ρε,

∂ρs

∂t
= −∇·[ρsv] +

1

T

[
4πη

c2
J · J + σ : ∇v + ρε−∇·q

]
,
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where v is the velocity, B is the magnetic �eld, ρ is the
density, P the pressure, and s is the entropy per unit mass.
Moreover, the following variables are also de�ned as Φeff =
Φ + λ2Ω2/2, Φ is the gravitational potential, Ω is the ro-
tation rate of the frame, λ is the distance from the axis of
rotation, the current is J = c∇×B/4π, with c being the
speed of light, σ is the viscous stress tensor, q = −κ∇T ,
κ is the thermal di�usivity and ε is an internal heating rate
per unit mass that is due to some prescribed exoergic pro-
cess (e.g., chemical, nuclear, or otherwise). The total energy
is E = ρv2/2 +B2/8π+ ρΦeff + ρe, where e is the internal
energy per unit mass.

Since only the most basic scaling behavior of the stellar
system is sought, the following assumptions are made: the
total energy of the system is conserved and second the sys-
tem is in a time-steady, nonlinearly-saturated equilibrium.
The �rst assumption leads to the elimination of the volume-
integrated energy equation.

3 Scaling of Magnetic and Kinetic Energies
One way to assess what the scaling behavior of the mag-

netic and kinetic energies in a dynamo is to �nd the balance
of forces acting in the system when in a quasi-statistically
steady, but nonlinear regime. To get a feeling for the ba-
sic balances, consider Equation (1) �rst for a slowly rotating
system, where the buoyancy, Coriolis, pressure, and viscous
forces are neglected. Such a simple force balance involves
the Lorentz and inertial force as

ρv · ∇v ≈ 1

4π
(∇×B)×B, (2)

where v is the velocity, B is the magnetic �eld, and ρ is the
density. Suppose that the �ow and magnetic �eld vary with
some characteristic length scale `. Therefore, this balance
yields a magnetic �eld strength in equipartition with the ki-
netic energy contained in the convection, such as

B2
eq ≈ 4πρv2

rms. (3)

Convective �ows often possess distributions of length
scales and speeds that are peaked near a single character-
istic value. One simple method to estimate these quantities
is to divine that the energy containing �ows have roughly
the same length scale as the depth of the convection zone
and that the speed of the �ows is directly related to the
rate of energy injection (given here by the stellar luminos-
ity) and inversely proportional to the density of the medium
into which that energy is being injected (Augustson et al.,
2012). The latter is encapsulated as vrms ∝ (2L/ρCZ)

1/3,
where ρCZ is the average density in the convection zone.
However, such a mixing-length velocity prescription only
provides an order of magnitude estimate as the precise level
of equipartition depends sensitively upon the dynamics (e.g.,
Yadav et al., 2016). Since stars are often rotating fairly rapidly,
taking for instance young low-mass stars and most inter-
mediate and high-mass stars, their dynamos may reach a
quasi-magnetostrophic state wherein the Coriolis accelera-
tion also plays a signi�cant part in balancing the Lorentz
force. Such a balance has been addressed and discussed at
length in Christensen (2010) and Brun et al. (2015) for in-
stance. To again have a zeroth-order suggestion of the be-
havior of more rapidly-rotating convective dynamos, note

that there are three other forces at work in addition to the
Coriolis, inertial, and Lorentz forces, namely the forces re-
sulting from pressure gradients, buoyancy, and viscous dif-
fusion. Assuming that some fraction (1 − β, for 0 < β < 1)
of the inertial force accounts for these remaining forces, it
can be seen that

βρv · ∇v + 2ρΩ0×v ≈ 1

4π
(∇×B)×B,

=⇒ β

`
ρv2

rms + 2ρvrmsΩ0 ≈
B2

4π`
,

=⇒ B2

8π
≈ 1

2
ρv2

rms (β + 2`Ω0/v) ,

=⇒ ME

KE
≈ β + Ro−1, (4)

with Ω0 = Ω0êz the rotation rate of the reference frame and
with Ro the convective Rossby number (hereafter denoted as
only the Rossby number).

As demonstrated in Augustson et al. (2016), Equation (4)
may hold for a subset of convective dynamos, wherein the
ratio of the total magnetic energy (ME) to the kinetic energy
(KE) depends on the inverse Rossby number and a constant
o�set. The constant is sensitive to details of the dynamics
and, in some circumstances, it may also be in�uenced
by the Rossby number. In any case, convective dynamos
are sensitive to the degree of the rotational constraint on
the convection, as it has a direct impact on the intrinsic
ability of the convection to generate a sustained dynamo.
Yet, even in the absence of rotation, there appears to be
dynamo action that gives rise to a minimum magnetic
energy state in the case of su�cient levels of turbulence.
Hence, there is a bridge between two dynamo regimes:
the equipartition slowly rotating dynamos and the rapidly
rotating magnetostrophic regime, where ME/KE ∝ Ro−1.
For low Rossby numbers, or large rotation rates, it is even
possible that the dynamo can reach superequipartition states
where ME/KE > 1. Indeed, it may be much greater than
unity, as is expected for the Earth’s dynamo (see Figure 6 of
Roberts & King (2013)).

To better characterize the force balance without directly
resorting to the parameterization above, consider again
Equation (1) but this time taking its curl, wherein one can
see that

∂ω

∂t
=∇×

[
v×ωP +

1

ρ

(
J×B

c
+∇·σ −∇P

)]
, (5)

where ω =∇×v and ωP = 2Ω + ω.
Taking the dot product of this equation with ω gives rise to

the equation for the evolution of the enstrophy. Integrating
that equation over the volume of the convective domain and
over a reasonable number of dynamical times such that the
system is statistically steady yields∫
dS·

[
v×ωP +

1

ρ

(
J×B

c
+∇·σ −∇P

)]
×ω

+

∫
dV (∇×ω)·

[
v×ωP +

1

ρ

(
J×B

c
+∇·σ −∇P

)]
=0.

(6)

2 Zenodo, 2016



The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

If no enstrophy is lost through the boundaries of the convec-
tive domains, then the surface integral vanishes, leaving∫
dV (∇×ω)·

[
v×ωP +

1

ρ

(
J×B

c
+∇·σ −∇P

)]
= 0.

(7)

This assumption e�ectively means that magnetic stellar
winds will not be part of this scaling analysis. For timescales
consistent with the dynamical timescales of the dynamos
considered here, this is a reasonably valid assumption. Then,
since ∇×ω is not everywhere zero, the terms in square
brackets must be zero, which implies that

ρv×ωP +
J×B

c
+∇·σ −∇P = 0. (8)

Taking the curl of this equation eliminates the pressure con-
tribution and gives

∇×
[
ρv×ω + 2ρv×Ω +

J×B

c
+∇·σ

]
= 0. (9)

This is the primary force balance, being between inertial,
Coriolis, Lorentz, and viscous forces. Taking �ducial values
for the parameters, and scaling the derivatives as the inverse
of a characteristic length scale `, the scaling relationship for
the above equation yields

ρv2
rms/`

2 + 2ρvrmsΩ0/`+B2/4π`2 + ρνvrms/`
3 ≈ 0,

(10)

which when divided through by ρv2
rms/`

2 gives

ME/KE ∝ 1 + Re−1 + Ro−1. (11)

The Reynolds number used in the above equation is taken to
be Re = vrms`/ν. Since the curl is taken, the approximation
for the pressure gradient and buoyancy terms employed in
Equation (4) is eliminated from the force balance. However,
the leading term of this scaling relationship is found to be
less than unity, at least when assessed through simulations.
Hence, it should be replaced with a parameter to account for
dynamos that are subequipartition, leaving the following

ME/KE ∝ β(Ro,Re) + Ro−1, (12)

where β(Ro,Re) is unknown a priori as it depends upon the
intrinsic ability of the non-rotating system to generate mag-
netic �elds, which in turn depends upon the speci�c details
of the system such as the boundary conditions and geometry
of the convection zone.

4 An Alternative Approach to Scaling Rela-
tionships for ME/KE

An alternative approach to building a scaling relationship
for the ratio of magnetic to kinetic energy considers the bal-
ances established in generating entropy, kinetic energy, and
magnetic energy. To begin, note that the evolution of the
magnetic energy is

∂

∂t

(
B2

8π

)
=

B

4π
·∇×

[
v×B− η

c
J
]
,

= −1

c

[
∇·(ηJ×B) +

4πη

c
J2 + v·(J×B)

]
.

(13)

If this equation is averaged over many dynamical times τ ,
when it is in a quasi-steady state, and if it is integrated over
the volume of the convective region, it yields∫

dt

τ
dV

[
4πη

c
J2 + v·(J×B)

]
= −

∫
dt

τ
dS·(ηJ×B) . (14)

The Lorentz force (J×B) can vanish at the boundaries of
the convective region for an appropriate choice of boundary
conditions. As an example, if the magnetic �eld satis�es a
potential �eld boundary condition, then it is zero. Or if the
�eld is force-free (e.g., J ∝ B), then it is also zero. Sup-
posing that this is the case, then one has that the average
Lorentz work (

∫
dt/τdV v · (J×B)) is equal to the average

Joule heating εη = 4π
∫
dt/τdV ηJ2/c. This is an important

point that is often brushed aside in astrophysics, as it shows
that the nature of the convection and magnetic �eld struc-
tures are directly impacted by the form of the resistive dis-
sipation. Hence, the use of numerical dissipation schemes
could yield unexpected results.

In a fashion similar to that used for the magnetic energy
evolution above, one can �nd that the kinetic energy evolves
as

1

2

∂ρv2

∂t
= −∇·

[(
ρv2/2 + P − σ

)
v
]

+ P∇·v − σ :∇v

− ρv·∇Φeff +
v

c
·(J×B) . (15)

To eliminate the pressure, the total internal energy must also
be added to the system as

∂

∂t

[
ρv2/2 + B2/8π + ρe

]
=

−∇·
[(
ρv2/2 + ρe+ P − σ

)
v − η

c
J×B

]
− ρv·∇Φeff −

4πη

c2
J2 − σ :∇v + ρε−∇·q. (16)

One can also consider the time-averaged and volume-
integrated evolution equation for this energy equation,
which yields∫

dt

τ
dV

[
ρε−∇·q− ρv·∇Φeff −

4πη

c2
J2 − σ :∇v

]
=∫

dt

τ
dS·

[(
ρv2/2 + ρe+ P − σ

)
v − η

c
J×B

]
. (17)

The surface integral is zero if there are no out�ows or net
torque from the Lorentz force at the domain boundaries, im-
plying the following:∫
dt

τ
dV

[
ρε−∇·q− ρv·∇Φeff −

4πη

c2
J2 − σ :∇v

]
= 0.

(18)
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Note that
∫
dV ρε = L(r), where L is the total luminosity of

the star at a given radius r for a spherically symmetric heat-
ing. Likewise, the radiative luminosity of the star is given
by
∫
dV∇·q = Lr(r) = −4πr2κ∂T/∂r for the spherically-

symmetric component of the temperature �eld, which should
be dominant. For the case of stars that are on the main-
sequence, there are three con�gurations of their primary re-
gions of convection: either a convective core for high mass
stars, a convective envelope for lower mass stars, or both for
F-type stars. In all these cases, one can assume that the re-
gion of integration is over the entire convection zone and
so the volume-integrated luminosity will be the nuclear lu-
minosity, or the current total luminosity L∗. Furthermore,
the inwardly-directed radiative luminosity will be nearly, but
not exactly, equal in magnitude to L∗. The reason being that
the thermal evolution of the system is a largely passive re-
sponse to the changes in the nuclear burning rates. Because
the nuclear luminosity is slowly increasing along the main-
sequence, Lr will always lag behind L∗ due to the time re-
quired for thermal di�usion to modify the thermal gradient.
From Equation (18), one can see that

Lr + εν + εη − L∗ = −
∫
dt

τ
dV ρv·∇Φeff , (19)

where εν and εη are the positive-de�nite, time-averaged,
volume-integrated dissipation rates due to viscosity and re-
sistivity, respectively. Thus, the rate of buoyancy work is
directly proportional to the mismatch of the two luminosi-
ties and the rates of viscous and resistive dissipation, im-
plying that the latter result from the former. Assuming that
L∗ ≈ Lr and following Brandenburg (2014), the ratio of the
dissipation rates can be described as

εν/εη = kPmn, (20)

where Pm = ν/η is the magnetic Prandtl number, and where
k and n could be determined from a suite of direct numerical
simulations. In particular, when kinetic helicity is injected at
the driving scale, Brandenburg (2014) found that k = 7/10
and n = 2/3. Note that their results have also considered ro-
tating driven turbulence and found that this scaling is e�ec-
tively independent of the rotation rate, and thus the Rossby
number. However, other studies indicate that there may be
a stronger rotational in�uence (Plunian & Stepanov, 2010).
Since there is ambiguity in that scaling, let k(Ro) be an un-
known function of the Rossby number. Subsequently, the
buoyancy work WB per unit mass can be described as

WB = −
∫
dt
τ dV ρv·∇Φeff∫

dt
τ dV ρ

=
(

1 + k(Ro)Pm2/3
)
εη/M.

(21)

where M is the mass in the integrated volume.
Now, returning to the time-averaged curl of the momen-

tum equation, though neglecting the viscous and inertial
terms, one can �nd

∇×
[
2ρv×Ω +

1

c
J×B

]
+∇ρ×geff = 0, (22)

where geff = −∇Φeff .
This provides the basis of a scaling relationship. Follow-

ing Davidson (2013), the Rossby number is assumed to be
small enough so that the �ow becomes roughly columnar
and moderately aligned with the rotation axis. In such a
case, there are two integral length scales: one parallel to
the rotation axis `‖ and another perpendicular to it `⊥, with
`⊥ < `‖. Here, unlike Davidson (2013), the density strati�-
cation is retained. So, density perturbations rather than tem-
perature perturbations are contained in the buoyancy work
integral and the force balance below. The full density can
be retained in the integral and in the scaling given that the
gradient of the mean density is parallel to geff . So, their
cross product vanishes, leaving only the product of the ve-
locity and gradients of the density perturbations. Assum-
ing further that the magnetic energy density per unit mass
scales only with `‖ and WB , unit consistency requires that
B2/(4πρ) ∝ F

(
`‖,WB

)
≈ `

2/3
‖ W

2/3
B , where WB is the

rate of buoyancy work per unit mass as above. Therefore,
given Equation (22) and assuming that each term is of the
same order of magnitude, the basic proportionality is

ρΩ·∇v ≈∇ρ×geff ≈∇×(J×B)/c

=⇒ Ω0vrms

`‖
≈ g

`⊥
≈ B2

4πρ`2⊥
. (23)

Thus, comparing the curl of the Lorentz force to the curl
of the Coriolis force, one has

Ω0vrms/`‖ ≈ B2/4πρ`2⊥ ≈ `2/3‖ W
2/3
B /`2⊥, (24)

and moreover it can be shown that an estimate of the rms
velocity is

vrms ≈ `5/3‖ W
2/3
B /`2⊥Ω0. (25)

Within the context of such estimates, the buoyancy term can
be written as

WB =

∫
dt
τ dV ρv · geff∫

dt
τ dV ρ

≈ gvrms, (26)

which implies that the estimated magnitude for the curl
of the buoyancy force in Equation (23) is g/`⊥ ≈
WB/(vrms`⊥). Then, it is easily seen that

`⊥/`‖ ≈WB/(Ω0v2
rms). (27)

So, the ratio of integral length scales should vary as

`⊥
`‖
≈ W

1/9
B

Ω
1/3
0 `

2/9
‖

=

(
WB

Ω3
0`

2
‖

)1/9

. (28)

Likewise the ratio of magnetic to kinetic energy then scales
as

ME

KE
≈ B2

8π (1/2ρv2
rms)

≈
(
WB

Ω3
0`

2
‖

)−2/9

. (29)
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Figure 1: The average thermal Prandtl number Pr (a) and av-
erage magnetic Prandtl number Pm (b) for stars with masses
between 0.03 and 100M�, with the average being taken over
substantial convection zones. The zone being averaged is in-
dicated by triangles for a convective core and circles for a
convective envelope.

To make a comparison to the earlier results in §3, consider
that the Rossby number is de�ned as

Ro =
vrms

Ω0`‖
≈
(
WB

Ω3
0`

2
‖

)4/9

, (30)

which implies that

ME

KE
∝ Ro−1/2. (31)

However, if one takes into account the scaling of the buoy-
ancy work with Rossby number and magnetic Prandtl num-
ber, Equation (30) becomes an implicit relationship for the
Rossby number that is indeterminate for large magnetic
Prandtl number.

5 Comparison of Scaling Relationships
Since the scaling described in the previous section has a

magnetic Prandtl number dependence, it is useful to quantify
the speci�c regimes in which each of the three di�erent mod-
els are most applicable. To do so, consider a fully-resolved
convective dynamo and its associated dynamics, wherein the
dissipation of the energy injected into the system is governed
by the molecular values of the di�usivities. Using Braginskii

plasma di�usivities (Braginskii, 1965) and a set of MESA stel-
lar models with a solar-like metallicity to obtain the density
and temperature pro�les (Paxton et al., 2011), one can de�ne
the average expected molecular magnetic Prandtl number in
either the convective core of a massive star or the convective
envelope of a lower mass star. First, note that the molecular
values of the di�usive coe�cients in the Navier-Stokes MHD
equations are given by

ν = 3.210−5T
5/2
e

ρΛ
, (32)

κcond = 1.810−6T
5/2
e

ρΛ
, (33)

η = 1.2106ΛT−3/2
e , (34)

where ν is the kinematic viscosity, η is the magnetic di�u-
sivity, κcond is the electron thermal di�usivity, κrad is the ra-
diative thermal di�usivity, Te is the electron temperature in
electron volts, and Λ is the Coulomb logarithm. These quan-
tities are computed under the assumptions that charge neu-
trality holds and that the temperatures are not excessively
high, so that the Coulomb logarithm is well-de�ned. In the
charge-neutral regime, the magnetic di�usivity happens to
be density independent because the electron collision time
scales as the inverse power of ion density and the conductiv-
ity is proportional to the electron density times the electron
collision time. Therefore, the thermal Prandtl number Pr and
magnetic Prandtl number Pm scale as

Pr =
ν

(κcond + κrad)
, (35)

Pm = 2.710−11 T
4
e

ρΛ2
. (36)

In most cases, the radiative di�usivity is several orders of
magnitude larger than the electron conductivity and it thus
dominates the thermal Prandtl number.

The above prescription for the Prandtl numbers has been
applied to MESA models of stars near the zero-age main-
sequence in the mass range between 0.03 and 100 M�.
The resulting convective-zone-averaged Prandtl numbers are
shown in Figure (1), where it is clear that all stars pos-
sess convective regions with a low thermal Prandtl number,
whereas one can �nd two regimes of magnetic Prandtl num-
ber. The existence of these two regimes is directly related
to where the convective region is located. For massive stars
with convective cores, the temperature and density averaged
over the convective volume are quite high when compared
to lower-mass stars with a convective envelope. Such a high
temperature leads to a large magnetic Prandtl number. The
dichotomy in magnetic Prandtl number implies that there
may be two fundamentally di�erent kinds of convective dy-
namo action in low-mass versus high-mass stars.

To compare these three schemes, consider the data for the
evolution of a set of MHD simulations using the Anelas-
tic Spherical Harmonic code presented in Augustson et al.
(2016). These simulations approximate the convective core
dynamo that likely exists within massive stars. In such
10 M� stars, the average Pm is about four throughout the
core, and it drops to roughly 1/10 close to the stellar sur-
face in the radiative exterior. Therefore, the convective core
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Figure 2: The scaling of the ratio of magnetic to kinetic en-
ergy (ME/KE) with inverse Rossby number (Ro−1). The
black curve indicates the scaling de�ned in Equation (12),
with β = 0.5. The blue dashed line is for magnetostrophy,
e.g. β = 0. The green dashed line is that for buoyancy-
work-limited dynamo scaling, given in Equation (31). The
red dashed line indicates the critical Rossby number of the
star, corresponding to its rotational breakup velocity. The
uncertainty of the measured Rossby number and energy ra-
tio that arises from temporal variations are indicated by the
size of the cross for each data point.

can be considered as a large magnetic Prandtl number dy-
namo. What makes such Pm regimes interesting is that they
are a numerically accessible, but still astrophysically rele-
vant, dynamo. Moreover, these convective cores represent
an astrophysical dynamo in which large-eddy simulations
can more easily capture the hierarchy of relevant di�usive
timescales. This is especially so given that the density con-
trast across the core is generally small, meaning that one
can simplify the problem to being Boussinesq without the
loss of too much physical �delity. Also, the heat generation
from nuclear burning processes deep within the core and the
transition to radiative cooling nearer the radiative zone are
smoothly distributed in radius. So, there are no inherent dif-
�culties with resolving internal boundary layers.

Within the context of the simulations exhibited in August-
son et al. (2016), the rotation rates employed lead to nearly
three decades of coverage in Rossby number, as shown in
Figure (2). In that �gure, the force-based scaling derived in
§3 and given by Equation 12 is depicted by the black curve,
which does a reasonable job of describing the nature of the
superequipartition state for a given Rossby number. Note,
however, that the constant of proportionality has been de-
termined using the data itself. This is true also of the other
two scaling laws shown in Figure (2). Surprisingly, the scal-
ing law derived in §4 does not capture the behavior of this
set of dynamos very well, in contrast to the many dynamo
simulations and data shown in Christensen et al. (2009) and
Christensen (2010) for which it performs well. This could be
related to the fact that for large Pm the buoyancy work po-
tentially has an additional Ro dependence.

These simulated convective core dynamos appear to enter
a magnetostrophic regime for the four cases with the lowest
average Rossby number. For emphasis, the magnetostrophic
scaling regime is denoted by the dashed blue line in Figure

10−2 10−1 100 101 102

Ro−1

10−1

100

101

102

Λ
D

(a)

Figure 3: The scaling of the dynamic Elsasser number (ΛD)
with inverse Rossby number (Ro−1). The uncertainty of the
measured Rossby number and dynamic Elsasser number that
arises from temporal variations are indicated by the size of
the cross for each data point.

(2). This transition to the magnetostrophy is further evi-
denced in Figure (3), which shows the dynamic Elsasser num-
ber

ΛD = Brms
2/(8πρ0Ω0vrms`), (37)

where ` is the typical length scale of the current density J.
As a point of reference, when ΛD tends toward unity the
balance between the Lorentz and the Coriolis forces also ap-
proaches unity, which indicates that the dynamo is nearly
magnetostrophic.

6 Conclusions
This conference proceeding hopefully has shed some light

on the existence of two kinds of astrophysical dynamos, and
provided scaling relationships for the level of the partition-
ing of magnetic energy and kinetic energy. Particularly, there
may be a shift in the kind of dynamo action taking place
within stars that possess a convective core and those that
possess an exterior convective envelope. The scaling rela-
tionship between the magnetic and kinetic energies of such
convective dynamos in turn provide an estimate of the rms
magnetic �eld strength in terms of the local rms velocity and
density at a particular depth in a convective zone.

Two such scaling relationships appear to be the most appli-
cable to the simulations carried out in Augustson et al. (2016):
one for the high magnetic Prandtl number regime and an-
other for the low magnetic Prandtl number regime. Within
the context of the large magnetic Prandtl number systems,
the magnetic energy of the system scales as the kinetic en-
ergy multiplied by an expression that depends the inverse
Rossby number plus an o�set, which in turn depends upon
the details of the non-rotating system (e.g., on Reynolds,
Rayleigh, and Prandtl numbers). For low magnetic Prandtl
number and fairly rapidly rotating systems, such as the geo-
dynamo and rapidly rotating stars, another scaling law that
relies upon an energetic balance of buoyancy work and mag-
netic dissipation (as well as a force balance between the buoy-
ancy, Coriolis, and Lorentz forces) may be more applicable.
When focused on in detail, this yields a magnetic energy that
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scales as the kinetic energy multiplied by the inverse square
root of the convective Rossby number. Such a scaling rela-
tionship has been shown to be fairly robust (Davidson, 2013).

Yet, more work is needed to establish more robust scal-
ing relationships that cover a greater range in both magnetic
Prandtl number and Rossby number. Likewise, numerical ex-
periments should explore a larger range of Reynolds number
and level of supercriticality. Indeed, as in Yadav et al. (2016),
some authors have already attempted to examine such an in-
creased range of parameters for the geodynamo. Neverthe-
less, to be more broadly applicable in stellar physics, there
is a need to �nd scaling relationships that can bridge both
the low and high magnetic Prandtl number regimes that are
shown to exist within main-sequence stars. The authors are
currently working toward this goal, as will be presented in
an upcoming paper.
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