XV. Ueber die Fortpflanzungsgeschwindigkeit der Nervenreizung; von H. Helmholtz, Professor der Physiologie in Königsberg.

(Aus den Monatsberichten d. Berl. Akad. 1850. Januar.)

Ich habe gefunden, dass eine messbare Zeit vergeht, während sich der Reiz, welchen ein momentaner elektrischer Strom auf das Hüstgeslecht eines Frosches ausübt, bis zum Eintritt des Schenkelnerven in den Wadenmuskel sortpslanzt. Bei großen Fröschen, deren Nerven 50 bis 60 Millim. lang waren, und welche ich bei 2-6° C. ausbewahrt hatte, während die Temperatur des Beobachtungszimmers zwischen 11 und 15° lag, betrug diese Zeitdauer 0,0014 bis 0,0020 einer Sekunde.

Die Reizung des Nerven geschah mittelst des Stromes, den eine Drahtspirale bei der Oeffnung ihres eigenen Stromes in einer anderen inducirte. Durch eine eigenthümliche mechanische Vorrichtung wurde bewirkt, dass in demselben Augenblicke, wo der Strom in der inducirenden Spirale aufgehoben wurde, sich ein zweiter, durch einen Multiplicator gehender Strom schloss. Ich überzeugte mich, dass die Fehler in dem vollkommenen Zusammentreffen der Oeffnung und Schliessung jedenfalls bei weitem nicht to der Zeitdauer erreichten, um die es sich handelte. Der Strom kreiste so lange durch den Multiplicator, bis die Spannkraft des gereizten Wadenmuskels sich hinreichend vergrößert hatte, um ein gewisses an einer Platinspitze auf einer vergoldeten Unterlage hängendes Gewicht mit dieser Spitze von der Unterlage abheben zu können, und so den durch diese Theile geleiteten Strom zu unterbrechen. Die Dauer des Stroms ist also dem Zeitraum zwischen der Reizung des Nerven und der ersten mechanischen Wirkung des Muskels genau gleich. Der Ausschlag, welchen der Strom während seines Durchgangs dem Magnetstabe des Multiplicators ertheilt, ist der genannten Zeitdauer proportional, und dieselbe kann aus ihm berechnet werden, wenn man außerdem die Schwingungsdauer des Magneten und die Ablenkung kennt, welche der ununterbrochene Strom bewirken würde. Ich maas die Ablenkungen mit Spiegel und Fernrohr. Das Wesentliche des Verfahrens entspricht der von Pouillet zur Messung kleiner Zeiträume angegebenen Methode.

Die Ergebnisse waren folgende:

Die Zeit, welche der Muskel nach der Reizung durch gleiche Ströme braucht, um die den angehängten Gewichten entsprechende Spannung zu erlangen, ist desto größer, je schwerer die letzteren sind.

Die Zeit wird bei gleichen angehängten Gewichten und wechselnder Intensität der Reizung oder Reizbarkeit des Muskels desto größer, je kleiner die Höhe ist, bis zu welcher der Muskel das Gewicht erhebt.

Gewöhnlich, doch nicht immer, sind die Erhebungshöhen bei Reizung des oberen Endes des Hüftnerven kleiner als bei der des an den Muskel anstossenden Theils, was den bekannten Erfahrungen über das Absterben ausgeschnittener Nerven vom centralen Ende aus entspricht. Man kann aber jedenfalls die Gleichheit der Erhebungen herbeiführen, indem man die Inductionsströme für die reizbarere Stelle schwächt. Es geht alsdann aus den Ausschlägen des Magneten hervor, dass dieselbe mechanische Wirkung bei Reizung des unteren Nervenendes um ein Gewisses früher eintritt, als die nach Reizung des oberen. Bei demselben Individuum ist diese Differenz constant, und unabhängig von den angehängten Gewichten. In den Beobachtungsreihen an verschiedenen Individuen wechselte dieselbe zwischen 0,0014 und 0,0020 Sekunden, wobei die höheren Werthe derselben den kälteren Tagen entsprechen. Bei den Versuchen mit niederen Gewichten sind die einzelnen Zuckungen etwas unregelmässiger, und man muss die constante Größe der Differenz aus den Mittelzahlen der Versuchsreihen berechnen, während dieselbe bei 100 bis 180 Grm. Belastung sogleich aus der Vergleichung der einzelnen Zahlen entnommen werden kann.