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THEOREMS CONNECTED WITH MACLAURIN'S TEST FOR
THE CONVERGENCE OF SERIES

By G. H. HARDY.

[Received and Read, April 28th, 1910.]

1. In a paper recently published in these Proceedings* Dr. Bromwich
gave a very interesting extension of the theorem (usually but inaccurately
ascribed to Cauchy) that, when f(x) is a positive decreasing function of
x, the series

(1) 5/(n)
and the integral

(2) ^ f(x)dx

converge or diverge together. Dr. Bromwich proved that, if

(i) f{x) is positive and tends steadily to zero ;

(ii) <f>(x) is positive and tends steadily to infinity,

(iii) <f>' (x) tends steadily to zero,

r
(iv) the integral I /(x) <f>'(x)dx is convergent, then

[X [A]

I F(x)dx-2F{n),

where F(x) = f(x)ei4>ix) and [X] denotes the integral part of
X, tends to a finite limit as X -> oo .

Roughly, it may be said that what Dr. Bromwich proved amounted
to this, that the relations between (1) and (2), as regards convergence or
divergence, established by Maclaurin and Cauchy when f(x) is positive
and decreasing, still subsist when f(x) is multiplied by an oscillatory
factor of the type nna

sin r '

provided <j>(x) tends to infinity more slowly than x.

* Vol. 6, pp. 327 et seq.
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2. Dr. Bromwich's theorem may be generalised and its proof simplified
as follows:—

THEOREM 1.—If (i) F(x) possesses a continuous derivative F'(x),
(ii) F(x) -> 0 as x -> oo, (iii) the integral

rx [x]
is convergent, then \ F{x)dx— 2 F(n)

Jo 1

tends to a finite limit, viz.,
Jx = - \ (x-[x])F(x)dx,

Jo
as Z->oo.*

Let ;„ = f F(x)dx-F(v) = \ {F(x)-F(v)\ •£- {x—v+Dd
jv-i Jv—i ax

= —I [x-[x]) F'[x)dx.
Jv-l

Then l i , | < r \F"(x)\dx.
Jv-\

Hence ^.jv is convergent (absolutely) and the result follows irnniediately,
since rx

F(x)dx -+ 0.
J[.v3

3. In the case considered by Dr. Bromwich, we have

F'(x) = •/'(«)+»/(*) fix)] «*•»

and the convergence of I \F'(x)\dx follows immediately from that of

f'(x)dx, f(x)</>'(x)dx.

Dr. Bromwich points out to me that the last inequality of § 2 may
be established with equal simplicity by the method of argument adopted
by himself (loc. cit, p. 329). In fact

j,, = \ {F(x)-F(v)\ dx=-\ dx[ F'(t)dt,
Ji—l J r - l J.»-

and so \jj < ( \F'{t)\dt.
J»-i

So far as applications are concerned, there is practically nothing to choose

* It is not difficult to establish a similar theorem relating to double series and integrals.
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between Dr. Bromwich's result and mine. For the sake of completeness
I give an example in which my result applies and his does not. It is
obtained by taking , .

J 8 F(x) = x~a exp {ixh cos (log x) \,

where 0 < 6 < a < 1.

4. Either theorem enables us, as Dr. Bromwich shows, to determine
very simply the behaviour, from the point of view of convergence, of
many interesting series, such as 1Z(\ogn)pn~l~ai. But neither theorem
is sufficiently general to deal with many other simple and interesting cases
that naturally present themselves.

Consider, for example, the series

where 0 < a < 1, 6>O. The integral

dx

is convergent if a+b > 1, and it is natural to suppose that the same is
the case with the series : and this is in fact true. But the conditions
of Theorem 1 are satisfied only if b> a.

It is therefore desirable to investigate more general theorems.

5. It will easily be verified that, if we transform the expression jv of
§ 2 by a further integration by parts, we obtain *

f (y2-ij)f"(x)dx,

or, say, ?? = $[ (i/-y)f"(x)dx,
v-l

where y = a;—[a;].

And generally, if we denote by <pk(x) the BernouUian polynomial of degree
k, so that t

0j = X, 0 2 = X(X— 1), 0 3 = X(X— 1)(X— %), 0 4 = X*(X — if, . . . ,

* In what follows I revert to the notation f(x), f(n) instead of F(x), F(n).
f Bromwich, Infinite Series, p. 236.



1910.] MACLAURIN'S TEST FOR THE CONVERGENCE OF SERIES. 129

we have

(3) f?>=

These formulae are, in fact, merely a slight transformation of one of the
standard forms of the " Euler-Maclaurin Sum Formula."*

From (8) we at once deduce

THEOREM 2.—If either of the integrals

is convergent, then

{f(x)+$f'(x)+Zff"(x)-...\ dx- 2 /(,)

tends, as X-> oo, to a finite limit, viz., one of the integralsj2k+l = " r
2 / a^so /(a;) awd i<s ̂ r s i 2A; derivatives tend to zero, as x -*• oo ,

/(af)rf«- 2 /W
JO !

, as X -> oo , to the limit

where I = 2&+1 or Z = 2A;-|-2, as £/&e case may 6e.

We have, in fact, merely to observe that the maximum of |02fc+i(y)| or
I <fak+2(y) I depends on k only and not on [X].

* Bromwich, Infinite Series, p. 239.

SBB. 2. VOL. 9. NO. 1075.
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I have not thought it worth while to encumber this theorem (or the
others which follow) with explicit statements as regards the continuity
of such derivatives of f(x) &a figure in them. All such derivatives are. of
course, supposed continuous : only conditions relating to their behaviour
as x -> oo are in any way relevant to the problem. Sometimes, however,
these conditions may be broken for x =• 0 or some other value of x.
Then the formula may need modification, but the application of the
theorem to questions of convergence is not affected.

6. If f{x) = x-beix',

where 0 < a < 1, it is easy to see that

which yields an absolutely convergent integral if s(a—1)—6 < — 1 or

It is always possible to choose s so as to satisfy this condition : hence
the series and integral

x-heif"dx, 2«-"ei>l" (0 < a < 1)

/;/ all cases converge or oscillate together, i.e., converge if, and only if,
a + b > 1.

If b > a is implied by a-{-b > 1, i.e., if a ^ ^, but not if a > \,
this result may be inferred from Theorem 1.

7. It is naturally suggested by the preceding results that it should be
possible to prove theorems of a similar character, but relating to series
and integrals that are only summable and not convergent. The integral

f f(x)dx
Jo

is said to be summable (O), to sum S, if

(4)

as x -> oo .*

This definition is strictly analogous to Cesaro's definition of the sum

• Some properties of integrals which are summable (Cl) are proved by Hardy, Quarterly
Journal, Vol. xxxv, p. 22 ; Moore, Trans. Amer. Math. Soc., Vol. vin, p. 299 ; Bromwich,
Math. Annalen, Bd. LXV, S. 350. The above definition is an immediate generalisation of
that adopted by these writers.
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s of an oscillatory series £«„, which may be put in the form

r ! / « \r+i

(5) ^ ( l ) av^s.

Now, by a well known formula,*

ax \ r + l -t rx

dt) /(0 = 7f I (x-
Hence our definition is equivalent to

(6) ? (i-±Y
Jo \ x I

or

(7) [
Jo

And, when either of these forms is adopted, there is no longer any reason
why r should be restricted to be an integer ; we may suppose that r has
any real value greater than — 1 .

Suppose, e.g., that

where a is real and not zero. Theu the integral on the left-hand side
of (7) is

*p+1 uv(l-u)renix"du.
Jo

Now it is known that, when | x \ is large,

u (1 u)e da- { U+e)+ «

where e, e' are small of the order 1/x, and the many valued functions
in the denominators have their values fixed by conventions explained
precisely in the papers referred to in the foot-note below, t

It follows at once that f00

I xveaixdx
Jo

is summable (Cr), and has the sum

if, and only if, r > p.
* See, e.g., Jordan, Cours d'Analyse, t. in, p. 59.
f Jacobsthal, Math. Annalen, Bd. r.vi, S. 129 ; Barnes, Trans. Camb. Phil. Soc.t Vol.xx,

p. 253 ; Hardy, Proc. London Math. Soc, Ser. '2, Vol. 3, p. 401.
K 2
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8. Now M. Marcel Riesz has replaced* Cesaro's definition by

a definition precisely analogous in form to that adopted in equation (7)
above for the value of the summable integral. This formal analogy
renders it convenient to adopt this definition in the analysis which
follows.

Before proceeding further, I may remark that I shall consider ex-
plicitly only the case in which r is a positive integer. This is the
really interesting case. But the definition (8), like (7), applies equally
well for non-integral values of r, and, in a good deal of the succeeding
analysis, the restriction that r is integral is in no way necessary.

9. M. Riesz has indicated an important generalisation of the definition
expressed by (8). Let X(x) be any function of x which tends steadily to
infinity with x. Then we may define the sum s of the series 2an by the
relation

(9)( 9 ) X(n)f

which reduces to (8) if X(x) = x. If this limit exists, we shall say that
the series 2a n is summable (Rr) with sum-function \(n). When r = 1
this definition reduces to

01 \>O T~:—^ *• 5,
A (n)

where fiv = X(i/) — X(i>— 1); which is the definition that I considered in
a recent paper in these Proceedings.\

The corresponding definition for the integral is obviously

* Comptes Rendus, July 5th, 1909. M. Riesz has established (as is easy enough when r
is integral) the substantial equivalence of the two definitions.

t Proc. J,omt\rm Math. Roc., Ser. 2. Vol. 8, p. 301.
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If this limit exists, I shall say that the integral

(x) dxr /o«
Jo

is summable (Rr), with sum-function \(x), to sum S.
If we put X( ( ) = ^ X(x) = x

and denote by X the function inverse to A, we see that (10) is equivalent to

That is to say, I f(x)dx

is Bummable (Rr), with sum-function \(x), if, and only if,

f\Mx)\\'(x)dxr
is summable (Rr), with sum-function x. The adoption of Riesz's general
definition* instead of Cesaro's is, in the case of integrals, substantially
equivalent to a change in the independent variable.

Thus it is easy to prove that

r
(11) (log a;)1'a; 1+a'dx

J

is not summable (Cr) for any value of r. The substitution x = ey, how-
ever, leads to the integral ^

which is summable (Cr) for r > p. Hence (11) is summable (Rr), with
sum-function log x, for r > p. We shall see in a moment that the same
is true of the series

10. We are now in a position to establish the following theorem:—

THEOREM 8.—If f(x) is subject to the conditions of Theorem 1, viz.,
that f(x) -*• 0 and ,«,

J \f'(x)\dx

* I call the definition (10) Riesz's because he has doubtless used it as well as the defi-
nition (9). It would indeed be a plausible conjecture that M. Riesz was led to the definitions
(8) and (9) through some consideration of integrals.
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is convergent, and \(x) is any function of x which has a continuous
derivative and tends steadily to infinity with x, then

, Mt))r « f X M l '

tends, as n -> <x>, to the finite limit Jx of Theorem 1, so that the
summability of the series 2f(u) follows from that of the integral, the
definitions of summability being Riesz's definitions of the r-th order,
with sum-functions \(x), X(n).

L e t

Then 2> = ?>,

where ;„ = f ^{t)dt-^r(y) = — \ (*-[*])\{,f(t)dt = uv+vv+wv,
Ji—l Jv-l

uv, vv, iov being defined by the equations

(12) uv=-\ (t-[f])f'(t)dt,

In the first place, K I < f I / ' WI dt>

so that 2 uv is convergent (absolutely). In the second place,

But it is easy to prove that <j>(t) -*• 0 involves

• This is an immediate generalisation from the well known case in which \(n) = n.
Choose Nso that \<f>\ < t iot x ^ N. Then

J _ I f <f>\'dt < - X- fV | <p\' | dt+ -f-r f A' ( 0 * < ~ f̂  | <pk' | dt+ e < 2f,
^(n)|J I M n ) J ' ^ A(n)J w A ( n ) J ' r

if n is large enough.
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It

and so "Ewu -> 0.

Finally, £ vv

r
Let

Jt
Then, integrating by parts,

The first two terms evidently tend to zero as n —*• <x>. The last is
numerically less than

and so also tends to zero.

It follows that 2« -> 2 «„ = — (<—W)/'(*) d ,̂1 Jo

and the proof of Theorem 3 is accordingly completed.

11. A simple example of the theorem just proved is afforded by the
case in which

/(,<•) = (log . ^ - 1 + a \

Here / (x) - (ai-1) (log x)v x-2+ai,

and the conditions of the theorem are certainly satisfied. It follows from
§ 9 that the series

is summable (Rr), with sum function logn, if, and only if, r>p.

12. The question now arises as to whether we can prove a still more
general theorem related to Theorem 3 as Theorem 2 is related to
Theorem 1.
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I shall content myself with proving this in two special cases, viz.,
(1) when

\(x) = x

(so that we are using definitions substantially equivalent to Cesaro's), and
(2) when \(x) is arbitrary and k = 0. The absolutely general case appears
to require rather elaborate preliminaries.

18. The formula (8) of § 5, applied to the function

gives

Suppose now that, as in Theorem 2,

j 0

and is convergent, and also that /(2fc+1)(£) -> 0. Then we can prove that

We have, in fact,

yj,w+2>{t)=f*k+*Ht)- \ 1 - ( l - — Y)
\ \ ft / )

+ 2 ( -1) ' s! ( 2 A :+2) (;) n - ( l -

where o- is the lesser of the numbers 2&+2 and r.

We may therefore write

J1 / -1
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where uv = [" 0 2 A + 2 (*- |
Jv-\

137

v—l
i - ( 1 - — V \/{2k+2)(t)dt,

» 7 1 / 1

r
Jv—1

Cs being a number dependent only on k, r, s, and not upon v or n.

Since [«„! < Jiff \f{2k+2)(t)\dt,
Jf-i

where ikf is the maximum of fck+viy) for 0 < y < 1, it follows that
is convergent (absolutely).

Again, 2 vv

Let

The first term on the right-hand side has the limit zero. The second is
less than

_L f"
n Jo

and so also tends to zero. It follows that

(16) ivv->0.

Finally, \
^0

Kn-s\'\f2k+2-s)(t)\dt,

where K is independent of n. I shall prove in the next section that the
expression on the right-hand side tends to zero as n-> oo , for s = 1, 2,. . . , a-.
It will then follow that

(17) = 1, 2, ...,<r),

and from (16) and (17) will follow the truth of the assertion made at the
beginning of this section.
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14. Since / * + l ) ( # - • 0, it follows at once that

as t -*• oo. Hence

\fm(t) | < |/*>(0)| +f \f^%c)\dit = tet,
Jo

where et -*• 0. Hence

and from this we deduce as above that

where et -> 0. It is evident that a mere repetition of this argument is
sufficient to prove what we require.

It is therefore proved that the sum from v = 1 to v = n of the right-
hand side of the equation (15) tends, as n -* oo, to the limit

*•' = (2iT2)i£ *»«(«-

15. We have now to consider the left-hand side of (15), which is

where 2n = £ ( l - ± ) ' / ( ^^ f ( l- ^) /W-

Now ^ w ( « = 2 (-1)"ir! (S) (r) n~< (l-±Y~Kf'-<Ht),

where X is the lesser of the numbers r, s. From this it follows at once
that

(18) x//s)(0) =/W(0)+e«
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where en-+0 as n->oo. Also

(19) \f/s){n) = 0 (/• > s),

since, if r > s, every term in \}A^{n) contains a factor which vanishes for
t = n. On the other hand, if r ^ s, there is one term in \f/$)(n) which
does not vanish for t = n, viz., that for which K = r, and

Y • \rJ J ^

From (18), (19), and (20) it follows that the left-hand side of (15) may be
expressed in the form

7? 7-?

2! 4!

where x(n) = (—l)r >"! n~r 2

the summation extending to all the values of p (if any) which satisfy the
inequalities n7 ,

^ r < 2p—1 < 2A; — 1.
We therefore assume, in addition to the conditions already imposed upon

for r ^ 2p—1 ^ 2k — 1. Thus, if r = 1, we must have

/fe>/*-*0, f"(x)/x^0, ..., /(2fc-2)(x)/x->0;

if r = 2A;—1, we must have

/<*)/as*-1-"•<>;

while, if r^2fc , no conditions of this type are needed. If, e.g., k = 1,
the only case in which one of these conditions is required is when r = 1,
the condition then being ,. ., _

j\X)jX —> U.

16. We have thus proved—

THEOREM 4.—If

(i) I |/(2fc+2)(a0| dx is convergent,

(n)fk+l(x)-*0,

(in) fto-t-'Hz) I xr-+0
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for such values of p, if any, as satisfy the inequalities

r<2p—1 <2&—1,

tends, as n-* oo, to the limit

£
so £/WJ£ £/&e sununability (JBr), witf/i sum-function n, of the series 2/(?i)
follows frovi that of the integral $f(x)dx.

In the simplest case, that of k = 0, the theorem takes the form

THEOREM 5.—// (i) I \f"(x)\dx is convergent, (ii) / ' (x) -> 0, then

\*(l-±)rf(Qdt- 2 ( l - -Y/M-* V(0>+ ̂ T f 03«-

i/' r > 0 ; and if r = 0, tlie result is still true, provided only

f{x)-+0.

17. Let us consider, for example, the case in which

Then /s> (x) ~ (ia)s 3»<«-i>-6 e«°,

which tends to zero, if s(a—1) — b < 0, and possesses an absolutely
convergent integral, if s(a—1)—b<—1. This last condition will be
satisfied for s = 2&-}-2, if

This is certainly so for sufficiently large values of k.
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The condition that f(2k+l)(x)-+0 requires

and, as 1/(1—a) > 1, this is a consequence of the former condition.

The condition f^"x-rHx)lzr -+ 0,

reduces to (2p—1—r)(a—1) — b—r < 0.

This is least likely to be satisfied when p has its smallest possible value,
viz., that given by r = 2p—1. It then reduces to

b+r>0.

But the condition 6-f r > 0 is certainly a necessary condition for the
summability of

ln~bein",

by Cesaro's r-th mean.* Hence there is no loss of generality involved in
this set of conditions.

We can now apply Theorem 4, and we see that the problem of the
summability of the series is reduced to the corresponding problem for the

i n t e g r a l

We have therefore only to determine whether

In / f \ r pW

tends to a limit as n -> <x>. Putting

t = nul!a.= {Nu)Va,

we obtain — i ^ 1 - ^ P (1 -vPf ?At(i-")'«]-i e
imdu.

a Jo

Now it may easily be proved, by a slight modification of the argument
used in establishing the asymptotic formula quoted in § 7, that

f1 (1— «

* Bromwich, Infinite Series, p. 318.
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where e and e' are of order l/N when N is large. It follows that the
integral a<l

iv*i
is summable (Cr), and has the sum

a \ a

if, and only if, r-J-1 > (1 — 6)/a; i.e., if

> 1.*

And so the same is true of the series: that is to say, the series and
integral „ ,«

2n-beina, I x~he^dx (0 < a < 1)

are both convergent if a-j-6 > 1, both summable {Bl) if 2a+6 > 1, both
summable (R2) if 3a -\-b > 1, and so on, 'with sum function n.

18. The last question which arises is as to whether there is an
analogue of Theorem 4, when Riesz's more general definition is adopted.
The answer is, of course, in the affirmative; but, for the reason stated in
§ 12, I content myself with considering the simplest case, the analogue of
Theorem 5.

THEOREM 6 . - 7 / (i) I \f"(x) | dx is convergent, (ii)/' (x) -+0, (iii) X (x)

is a steadily increasing function of x, tending to infinity with x, and
possessing a con-tinuous derivative, (iv) |\'(a;)/X(x)}/(.x)-> 0, then

Jo I 1 \(x)i

tends, as n -> oo, to the limit

*f(0)+i[ <t>.2(t-[t})f'(t)dt,
Jo

if r > 0; and the conclusion remains valid for r = 0, provided f(x) -*• 0.

* Of course we suppose b < 1 in order that the integral should converge at the lower
limit: this is quite irrelevant to the main issue. If 6>1, the integral is absolutely conver-
gent as regards the upper limit.
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We have, in fact, if Sft denotes the expression who3e limit we are
considering,

where ^W = |x_ |g }/(«.

Clearly >/r(;i) = 0, unless r = 0, in which case we impose the additional
condition that

Again,

I X(w)

r(r-l) |X'(flfa ft..._A(fl)
jXOi)}2 I 1 X(n)J

The reader who has followed the arguments of the preceding paragraphs
with care (especially those of §§ 10, 13) will easily convince himself that
everything reduces to proving that f(x)->0 involves

(«) ^-AX\'(t)f'(t)dt->0,
A(X) Jo

(b)

Of these relations the first has already been proved. Again,

f- \\"(t)f(t)dt =
(x) Jo ' X Jo

and so also tends to zero if the condition

\(x)
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is satisfied, as we have supposed. Also, if this condition is satisfied, we
can find X, so that

\f(x)\<eMx)l\'(x) (xp>X).

The second term is less than £e; and by choosing x large enough, when
X is fixed, we can ensure that the first term is also less than £e. The
relations (a), (6), (c) are accordingly established and Theorem 6 is proved.


