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ON THE CONVERGENCE OF SERIES OF ORTHOGONAL
' FUNCTIONS

By E. W. HossoN.

[Received November 30th, 1912.—Rcad December 12th, 1912.)

A New line of investigation in the theory of Fourier series and of
other series of orthogonal functions was opened by the discovery made by
Liapounoff and Hurwitz that the coefficients of the Fourier series

%ao+m§=‘«l (@, cos nx <+ b, sin nzx)

which corresponds to a funetion f(z) such that {f(z)}?is integrable are

such that %ag+n§1 (a2+4b%) converges to the value % Y |f@}%dz, in-

dependently of any knowledge as to the convergence of the Fourier’s series.
This theorem was established in its most general form by Fatou,* for the
case of a function f(z), which, whether limited or not, is such that {f(z)}?
is summable, in the sense that it has a Lebesgue integral in the interval
(—r, ), the coefficients being also Lebesgue integrals. The theorem was
extended to the case of series of other orthogonal functions, in connection
with the theory of integral equations.

If the coefficients c,, ¢y, ..., 4y ... Of & series u§1 Cudnlz), Where the

{¢n(x)} form a sequence of normal orthogonal functions, are given, the
question arises whether a function f(z) exists such that the constants c,

1
are the coefficients j f@) ¢.(x)dz, formed in Fourier's manner, corre-
0 .

sponding to the function f(z).
It was establishedt by F. Riesz and Fischer that the necessary and
sufficient condition that a function f(z), whose square is summable, should

* Acta Math., Vol. 30'(1906). Other proofs have been given by Lebesgue and by W. H.
Young (see his paper on ‘¢ Successions of Integrals and Fourier Series,’’ Proc. London Math.
Soc., Ser. 2, Vol. 11).

t F. Riesz, Gittinger Nachrichten, 1907, also Comptes Rendus of the French Academy,
May 17, 1909 ; Fischer, Comptes Rendus of the French Academy, 1907, Vol, 144, p. 1022.
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exist, such that the given constants ¢, ¢, ..., ¢, ... are the Fourier’s
1 1 1

constants j f@) ¢, (@)dz, j f@) po(@)dz, ..., j' f(@) ¢n(@)dz, ... is that the
0 0 0

series c!4cl+4...4¢2+... is convergent.* The further question arises

whether, and how far, the series ?El Cupn(z) 18 convergent. The earliest

result as regards this question was obtained, for the case of the ordinary
Fourier’s series, by Fatou (loc. cit.), who shewed that the series

%cl.o+n§=:1 (an cos nx+ 0, sin nx)

is convergent at every point of the interval (—ar, =) with the exception at
most of a set of points of zero measure, provided

lim na, =0, and lim nd,=0.
It was then provedt by Weyl, by means of an ingenious methed originally
due to Jerosch, and further developed by Weyl himself, that the series
’El Co¢u(2) converges everywhere in the interval (0, 1), with the possible

exception of a set of points of zero measure, in case the series 21 nbel is
n=

convergent. Weyl also proved, by a similar method, that, in case the
functions ¢, (x) are such that | ¢, (x)| is less than some fixed number, for
all the values of » and =, the convergence of the series ntc is sufficient
to ensure the convergence of the series n§=31 Capn(c) in the same sense as

before ; this condition is clearly satisfied if

lim nét*¢, = 0,
for some value of A (> 0); or, in the case of the ordinary Fourier's series,
i lim #¥**a@, =0, and lim %i**), =0,
for some value of A(> 0).
In the present communication I have established the wider result that
it is sufficient for the convergence of the series 121 capn(x) atb all points of

(0, 1) with the exception at most of those belonging to an exceptional set
of measure zero, that a number % (> 0) should exist such that the series
nE_ZI nF¢l is convergent. This condition is clearly satisfied, if a number

* Various proofs of this theorem are discussed in a paper by W. H. and G. C. Young,
Quarterly Journal, Vol. XLIV.
t See Math. Annalen, Vol. 67, p. 225.
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A (> 0) exists, such that

lim n¥*t*e, = 0,

nN=7
or, in the case of the ordinary trigonometrical series, that

lim nt**q, = 0, and lim #!**p,=0.
The proof is developed by a method different from the one employed by
Weyl to establish his theorems corresponding to ¥ = §, and £ = 3§, in
that no use is made of the Majorantenreihen. It appears that the
restriction that | ¢,(z)| should be limited for all values of 7 and =z, which
Woeyl employed for the case k& = %, is entirely unnecessary.

1. Let ¢; (@), ¢g(@), ..., pu(x), ... denote a set of normal orthogonal
functions for the interval (0, 1); the functions accordingly satisfy the

conditions L .
5 {¢n(5)}2dx =1, j0¢n(1:) ¢n’(-’5)dz =0,

0
for nEn'.

Let it be assumed that the coefficients ¢,, ¢,, ..., cu, of & series
01¢1(x)+02¢2(z)+---+cn¢n(x)+---;
are such that the series 1¥c24-2°cI+4...4nfci+...

is convergent, for some value of 4 greater than zero. It will then be
shewn that the series Z c.¢.(z) is convergent for all values of » in the

interval (0, 1) with the exception at most of those values that belong to a
set of points of measure zero.

Let A be & positive integer so chosen that 1/A << %, then it is clear
that the series 1A QA2+ riAei ..
is convergent.

The partial sum ¢, ¢;(@)+capa(@)+...4+capu () will be denoted by
s,(x). But, for convenience of printing, in the investigation s(z, 7) will be
written for s,(z); also c¢(n) will be written for c,.

We choose a positive number ¢ which may be arbitrarily small, and we
then choose a positive integer » so large that the series

1P+ + DM A0+ D+ 01 +2) 0+ +

converges to a sum that is less than ¢>. In view of a later requirement,
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r; will also be taken to be greater than all the binomial coefficients
A, 7\(2'—1)’ )\()\,fg'()\—z), ... in the expanded form of (1+4z).

Consider the set of indices

(DY (2, ..., m;
we have

_ﬁ {s (@, mN—s(x, Y}2de = (B +1)+EE+2+...+c20mY),

where ¢t <m. It follows, by letting ¢ = »,, n,+1, ..., m—1, successively,
and adding the equations, that

1 t=m=1
j 2 sz, mM—s(z, M} dx

0 t=r
(n+1 n+2)? md
= Z E@+2 Z AFOF...+m—nr) z ).
t=r}+1 t=(r1+1)' +1 : t=(m-1}+1

Since m—r, < {(m—1*+1}'* we see that the expression on the right-
hand side is less than =  £-*c3(¢).

t::?‘?-l-l

It follows that the set of points at which

t=m=-1

T s@,mM)—sz, N} > 4

t=m

m‘

has a measure less than %2— Z c%(@#). From this we see that in a
t=ﬁ+1

set of points G,, of measure
>1—31r S aRd(l > 1—6,

t=r}+1

all the numbers

|5 @@, mN—s@, )|, | s(@, mN—s iz, (+D}H, .

| s(@, m" —s{z, (m—1*}],

are less than 6. In this set G, of points

s(z, ) —s(, ™| < 26,
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for all pairs of values of ¢ and ¢, such that
nLtLm, and LM

Let m have the values m,, mg, ms, ... successively, in an increasing
gequence of integers. The corresponding sets of points being denoted by
G Guyg Gog, ..., it 18 clear that each of these sets contains the next, for
any point of G, belongs to Gi,.

Since the measure of each of the sets is > 1—4, and since each one
"contains the succeeding ones, it follows that there exists a set G, of
measure > 1—4§, which consists of those points that belong to all the
gets Gu,, Gmy Guy --.. In this set G, of measure > 1—4, we have

lS(;L', t’\)_s(xs t"\)l < 26y

for all pairs of values of ¢ and ¢/, such that ¢ >, t' > .
Next, let us consider the following groups of indices which are > +*
and << (r+1)*, where 7 is a number > ry :—

r

™, P41, P42, ey P HY,

47, Pr4r41, P+r+2, ey 2 HY,
PP, —Dr, P4HEP,=Dr+1, ..., P4Ppr; HY),
4+ P;7, -(“‘-{-Plr-i-l; o

] IM+1,

where P, denotes P e R T 7\(7\ ) P34 A,

so that _')"‘+P1 r+1 = (41

The last index in each group is also the first index in the next, and each

group except the last contains »+1 indices. Consider the group HY,
where 1 < m < P,. We have

1
L[{s[w, 4+ m—1)r]—s[z, P+ @m—1)r+41]}2
+ {s[z, "+ m—1)r]—s [z, +m—1)r+2] } 2+
+ {s[z, "+ m—1)r]—s @, *+mr)} 2] dz
=@ {P+m—1r+1} + =1 {P+m—1)r+2} +... +E0*+n)
t=r*+mr

< z i 2

t=r*+(m-1)r+1



302 Pror. E. W. Hosson [Dec. 12,

If m = P,+1, we have
1
L {s@, "+ Pyr)~s@, *+Pir+1)}2de =P+ Pr+1) < ¢,

where t =r+Pr+41.

It follows that in a set of points of measure
1 t=r>+mr

>1—% p> e,

& o menyre1
we have | slz, *+(m—1)r]—s[z, "+ m—1) r+k]| < 6,
for all the values 1, 2, 8, ..., r of k. Hence, in this set, we have
| s(z, P+ n—1)r4t]—s[z, A +m—1) r+¢] < 26,

for all pairs of values of ¢ and ¢, such that 1 <t <, 1 < K r. This
holds for each of the groups Hf,?, m=1,92, ..., P;; and also for the
group HY),,, in a set of measure

>1—- % trct,
where t= (r+1)%,

we have | s @@, P+Pyr)—s[z, r+1D']| <.

Taking all the values of m successively, we see that in a certain set E, of
measure 1 it
>1-— F b ¢ '\0;2,

t=1*
the condition Is(z, a)—siz, a)| < ¢
is satisfied for all integers a, such that

» < a<@r+1)3,

when a; denotes the first indéx in that group HY to which a belongs.
Next, consider the indices 7*, P+, P*+2r, ..., 422, P*+r724r, ...,

»+P,r. As before, we define a number of groups of indices, each of

which, except the last, contains r+1 indices. Thus, if P, = rPy+A,
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where P, denotes >\7’\‘3+MA——I)r‘"+...+M)\_l), the groups are
2! 2
taken to be
7, P+, ¥+, ey P2 H?,
PR AR, ARt L, P42 HY,
+m—=1)2, *4+m—=072+r, ..., *+m?; H?,
P4+(Py— 1)1, P+(Py—1) P+, ..., PPy, 38
4 Pyr?, veey PPy Hg)+2.

We see that, taking the group Hff),

ﬁ [{s [z, »+ m—1)1*]—s[z, *+(m—1)+7]}*?
+ {s[z, P+ m—1)*]—s[z, P+ (m—1)*4+2r]} *+...

+ {s[x, *+(m—1)1"]—s(z, 7“‘+m'r“)}2] dz

=r{?[P+m—1) +1]+...+ [P +m—1)rP+7] }
+or—1{E[P*+m—1)P+r+1]+... 43 [P+ m—1) r'é+2r]}
+..
+ o +mr®).

The expression on the right-hand side is

t=r 40
< 3z e

t==r* 4 (m~1)r241
For the group Hf-i)ﬂ, the expression is
AMEP+P, A+ D) +...+E 0+ Pyt 1) } '
v +A=1 {0 +PyrP+r+D+.. 1+,
and since r, has been so chosen that »} > A, we see that this is less than
t= 4 P24 ar t““cf.v
t=r*+ Pyr?
As before, we conclude that there exists a set E,, of measure greater than

1 =G4} )
1— E“,— z A Cf,
t=2*
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in which | s, a)—s(z, ap) | < 4,

for all values of a which belong to the set 2%, »*+r, ..., (r+1)*; where a,
denotes the first index in that set HY to which a belongs.
We proceed, as before, with the indices
2, A3, P28, ..., PPy

and write = P RO,

We define as before the sets Hm veey ,f,)“, each of v?hich contains
r+1 indices, except that the last contams only $\ (A\—1) indices, and this
is by hypothesis < ,. As before, we conclude that in a set Ej of measure

1 t=(r+1p
>1-5 "8 v

the condition |s(z, a)—s(z, ag)| is satisfied for all values of a, such that a
belongs to the set 7, 4% ..., »+P,r’, aud where ag is the first index
of that set HS to which a belongs.

We continue this process until we have to divide the indices

P, PP L, PP PR L P A= DA,
into sets HY gAY Hg\-lﬂ
As before, there exists a set H,_, of measure greater than
1 t=(r+1

_ 1 1A 2
=N
in which | f(=, a)—f(z, aop)| < 6,

where a is any of the above indices, and a@,_; is the first index of the
group G4 to which a belongs.
Lastly, we have to consider the set of indices 7, 7+, ..., X271,

which we denote by H™. As before, it is seen that there exists a set of
points E, of measure

1 t=(r+1) ,
> 1— ?g- 2 tl’AO?,
p=p?

at every point of which  |s(z, a)—s(z, a;\)l < 4,

where, in this case, a, has the unique value. 7.
Now the sets "B, Hy, Hy, ..., E\ have each a measure
1 =+ +1)*

— 1/A 2,
>1- 5 ti»t»c,,
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therefore there exists a set of points F, of measure
A =+

—_ 1A .2
>1 3 13 trel,

each point of which belongs to all the sets E,, Ey, ..., E\.
Now let a denote any integer such that » < a < (r+1), then « is in

1) 1) 1 . :
one of the sets H, ', Hy , ..., m3+1; therefore there is 8 number o", be-

longing to the set +*, <7, ..., »*+P,r, such that in the set F,, we have
| s(z, a)—s(z, a) | < 6.

Again, o belongs to one of the sets H?, Hff), . Hﬁ)ﬂ; therefore
there exists a number o® among those numbers which are the first indices
of these sets, such that in #,, we have

| s@, a)—s(z,d®) | < 4,

and so on. It follows since

|s@, M —s, o) | < |s(@, @) ~s(z, a®) | + |5, d)—s(z, d®)|+...
+ | s@, a®)—s(z, )],

that |s@, M—s, a)] < AS

for all points of F..
Now give to » the values 7, r,+1, 42, ..., successively ; we thus
obtain sets of points F,, F, 1, Fy 2, ...; the measure of F, ,; being
A t=(ri+o+12
>1— 7 pX 11'}\6';".
t=(ry+sP
There exists a set of points K, of measure

> 1— 28—2‘ 2 e,

t=1}

each point of which belongs to all the sets Fy,, Fy 11, ... .
At a point z of this set K, we have

|s @, @) —s(@, ™) | < A4,
for all indices a which are > 7{, where 7* is such that
rga<< (DA

In accordance with the choice which we have made of the integer 7,
the measure of K is > 1—2Ad. In the set G which is of measure > 1—4,

we have s, t)—s(x, )| < 28,

SER. 2. VoL. 12. N~o. 1178. X
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for all values of ¢ and #' which are not less than r,. The sets K and G
have in common a set L; of measure greater than 1—(2A+1)¢é. This
set Ly has the property that for any two integers a, «/, neither of which

is <9'?, the condition
I's@@, a)—s(z, a') | < 2(A41) 4 ;
for if #*, ¢'* are such that
PLa< D, 'K d <EFHDA
we have |s(z, a)—s (z, a)| < | s(x, Q) —s(z, |+ |s(z, a) —s(z, )]
+ |s(z, ) —s(z, t'™)]
< 2(A+41)4.

If € be an arbitrarily fixed positive number, we may take
§ = ¢/(OA+2);
therefore a set D, of points exists, of measure > 1—e, such that
lsn(x)_su' ('E)' <e

for all points of the set, and for all values of » and n' which are both
greater than some fixed integer ¢.. Let { be an arbitrarily chosen positive
number, then a sequence of values of ¢ can be so chosen that e +e+...
converges to a value less than {. The sets D, D, ... have in common a
set D of points which belong to all of them, and the measure of D is

> 1—(g+e+...) > 1—¢.

In this set D the sequence {s,(z)} converges uniformly; for, at all
points z of this sequence, | s, (z)—s,(z)| is less than the arbitrarily small
number e, for all values of #» and »’ which are not less than some fixed
integer dependent on e,.

It has now been shewn that the series

c16:(@) +c3 dy(@)+ ... FCnpn (@) +...

converges uniformly in some set of points of measure > 1—¢, where { is
an arbitrarily chosen positive number (< 1). Since ¢ is arbitrarily small,
it follows that the series is convergent at all points of a set of which the
measure is equal to that of the interval (0, 1) of representation. This
mode of convergence is said to be quasi-uniform convergence in the
interval.* The following theorem has now been established :—

* This mode of convergence I have discussed in a previous paper, ‘' On the Representation
of a Summable Function by a Series of Finite Polynomials,”’ see ante, p. 162.
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If ¢,(x), ¢o(®), ... are a sequence of normal orthogomal functions, and
if the series 1" ci4+9%cl+4...+nFcl+... converges for some value of k that
s greater than zero, then the series ¢, ¢, (®)+cape(@)+...+cupu(@)+...
converges at all points of the interval for which the orthogonal functions
are defined, with at most the exception of a set of points of which the
measure 15 zero. The convergence s quasi-uniform, wn the sense that a
set of points of measure less than, but as nearly equal as we please to,
that of the interval can be determined so that the convergence of the series
s uniform in the set of points.

It will be observed that no assumptfion is made in this theorem that
the set of normal orthogonal functions is a complete set. Thus, if
1), Po(), ..., Pa(x), ... is a complete set, the condition stated in the
theorem is sufficient to ensure the convergence, in the sense stated in the
enunciation, of all the series of the form

61 n, @)+ Capu (@) F .. 01 b, @)+,

where ny, ng, ..., 7, ... i8 & sequence of increasing integers defined accord-
ing to any prescribed law.

The particular case of the above theorem which arises when % has the
value 1 was established* by Weyl by a somewhat intricate method depend-
ing upon the use of Majorantenrethen. Weyl also established the theorem
for the case ¥ = 4, on the assumption that the functions ¢,(z) are less in
absolute value than some fixed positive number, for all the values of n
and r; this last restriction has been shewn above to be unuecessary.

In the case of the ordinary trigonometrical series

w
2a,+ Zl (an cos nx+b, sin nx),

n=

w @
the convergence of the two series = n*al, Z n*b? for some value of %

n=1 n=1
greater than zero is sufficient to ensure the convergence of the series at
every point of the interval (—m, =) with the exception at most of a set of
points of which the measure is zero. '

2. In case a number p greater than 3 exists, such that

lim (nt+?¢,) = 0,

n=w

we see that cn < AfnH,

* See Mathematische Annalen, Vol. 67 (1909), p. 225.
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where 4 is some fixed positive number. Choosing the positive number &

less than 2p, we then see that the series X #n*c?, being less than the
n=1
» 2

convergent series 2 is convergent, and thus the condition con-
n=1

e
tained in the general theorem given above is satisfied. We thus have the
following result :—

If, for some value of p greater than zero, n**Pc, converges to zero as

n s wndefinitely increased, the series Z c,¢n(x) ts convergent at all

n=1
points of the interval for which the normal orthogonal functions ¢.(x)
are defined, with the exception at most of the points of some set of which
the measure is zero.

The condrtions
lim (##*?@,) = 0, lim @**? b,) = 0,

for some value of p greater than zero, are sufficient to ensure that the

trigonometrical series w
3a,+ X (a,cos nx+b, sin nx)
n=1

1s convergent, with the same exception as above.



