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1. In the prosecution of investigations into sets of intervals on the
straight line, some of which are to be found in the Proceedings of the
London Mathematical Society, I was naturally led to consider sequences
of sets of intervals * formed in the following manner:—Taking any set of
points E, describe round each point an interval having that point as internal
point; diminish the length of each interval, according to any law, in such
a way that all tend simultaneously towards zero, the original set of points
always remaining internal to their corresponding intervals. What do we
know about those points which are always internal to the intervals of every
set (inner limiting set) ? The chief properties of such a set may, I find,
be summed up in the following six theorems:—

(1) The inner limiting set consists of E, together with certain
points of the first derived set E'; the latter points may sometimes
be absent.

(2) The inner limiting set may contain every point of E'.

(3) If the content of the intervals t is ever less than that of E',
there is a more than countable set of points E' not contained in the
inner limiting set.

(4) The potency of the inner limiting set is the same as the
potency of E', unless E contains no component dense in itself, while
E' is more than countable.

(5) If E contains no component dense in itself, while E' is more
than countable, the inner limiting set may be either countably infinite

• A special case of this was considered by Borel in his Leqons sur la Thiorie des Fonctions ;
cf. also Baire's sets of the second category, and the general theory of content and kindred sub-
jects as developed by Riemann, Cantor, H. J. S. Smith, and others.

t That is the content of a set of non-overlapping intervals having the same internal points
as the given set (Proe. London Math. Soc, Vol. xxxv., p. 386). It is well known that when E is
countable the intervals can be so constructed that their content becomes less than any assignable
quantity.
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or have the potency c; and we can so arrange the intervals that the
inner limiting set consists of E alone.

(6) In general, we can so arrange the intervals that those points
of the inner limiting set which are not points of E are limiting
points only of U, the greatest component of E which is dense in
itself.*

Theorems 1, 2, and 3 are almost obvious; for convenience I give the
formal proof. Theorem 4 and the first part of Theorem 5 are to be found
in a paper presented to the Sachsischer Gesellschaft der Wissenschaftt;
Theorem 6, which includes the latter part of Theorem 5 as a special case,
is here stated and proved for the first time. The theorem employed
requires some consideration of the analysis of sets of points into what
Cantor calls adherents and coherents, and I have found it necessary to go
shortly into this matter for the purposes of the proof.

2. Proof of Theorem 1.

Suppose P to be a point of the inner limiting set not contained in E;
then we can assign an interval from each successive set containing P as
internal point, and each of these intervals contains a point of E; since the
length of these intervals decreases without limit, it follows that P is a
limiting point of points of E. Q. E. D.

3. Proof of Theorem 2.

Take all the intervals of any set equal in length, and let that length
diminish without limit for the successive sets ; then every limiting point
of E must be internal to intervals of every set, and therefore the inner
limiting set consists of E together with all those points of E' which were
not points of E. Q. E. D.

4. Proof of Theorem 3.

Let I be the content of E', and let J < I be the content of one of the
sets of intervals, and e any small positive quantity less than J—I.

If possible, let those points of E' which do not belong to the inner
limiting set be arranged in countable order Pv P2, Round each point
Pi as centre describe an interval of length e/2l+1, and add these intervals
to those of the set in question ; then the content J of the latter is increased

* As in Theorem 4, if the content of the intervals be ever less than that of U' (the first derived
of U), there will be a more than countable set of limiting points of U not contained iii the inner
limiting set. A similar theorem evidently holds for any closed component of E'.

t "Zur Lehre der nicht abgeschlossenen Punktmengen," Leipz. Ber., pp. 287-293.—
August 1st, 1903.
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at most by \e. Thus we have shut up all the points of the closed set
E' in a set of intervals of content less than I, which is known to be im-
possible. Hence the points in question cannot be countable. Q. E. D.

5. Adherences and Coherences.

Given any set of points E, Cantor denotes as an adherent of E any
isolated point of E, and as a coherent any limiting point contained in E.
The set of all the adherents he calls the adherence, and of all the coherents
the coherence, and denotes these symbolically by the addition of an a or a
c respectively to the symbol for the whole set: thus, E = Ea-\-Ec. If
Ec is neither an isolated set nor dense in itself, it will have both adherents
and coherents, and we may proceed a stage further, Ee=EM-\-Ecc We
notice that the points of EM must be limiting points of Ea.

Similarly, if Ecc be neither an isolated set nor dense in itself, we can
proceed a stage further and, generally, as long as we do not arrive at a
coherence which is either an isolated set or dense in itself, we can proceed
on another stage in our analysis. During the process each new adherence
consists of points which are limiting points of every preceding adherence.
If the process never comes to an end, we can examine whether, or no, the
infinite series of coherences

Ec, Ecc, E<xc> ••• (1)

has any coraruon point. Since these sets are not necessarily closed, they
may have no common point, and in this case the original set consists only
of the countably infinite series of adherences

Ea, Eca, Ecca, • • • y (2)

and is, therefore, countable, and has no component dense in itself.
If, however, the coherences (1) have at least one point common, we can

" deduce " from them a set, viz., that consisting of all their common points.
E will then consist of the series of adherences (2), together with this
" deduced coherence." We can then continue the process with this
deduced coherence, and so on. It can then be shown that the adherence
of this deduced coherence consists, as before, of points which are limiting
points of every preceding adherence.

If, now, E have any component dense in itself, it is easily seen that it
has a definite largest component dense in itself, U, such that U contains
every component of E which is dense in itself, and that those points of E
which are not points of U are countable; if there be no such component
U, however, E is itself countable.
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From this it is easy to show that, after a countable set of stages, the
process of analysis into adherences and a coherence comes to an end,
leaving us either with U as residuary coherence or, if there be no U, with-
out any residuary coherence at all.

Arranging the successive adherences then in countable order Ax, A2,...,
we have the following general analysis :—E = U-\-A1-{-A2-\-... (where U
may, of course, in a special case be absent, and the series of A's be finite
or countably infinite), U denoting the greatest component of E which is
dense in itself, and Ax, A%, ... isolated, and therefore countable, sets
(adherences) such that each Ai consists of points tohich are limiting points
of every adherence Ah which, in the natural order, precedes it.

6. Proof of Theorem 6.

Having arranged the coherences in countable order, let us arrange the
points in each adherence also in countable order, and let Py denote the
j-th point of Ai.

We will now show how to construct the intervals in such a way that
the only extraneous points which can remain in the inner limiting set are
limiting points of U.

Let us assume any finite positive quantity I. Then, since Ai contains
none of its limiting points, we can assign a definite largest interval, of
length less than I, say Zdy, with Py- as centre, such that inside this interval
there is no point of Ai, except Pv-; one or both of the end-points of this
interval may be points of Ai or limiting points of Ai.

The law of intervals is now that, round each point Py- as centre, ive
describe an interval of length d\jfor the first set of intervals, and end\jfor
the n-th set of intervals, where e is any assigned small positive quantity
less than 1.

The law of intervals for points of U (if it exists) may be any we please.
Now, if there be any point of the inner limiting set not belonging to E,

it is, by Theorem 1, a point of the first derived set E'. Let then Q be any
point of E' which is not a point of E.

If Q be not a limiting point of Ea, it cannot be a limiting point of any
adherence, whence, considering all the stages successively, it follows that
Q must be a limiting point of U. Assuming then that Q is not a limiting
point of U, it must be a limiting point of Ea, and may be a limiting point
of some adherent subsequent to Eu in the natural order. Let Ai be any
adherence of which Q is a limiting point; then Q is a limiting point of
every adherence Ah preceding Ai in the natural order. Hence, by the
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construction, Q is external to all the intervals dy whose centres belong to
Au or to any adherence preceding Ai in the natural order.

Thus, if Q be a limit for every Ait Q cannot be a point of the inner
limiting set without remaining always interior to intervals described round
points of U, which it cannot do, since, by hypothesis, Q was not a limiting
point of V. Such a Q could not then belong to the inner limiting set.

We must then be able to assign an integer h, such that Q is a limiting
point of Ah, but not of any adherence subsequent to Ah in the natural
order. Let Ai denote the adherence next after Ah in the natural order.
Then we can assign a definite largest interval, of length say d, with Q as
centre, such that inside this interval there is no point of Ai and therefore
(since any point of an adherence subsequent to Ai is a limiting point of Ai)
no point of any adherence subsequent to Ai in the natural order. .

Let us now determine an integer m, so that eml < d; then, for all
values of i and j , emdtj < d; therefore Q is external to all the intervals
emdjj of the m-th set of intervals whose centres Py belong to adherences
subsequent to Ah in the natural order. Also, since Q was shown to be
external to all the remaining intervals of the m-th set, it follows that, if
Q be a point of the inner limitmg set, it must, from and after the m-th set,
be interior to intervals described round points of U, which again is con-
trary to the hypothesis that Q was not a limiting point of U. Thus it is
shown that no point Q belonging to E', but not to the first derived U' of
U, can be a point of the inner limiting set of the intervals as we have
constructed them. Q. E. D.

This is the proof of Theorem 6, and, by supposing U to be non-existent,
of Theorem 5 also.


