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an instrument somewhat similar to the abov% except that the 
wire was of iron instead of nickel. 

In order to show that the current induced in the coil is at 
any rate chiefly due to variations in the magnetization of the 
nickel wire produced by the variations of stress, and not to 
the relative motion of the nickel wire and the coil~ the follow- 
ing experiment was made :--A steel wire and a nickel wire 
of the same dimensions were attached to similar wooden 
diaphragms. These wires having been magnetized by stroking 
them with a permanent magnet were in turn inserted into the 
same solenoid and clamped as before at their lower ends. The 
same watch telephone was used as a receiver with each. 
The results obtained with the weakly magnetized nickel wire 
were enormously better than those obtained with the strongly 
magnetized steel wire. If the induced currents were chiefly 
due to the relative motion of the cell and magnetized wire 
the best results would have been obtained with the strongly 
magnetized steel wire, since it can hardly be supposed that 
the relative motions of the coil and magnetized wire differed 
so much in the two cases as to cause such an enormous 
difference in the results. 

V. On t/te Incidence of Aerial and Electric Waves upon Small  
Obstacles in t]te fo~.om of Ellipsoids or Eltiptlc C2/linders, 
and on t]~e .Passage of Electric Waves through a circular 
Apevt~,re in a Conducting Screen. B y  Lord RAYLEIG~, 
F.R.S.  ~ 

T HE present paper may be regarded as a development of 
previous researches by the author upon allied subjects. 

When the character of the obstacle differs only infinitesimally 
fl'om that of the surrounding medium, a solution may be 
obtained independently of the size and the form which it 
presents. But when this limitation is disregarded, when, for 
example, in the case of aerial vibrations the obstacle is of 
arbitrary compressibility and density, or in the case of electric 
vibrations when the dielectric constant and the permeability 
are arbitrary, the solugions hitherto given are confined to the 
case of small spheres, or circular cylinders. In the present 
investigation extension is made to ellipsoids, including flat 
circular disks and thin blades. 

The results arrived at are limiting values, strictly applicable 
only when the dimensions of the obstacles are infinigesimal, 

Communicated by tha Author. 
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and at distances outwards which are infinitely great in com- 
parison with the wave-length (X). The method proceeds by 
eonside,ing in the first instance what occurs in an inter- 
mediate region, where the distance (r) is a~ once great in 
comparison with the dimensions of the obstacle and small in 
comparison with X. Throughout this region and within it 
the calculation proceeds as if )o were infinite, and depends only 
upon the properties of the common potential. When this 
problem is solvcd~ extension is made without much difficulty 
to tile exterior region where ~" is great in comparison with X~ 
and where the cmnmon potential no longer avails. 

At the close of the paper a problem of some importance is 
considered relative to the escape of electric waves through 
small circular apertures in metallic screens. The case of 
narrow elongated slits has already been treated ~. 

Obstacle in a Uniform Field. 

The analytical problem with which we commence is the 
same whether the itow be thermal, electric, or magnetic, the 
obstacle differing from the surrounding medium in condue- 
tivity~ specific inductive capacity, or permeability respectively. 
I f  ~b denote its potential, the uniform field is defined by 

6 = u x + v 2 ] + w z ;  . . . . . .  (1) 
u, % w being the fluxes in the direction of fixed arbitrarily 
chosen rectangular axes. I f  ~r be the potential in the uni- 
form medium due to the obstacle, so that the complete poten- 
tial is ~b+Sk ~ ~b may be expanded in the series of spherical 
harmonics 

$1 $2 ~ = ~ - f  + ~ + >  + . . . ,  . . . .  (2) 

the origin of r being within the obstacle. Since there is no 
source, So vanishes. Further, at a great distance S:, Sa~ • • . 
may be neglected~ so that ~ there reduces to 

= S~ A ' .  + B':/+ C'z 
~ -  ,,~ . . . . .  (3} 

The disturbance (3) corresponds to (1). I f  we express 
separately the parts corresponding to u~ v~ w~ writing 
A / = A i  u + A : v +  Aaw, &c.~ we have 

ra,  = u (&x + B~y + C~z) 
+ v(h~x + Boy + C~z) 
+w(Aax+Bay+Oaz); . . . . .  (4) 

Phil. Mag. vol. xliii, p. 272. 
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but the nine coefficients are not independent. By the law of 
reciprocity the coefficient of the x-part due to v must be the 
same as that of the y-part due to u, and so on ~. Thus 
Bt=Ae,  &e, and we may write (4) in the form 

eF dF dF+v +w--  (5) 
Ux d~t dz' . . . .  

where 
F = ~Alxl 2 + ~B~yl ~ + ~C3z ~ + Brvy + C~yz + C~zx. .  (6) 

In the case of a body, like an ellipsoid, symmetrical with 
respect to three planes chosen as coordinate planes~ 

B I = C ~ = C I = 0 ~  
and (4) reduces to 

~'3~=Alux+ B~vy+C~wz . . . . .  (7) 

I t  will now be shown that by a suitabte choice of eoordi- 
nares this reduction may be effected in any case. Let % v~ w 
originate in a source at distance R~ whose coordinates are 
xI~ y~ z l, so that u = x l / R  8, &c. Then (5) becomes 

~ 3 . r . _  ~IdF I dF dF  C ~ /  
~ ~,--~ ~ + y  ~ + z ' T  z = A l x x ' + B ~ y y ' +  ~ 

+ ]~(x'u +~'~) + c~(y'~ + ~ )  + c~(~'~ + ~+'~) 

Now by a suitable transformation of coordinates F(x ,3 ,  z), 
and therefore F(x I, y ,  d) and F ( x + x ' ,  3/+Y', z + d ) ,  may be 
reduced to the form Alx2+ B~y2+ C3z~ &c. I f  this be done, 

r'~R'Z~r .-= AlXX t "F B2~I~I t 4" C~zztt 

or reverting to u, v~ w, reckoned parallel to the new axes~ 

r ~  = A~ux + B~vy + C a w z ,  . . . .  (8) 

as in (7) ~or the ellipsoid. I t  should be observed that this 
reduction of the potential at u distance from the obstacle to 
the form (8) is independent of the question whether the 
material composing the obstacle is uniform. 

For the case of the ellipsoid (a, b, e) of uniform quality 
the solution may be completely curried out. Thus t~ if T be 

* ' Theory of Sound,' § 109. u and v may be supposed to be due to 
point-sources situated at a great distance R along the axes of x and y 
respeetiyely. 

The magnetic problem is considered in Maxwell's ~Electricity and 
Magnetism/1873~ § 437~ and ~n Mascart's Zeqo,% 1896~ §§ 52~ 53~ 276. 
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the velum% so that  

we have 

where 

A1,l : - AT, 

I+~L' 

T = - ~ a b c ,  . . . . . . .  

B.2v = -- BT, Csw = - CT, 

/ iT /¢~0 
B = - -  C = - - -  . 

I + ~ M '  I + K N '  

31 

(9) 

(10) 

(11) 

(12) 
~ dk 

L=2~rabc (a ~+ ~ ~ • .~ 

with similar expressions for 3{ and N. 
In ( l l )  ,¢ denotes the susceptibility to magnetization. In 

terms of the permeability/~, analogous to conductivity in the 
allied problems, we have, if ~' relate to the ellipsoid and/z to 
the surrounding medium~ 

1+  4~rx=td/t~, . . . . .  (13) 
so that 

A = (W - ~) u 
4~r,~ + (t~'--t~)L' . . . .  (14) 

with similar equations for B and C. 
Two extreme cases are worthy of especial notice. If  

/~'//.~= ~v, the  general equation for ~ becomes 

9"3X~ U32 V t/ W Z 

'z' - L + ~ + -~"  (15) 

On the other hand, if td/t~:0~ 

r ~  u x v y w z 
T -- L--4m" + M--47r + :bT--47r" (16) 

In the case of the sphere (a) 

L = M = N = ~ - ;  . . . . .  (17) 
so that (15) becomes 

a 8 

, / ~ =  - p (ux + v~ + ~z) ,  . . . .  (18) 

giving~ when r=a~ ~ + ~ = 0 .  This is the ease of fhe perfect 
conductor. 

In like manner for the non-conducting sphere (16) gives 
a 8 

~= U~, (u~+v~+, , ,~)  . . . . .  (19) 
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I f  the conductivity of the sphere be finite (/,'), 

c~ ~ , - ~  ( ~ . + v v + ~ ) ,  . (20) 
~ =  r 3 tA+2/z 

which includes (18) and (19) as particular cases. 
I f  the ellipsoid has two axes equal, and is of the planetary 

or flattened form, 

a 
b = c - -  ~/~1_e2) , T=~Trc~ ~/(1--e2) ; (21) 

L =  47r [el ~ ~/(1--e~) ] e~ sin -I e ,. (22) 

(23) 

In the extreme case of a disk, when e=  1 nearly, 

L = ~ - - 2 ~ , / ( 1 - - e ~ ) ,  . . . .  (24) 

~ = ~ = ~ , / ( ~ - - ~ , ~ )  . . . . .  (25) 

Thus in the limit from (14), (21) T A = 0 ,  unless /~ '=0 ; 
and when/£=-0,  

2~8t~ 
T A =  - ~  . .  (26) 

In like manner the limiting values of TB, TC are zer% 
unless/~'=~¢, ~nd then 

TB_4c~v mr~ 4caw (27) 
- 37r' ± w =  3~r . . . .  

In  all cases 
~= T(Ax÷ B.v+ Cz) 

~,~ . . . .  ( 2 8 )  

gives the disturbance due to the ellipsoid. 
I f  the ellipsoid of revolution be of {he ovary or elongated 

torn b 
a---- b = c ~/(1 --e ~) ; . . . . .  (29) 

logi-.~_~ f ,  . . (30) 

* There are slight errors in ~he values of L~ M, iN recorded for this 
case in both the works cited. 
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In the case of a very elongated ovoid L and M approximate 
to the value 2~r, while N approximates to the form 

a~/lo 2e 1 \ = ~,~ ~ [ g ~ - -  ), . . . .  (32) 

vanishing when e= 1. 

In ] wo Dimensions. 

The case of an elliptical cylinder in two dimensions may be 
deduced from (12) by making e infinite, when the integration 
is readily effected. We find 

L 4vb _ 47ra (33) = ~ ,  ± u = f 4  ~. 

A and B are then given by (14) as hefor% and finally 

~b(a + ~) r (34) 
/~a +/~/b 

corresponding to 
4' = u x  + v : /  . . . . . . .  (35) 

In the case of circular section L-=)JI=2~r, so that 

a~ ~ ' - -~  (ux+~)  . . . . .  (36) 

When b=0,  that is when th~ obstacle reduces itself to an 
infinitely thin blad% 4f vanishes unless ~ = 0  or t d = ~ .  In 
the first case 

a%y. (37) ( ~ ' = 0 )  + =  2 ~ ,  . . . . .  

in the second 

a~'~x (38) 
( ~ ' = ~ )  ¢=-2r~  . . . . .  

Aerial Waves. 

We may now proceed to investigate the disturbance of 
plane aerial waves by obstacles whose largest diameter is 
small in comparison with the wave-length (X). The volume 
occupied by the obstacle will be denoted by T; as ~o its 
shape we shall at first impose no restriction beyond the 
exclusion of very special cases, such as wonld involve 
resonance in spite of the small dimensions. The compressi- 
bilifies and densities of the medium and of the obstacle are 
denoted by m, m~; 05 o J ; so that if V, V ~ be the velocities of 

.Phil. Maq. S. 5. Yol. 44:. No. 266. ~tlg 1897. D 
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propagation 
¥~---mla, V ' : = m ' l o  -'. . . . .  (39) 

The velocity-potential of the undisturbed plane waves is 
represented by 

¢=ei~Vt.e;kX, . . . . . .  (40) 

in which k=2~r/X. The time factor d ~vt, which operates 
throughout, may be omitted for the sake of brevity. 

The velocity-potential (~) of the disturbance propagated 
outwards from T may be expanded in spherical harmonic 
t erms ~ 

r,k=e-~"lSo + S~Zl(ikr) + S~ r~(ikr) +.  .}, /~l) 
where 

~ ( n + l )  ( n - - 1 ) . . . ( n + 2 )  
f , ( i k r )  = 1 + "2. ikr + ~2. -4 _ Gk~) ~ 

1 . 2 . 3 . . . 2 n  
+ . . . . . .  + 2 . 4 . 6 . . .  2n (ikr)"" (42) 

At a great distance from the obstacle f i ~ ! i k r )= l ;  and the 
relative importance of the various harmonic terms decreases 
in going outwards with the order of the harmonic. For the 
present purpose we shall need to regard only the terms of 
order 0 and 1. Of these the term of order 0 depends upon 
the variation of compressibility, and that of order l upon the 
variation of density. 

The relation between the variable par~ of the pressure ~p, 
the condensation s, and ~b is 

d4, _~p 
¥~s = -- d~ -- ~ ; 

so that during the passage of the undisturbed primary waves 
the rate at which fluid enters the vohme T (supposed for 
the moment to be of the same quality as the surrounding 
medium) is 

TdS T d:q5 =k2T" (43) 
d t -  y,2 dt2 . . . . .  

I f  ~he obstacle present an unyielding surface, its effect is to 
prevent the entrance of the fluid (43) ; that is, to superpose 
upon the plane waves such a disturbance as is caused by the 
introduction of (43)into the medium. Thus, if the potential 
of this disturbance be 

4~ = So e-~" ~ - ,  . . . . . .  (44) 

~+ ' Theory of Sound,' §§ 323, 324. 
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So is to be determined by the condition that when r =  0 

4~r~d~/dr = k~T, 

so that So=--k:T/4% and 
k2T e -~k" ~-T e -ik" 

- -  ( 4 5 )  4 / =  4~- r ~ r 

This result corresponds with m l = ~  representing absolute 
incompressibility. The ei~ect of finite compresslbili~y, differing 
from that of the surrounding medium~ is readily inferred by 
means of the pressure relation (Sp=ms). The effect of the 
variation of compressibility at the obstacle is to increase ~he 
rate of in~roduction of fluid into T from what it would 
otherwise be in the ratio m : m ~ ; and thus (45) now becomes 

7rT t)~[--m e -ikr 
4 / =  x ~  . ~ '  ~ ; . . . .  (~6) 

or if we restore the factor e ~lcvt and throw away the imaginary 
part of the solution, 

7FT ~s__ rfb 
4/=  X~r m' cosk(Vt--r). (47) 

This is superposed upon the primary waves 

= cos k(vt + ~ )  . . . . . .  (48) 
When m ' = 0 ,  i. e., when the material composing the 

obstacle offers no resistance to compression, (47)fails. In 
this case the condition to be satisfied at the surface of T is the 
evanescence of 8p, or of the total potential (~ + 4/) In the 
neighbourhood of the obstacle ~ = 1 ;  and thus MI if  denote 
the electrical "capaci ty " of s~ conducting body of form T 
situated in the open, 4/---- --Mt/r, r being supposed to be large 
in compsrison with the linear dimension of T but small i n  
comparison with X. The latter restriction is removed by the 
insertion of the factor e -i~', and thus, in place of (46), we now 
have 

M Z e-ikr 
- - .  . . . . .  (~9) 

4 / ~  r 

The value of M l may be expressed when T is in the form of 
an ellipsoid. For a sphere of radius R~ 

M ~ = R ;  . . . . . .  (50) 

for a circular plate of radius R~ 

M ' =  2t~/~r . . . . . . .  (51) 
D 2  
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When the density of the obstacle (o'0 is the same as that 
of the surrounding medium, (47) constitutes the complete 
solution. Otherwise the difference of densities causes an 
interference with the flow of fluid, g'ivin-o'~ rise to a disturbance 
of order 1 in spherical harmonies. This disturbance is inde- 
pendent of that already considered, and the flow in the 
nelghbourhood of the obstacle may be calculated as if the 
fluid were incompressible. We thus fall back upon the 
problem considered in the earlier part of this paper, and 
the results will be applicable as soon as we ha~ e established 
the correspondence between density and conductivity. 

In ~che present problem, if X denote the whole velocity- 
potential, the condi6ons to be satisfied at any part of the 
surface of the obstacle are the continuity of dx/dn and of o-X, 
the latter of which represents the pressure. Thus, if we 
regard o" X as the variable, the conditions are the continuity 
of (o-X) and of o--~d(ax)/dn. In the conductivity problem 
the conditions to be satisfied by the potential (%z) are the 
continuity of X I and of/~ d%'/dn. 

In an expression relating only to the external region 
where o- is constant, it makes no difference whether we are 
dealing with aX or with % ; and accordingly there is corre- 
spondence between the two problems provided that we suppose 
the ratio of/~'s in the one problem to be the reciprocal of ~he 
ratio of the o"s in the other. 

We may now proceed to the calculation of the disturbance 
due to an obstacle, based npon the assumption that there is a 
region over which ~ is large compared with the linear dimen- 
sion of T,.but small in comparison with X. Within this region 

is given by (8) if the motion be referred to certain principal 
axes determined by the nature and form of the obstacle, the 
quantities u, v, w being the components of flow in the primary 
waves. By (41), (42), this is to be identified with 

? = s ~ - -  1 +  , . . . .  ( 52 )  

when r is small in comparison with k ; so that 

S~=ik(-41ux+]3~W+C~z°").  . . . (53) 

At a great distance from T, (52) reduces to 

= ik(A1 ux + B~ vy + Cs tvz)e-ik~ 
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- - a  term of order 1~ to be added to that of zero order 
given in (46). 

In general, the axis of the harmonic in (5~) is inclined to 
the direction of propagation of the primary waves; but there 
are certain cases of exception. For example, v and w vanish 
if the primary propagation be parallel to x (one of the 
principal axes). Again, as for a sphere or a cube, As, B2~ Ca 
,nay be equal. 

We will now limit ourselves to the case of the ellipsoid, 
and for brevity will further suppose that the primary waves 
move parallel to x, so that v = w = 0 .  The terms correspond- 
ing to u and v, if existent~ are simply superposed. If~ as 
hitherto, (~=d k~, u-=i/c; so that by (l~t)~ o" being substituled 
for td and o -~ for /~  

A = ik (cr -- ~I) 
4~o,+(~-o,)1~ . . . . .  (55) 

In the intermediate region by (28) @-= - - T A x i s  3, and thus at 
a great distance 

ikx TAe -~k" 
~ = - -  r: ; . . . . .  (56) 

or on substitution of the values of A and k, 

~ T x e - ~  47r(~/--~) (57) 
~b -- ~ r  ~ 47r~'-t- (o- - o-I)L " 

Equations (46)~ (57) express the complete solution in the 
case supposed. 

For an obstacle which is rigid and fixed, we may deduce 
the result by supposing in our equations m'----~, o-'=-~v. 
Thus 

~rTe-~ { 1-~ ~ 4~r 
4 ~ L }  (58) ~ =  - ~ - ~  ~ • . 

Certain particular cases are worthy of notice. For the 
sphere L = ~ r ~  and 

~rTe -~k~ f 3x ) 
4f---= ~ ( 1 +  ~r)~ . . . .  (59)* 

I f  the ellipsoid reduce to an infinitely thin circular disk of 
radius c, T = 0  and the term of zero order vanishes. The 
term of the first order also vanishes if the plane ,of the disk 
be parallel to x. I f  the plane of the disk be perDendieular to 

~ Theory of Sound,' § 334. 
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x, 47r--L is infinitesimal. By (21), (24) we ge~ in this case 

4~rT 8c ~ 
4~r_lJ = ~ - ;  

so that 
8 ~ c  3 . r e  -~k~ . . , . ( 6 0 )  

I f  the axis of the disk be inclined to that of x, 4/, retains its 
symmetry with respect to the tbrmer axis~ and is reduced in 
magnitude in the ratio of the cosine of the angle of inclination 
to unity. 

In the case of the sphere the general solution is 

~Te-~f.~'--.~ 3,~ o-'-o- t 
~ =  X~ I. m / + r 2 d 4 ' ~ _ t "  

(61) -x: 

Waves in Two Dimensions. 

In the case of two dimensions (x, y) the waves diverging 
from a cylindrical obstacle have the expression, analogous 
t o  ( ~ l ) ,  

, l , '=SoDo(kr)+S~ D~(kr )+ .  . . , (62)t 

where So~ S1 . . .  are the plane circular fanctions of the various 
orders, and 

k 2ikr] [_ 1 . 8 i k r  

= ( 7 + l o g  ik-f~ ( 1  - k % 2  / ~ - + ' " 3  + - - - -  

d@.) - V 2 k ~ /  k 

7 
- -  + . . . j ~  

k~r ~ 3 k% 4 
22 2 22 . 43 +" " " ' 

(63) 
- - 1 . 3  } 
[ . Sik~ ~ + . . .  

1 [-1 ~r~ -] / . i k r \  k~r s 

- -  J_ - -  ~ -  + "~  

kr 3 k~r 3 
+ 2 2 ~ + . . . . . . . . . . .  (64) 

As in the ease of three dimensions already considered, the 
~erm of zero order in ~ depends upon the variation of com- 
pressibility. I f  we again begin with the case of an unyielding 

~Theory of Sound,' § 335. 
t See ' Theory of Sound,' § 341 ; Phil. Mag. April 1897~ p. 266. 
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boundary~ the constant S o is to be found from the condition 
that when r - - 0  

27re d~/dr = k~T-, 

T denoting now the area of cross-section. When r is small~ 

5lDo(kr) _ 1 .  
d r  - -  r ~ 

and thus So=k~T/2% 

k~T Do@r ) = -- k2T { ~-~-~ e -~k" (65) 
~ =  ~ -ff-~ \2 ikr]  ' " "" 

when e is very great. This corresponds to (45). 
In like manner, if the compressibility of the obstacle he 

finite, 
k~T ~ , / 7r \ a m - - m  .. / - - ~  - - e  . . . .  (66) 

~ - -  ~r \2ikr]  2m I " ' "  

The factor i - ~ = e - - ~ ;  and thus if we restore the time-factor 
d kw, and reject the imaginary part of the solution~ we have 

27rT m'--m 97r x cos - Z (  : : t - ~ -  ~x), (6U 4 F = -  r~X~ 2m" 

corresponding to the plane waves 

~ = c o s ~  (Vt+x) . . . . . .  (68) 

In considering the term of the first order we will limit 
ourselves ~o the ease of the cylinder of elliptic section~ and 
suppose that one of the pr!neipal axes of the ellipse is parallel 
to the direction (x) of primary wave-propagation. Thus in 
(34), which gives the value of ~ at a distance from the 
cylinder which is great in comparison with a and b, but small 
in comparison with ~,~ we are to suppose u=ik ,  v=O, at the 
same time substituting (r~ a / for/~'~/z respectively. Thus for 
the region in question 

~ k :  ab. ikx (~'--~) (a + b) . (69) 
2r 2 ~ ' a  + trb ' 

and this is to be identified with S1Dl(kr ) when kr is small, 
i. e. with S1/kr. Accordingly 

ik~b (o-'--o-) (a + b) 
$1= ~7 2 ~'a + o-b ; 
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so that, at a distance r great in comparison with X, ~ becomes 

• k =  [ e - % . . .  (70) 
\ ~ ]  2(q/a + o-b) r 

T being written for ~'ab. The complete solution for a great 
distance is given by addition of (66) and (70), and corresponds 
to q~=d k~. 

In the case of circular section (b = a) we have altogether * 
l 

4/ ,=_k2a~  e_~k~[ ' ~ f m ' - - m  # - - ~ r  (71) 
\ 2 i k r ]  I. 2m I + ~: +-----~ , 

which may be realized as in (67). I f  the material be un- 
yielding, the corresponding result is obtained by making 
m / = ~  ~ c r ' = ~  in (71). The realized value is then t 

2~r • ~ra~/1 x )  cos 27r 

In general, if the material be unyielding, we ge~ from 
(66), (70) 

The most :nteresting case of a difference between a and b is 
when one of them vanishes, so that the cylinder reduces to an 
infinitely thin blade. I f  b=0 ,  ~ vanishes as to both its 
parts; but if a = 0 ,  although the term of zero order vanishes~ 
that of the first order remains finite, and we have 

_ ±k~b ~ e_i~ ~ { ¢r \~  x $= r' . (74) 
in a~reement with the value formerly obtained ~. 

I t  remmns to consider the extreme case which arises when 
m:=0 .  The term of zero order in circular harmonics, as 
given in (66), then becomes infinite, and that of the first 
order (70) is relatively negligible. The condition to be 
satisfied at the surface of the obstacle is now the evan- 
escence of the total potential (~b + ~) ,  in which ~b = 1. 

I t  will conduce to dearness to take first the case of the 
circular cylinder (a). By (62), (63) the sm'face condition is 

s0{  +log } + 1 = o  . . . . .  (75) 
• ~ Theory of Sound,' § 343. 
"~ .Loe. cir. equation (17). 
:~ Phil Mag. April 1897, 1). 271. The primary waves are Chere sup- 

posed to travel in Che direction of +x, but here in the direction of -x .  
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Thus at a distance r great in comparison with X we have 

e - ~  ( ~  (76) 
= ;y + l o g  (~ika) \'2~-/~] " 

When the section of the obstacle is other than circular, a 
less direct process must be followed. Let us consider a circle 
of radius p concentric with the obstacle, where p is large in 
comparison with the dimensions of the obstacle but small in 
comparison with X. Within this circle the flow may be 
identified ~vith that of an incompressible fluid. On the circle 
we have 

+ ~ = 1 + s0{ ~ + log (~i~p) }, (7 7) 

2 ~ d ( i ~ + ~ ) / d r = 2 ~ S o ,  . . . .  (TS) 
of which the latter expresses the flow of fluid across the 
circumference. This flow in the region between the circle 
and the obstacle corresponds to the potential-difference (77). 
Thus, if R denote the electrical resistance between the two 
surfaces (reekol~ed of  course for unit length parallel to z), 

S0t ~ + log (¥kp) - 2 ~ U  } = 1, (79) 

and ~ - -  SoD0(]~r), as usual. 
The value of So in (79) is of course independent of the 

actual value of p, so long as it is large. I f  the obstacle be 
circular~ 

27rR =log  (p/a). 

The problem of determining R for an elliptic section 
(a, b) can, as is well known, be solved by the method of 
conjugate functions. I f  we take 

x=ccosh~cos~, .y=csinh~sin~, (80) 

the confocal ellipses 
x ~ .y~ _ 

cosh ~ ~: d sinh e ~ -- c 2 . . . . .  (81) 

are the equipoteni~ial curves. One of these, for which ~: is 
large, can be identified with the circle of radius p, the relation 
between p and ~ being 

E=log (~p/e). 
An inner one, for which $=~:0, is to be identified with the 
ellipse (a~ b), so that 

u = e cosh $0, b = c sinh $0, 
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whence 

Thus 
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c ~ = a~--b ~, tanh ~:0 = b/a. 

2~R=~- -~o= log  ]+Pb ; . . . .  (82) 

and then (79) gives as applicable at a great disfance 

= ~ - ~  (_y%,~ 
7+log t¼ik (a+b)}  \2 ikr]  " (83) 

The result for an infinitely thin blade is obtained by merely 
putting b=0  in (83). 

For :some purposes the imaginary part of the logarithmic 
term may be omitted. The realized solution is then 

= (  ~_~ cos k ( v t - ~ - ~ x )  
'/" ~,~k,./ ~+log {¼k(a+b)}' " (8~) 

corresponding, as usual, to 
q ~ = c o s  k ( V t +  x) . . . . . .  ( 8 5 )  

~lectrical Applications. 

The problems in two dimensions for aerial waves incident 
upon an obstructing cylinder of small transverse dimensions 
are .analytically identical with certain electric problems which 
will now be specified. The general equation (X72+ k ~) = 0  is 
satisfied in al! cases. In the ordinary electrical notation 
V~=I/Kt~, V ~ = I / K I ~ ;  while in the acoustical problem 
Ve=m/~r, ¥'2=mJ,7~. The boundary conditions are also of 
the same general form. Thus if the primary waves be denoted 
by ~/=d kx, '7 being the magnetic force parallel to z, the con- 
ditions to be satisfied at the surface of' the cylinder are the 
continuity of ~/ and of K -1 dT/dn. Comparing with the 
acoustical conditions we see that K replaces ~ and conse- 
quently (by the value of V ~) /~ replaces 1/m. These sub- 
sfitutions with that of % or c (the magnetic induction)~ for 
and q) suffice to make (66), (70) applicable to the electrical 
problem. For exampl% in the case of the circular cylinder, 
we have for the dispersed wave 

k%Oe_~,t'_V~ ~ f ~ - -~ '  K ' - - K x  } (86) 
c = - -  \2 ikr]  ( 2/, + K ~ + K 7  ~" 

corresponding to the primary waves 

c = e ~k~ . . . . . . . .  ( 8 7 )  
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Art important par[ieular case is obtained by making 
K / = ~ ,  td=0~ in such a way that V I remains finite. This 
is equiyalent to endowing the obstacle with the character of 
a perfect conductor, and we ge~ 

i 

e----- -- \2ikr] [ 2 -{- ' 

which, when realized, coincides with (72). 
The other two-dimensional electrical problem is that in 

which everything is expressed by means of R, the electro- 
motive intensity parallel to z. The conditions at the surface 
are now the continuity of t~ and of I~-adR/dn. Thus K and 
/~ are simply interchanged, ~ replacing o" and K replacing 
1/m in (66),'(70), qb and ~ also being replaced by R. In the 
ease of the circular cylinder 

/ ~- \ ~ c K - - K  t d - - t ~ x ~  (89) 

corresponding to the primary waves 

R = e ~ .  . . . . . . .  ( 9 0 )  

If in order to obtain the solution for a perfectly conducting 
obstacle we make K ~ = c o , / = 0 ,  (89) becomes infinite, and 
must be replaced by the analogue of (83). Thus for the 
perfectly conducting circular obstacle 

_ { 

which may be realized as in (84). 
The problem of a conducting cylinder is treated by Prof. 

J. J. Thomson in his valuable 'Recent Researches in Elec- 
tricity and Magnetism,' § 361 ; bug his result differs from (84), 
not only in respect to the sign of ~k, but also in the value of 
the denominator ~. The values here given are those which 
follow from the equations (9), (17) of § 343 'Theory of 
Soand.' 

.Electric Waves in T/tree Dimensions. 

In the problems which arise under this head the simple 
acoustical analogue no longer sumces, and we must appeal [o 
the general electrical equations of Maxwell. The components 
of electric polarization (f, if, h) and of' magnetic force (6,/~, 7), 

It should J0e borne in mind that 7 here is the same as Prof. Them- 
son's log 7. 
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being proportional to eikVt~ all satisfy the fundamental 
equation 

( V : + k ¢ ) = 0 ;  . . . . . .  (92) 

and they are connected together by such relations as 

d /  d~, d~  (93) 
,~ 3-t = @ - ~ ,  . . . . .  

o r  

d~-- 4~rV2 ( ~  - (94) - . . . .  

in which any differentiation with respect to t is equivalent to 
the introduction of the ihctor i]cV. Further 

dg clh dec dt~ d'l 
+ + = o ,  - +  + - o .  (95) 

d x  d .  

The electromotive intensity (P, Q, R) and the magnetization 
(a, b, c) are connected with the quantities already defined by 
the relations 

f ,  .q, Z~=K(P, Q, n ) /~"  ; a, b, e=~(% p, 7); (96) 

in which K denotes the specific inductive capacity and /, the 
permeability ; so that V-2= K/*. 

The problem before us is the investigation of the disturbance 
due to a small obstacle (K ~,/,z) situated at the origin, upon 
which impinge primary waves denoted by 

fo = 0, go = 0, h0 = e ~k~, . . . .  (97) 

or, as follows fl'om (94), 

a o = O, t9o = 4rrVei~, To = 0. (98) 

The method of solution, analogous to that already several 
times employed, depends upon the principle that in the 
neighbourhood of the obstacle and up to a distance from it 
great in comparison wi~h the dimensions of the obstacle but 
small in comparison with ?~, the condition at any moment 
may be identified with a steady condition such as is determined 
by the solution of a problem in conduction. When this is 
known, the disturbance a~ a distance from the obstacle may 
afterwards be derived. 

We will commence with the case of the sphere, and consider 
first the magnetic functions as disturbed by the change of 
permeability from /, to/~.  Since in the neighbourhood of 
the sphere the problem is one of steady distribution~ %/9, ? are 
derivable from a potential. By (98)~ in which we may write 
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d ~ = l ,  the primary potential is 4~rYy; so that in (1) we are 
to take u----0, v---47rV, w---0, Hence by (20) % fi~ 7 for 
the distu~¢ance are given by 

where 
~ =  --4~rV td--t~ aSy (99) 

I ~ + 2 f f  r 3 . . . . .  

In like manner .f~ y, h are derivable from a potential X" 
The primary potential is z simply, so that in (1), u=0~ v = %  
w = l .  Hence by (20) 

Kr--K a~z 
X= -- K , + 2 K ~ ,  . . . .  000) 

from which f ,  y, h for the disturbance are derived by simple 
differentiations with respect to x, y, z respectively. 

Since f ,  g, h, o~, fi, ,,/all satisfy (92), the values at a distance 
can be derived by means of (41). The terms resulting from 
(99), (100) are of the second order in spherical harmonics. 
When r is smal% 

t-'e-i~7~ (ik~) = - 3/k% ,~, 

and when r is great 

r-'e-~k~f 2(ikr ) = r- 'e  -ik'; 

so that, as regards an harmonic of the second order, the value 
at a distance will be deduced fi'om that in the neighbourhood 
of the origin by the introduction of the factor -½]?r°-e -ik~. 
Thus, for example, f in the neighbourhood of the origin is 

dx K~- .K  3a~xz 
f = ~ = K ~ + 2 K  ~ ;  (101) 

so that at a great distance we get 

K I - - K  k~a~xz e - ~  
f =  -- K ' + 2 K  r ~ " 002) 

In this way the terms of the second order in spherical 
harmonies are at once obtained, but they do not constitute 
the complete solution of the problem. We have also to 
consider the possible occurrence of terms of other orders in 
spherical harmonies. Terms of order higher than the second 
are indeed excluded, because in the passage from r small to 
e great they suffer more than do the terms of the second 
order. But for a like reason it may happen that terms of 
order zero and i in spherical harmonics rise in relative 
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importance so as to be comparable at a distance with the term 
of the second order, although relatively negligible in the 
neighbourhood of the obstacle. The factor, analogous to 
--±k2r2°-~3 ~ for the second order~ is for the first order ikre-~'~ 
and for zero order e -i~. Thus, although (101) gives the 
value o f f  with sufficient completeness for the neighbourhood 
of the obstacle, (102) may need to be supplemented by terms 
of the first and zero orders in spherical harmonics of the 
same importance as itself. The supplementary terms may be 
obtained without much diNenlty from those already arrived 
at by means of the relations (93), (94), (95) ; but the process 
is rather cumbrous, and it seems better to avail ourselves 
of the forms deduced by Her tz*  for electric vibrations 
radiated from a centre. 

I f  we write I I = A e - ~ T r  , the solution corresponding to an 
impressed electric force acting at the origin parallel to z is 

d~II d~II d2II d~II 
f =  -- d x d z '  Y =  @ d z '  h = ~ + ~ ; (103) 

d2II d~H 
~ =  --~Tr d ~ t  , ~ = @ r  dx  dt' 7 = 0 .  (104) 

These values evidently satisf~ (92) since II does so, and 
they harmonize with (93), (94), (95). 

In the neighbourhood of the origin, where kr is small, 
e -~k~ may be identified with unity, so that H = A / r .  In this 
case (103) may be written 

d~II &°II d2II 
f =  -- d x d z  ~ Y =  dxdz '  l~-- dz ~ , 

and all that remains is to identify - - d I I / d z  with X in (100). 
Accordingly 

K / - - K  
A = - - a 3 K , + 2  ~ . . . . .  (105) 

The values of f ,  y, h in (103) are now determined. Those 
of % fl, V are relatively negligible in the neighbourhood of 
the origin. At a great distance we have 

d 2 /e-i~% A d2e -i~e k~Ae -ikr xz  
= - A  T )  = f r d x d z  r ~2, 

Ausbreitung tier electrischen K'raft~ Leipzig, 1892, p. 150. It may 
be observed that the solution for the analegeus but more di~cult problem 
relating to an elastic solid was given nauch earlier by Stokes (Camb. 
Trans. vol. ix. p. ], 1849). Compare ' Theory of Sound,' 2nd ed. § 378. 
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so that (103), (104) may be written 

f ,  g, h--=K/+2 K - _ r ~' r~, p _' (106) 

~, fi, 7 K I - - K  k2aSe- i~ /y  x ) 
47rV -- K ' + 2 K  r \~., -- ~:, 0 . (107) 

These equations give the values of the functions for a 
disturbance radiating from a small spherical obstacle, so far 
as it depends upon ( K ' - - K ) .  We  have to add a similar 
solution dependent upon the change from/~ to/2 .  In this 
(103), (104) are replaced by 

d~II /3 d2II d2II ~/ d~H (108) 
¥~" -- d x d y '  ¥~ -- dx  ~ -t- dz ~ , V~ - - -  d zdy '  

d2II d~H 
4qrf= -- dzdt '  g = O ,  47r/~ = dxd~'  (109) 

where I I =  Be-ik~/r, corresponding to an impressed magnetic 
force parallel to y. In the neighbourhood of the origin (1.08) 
becomes 

a d~H /9 d2II ~ ,  dSII 
V V c& V 

so that 4/" in (99) is to be identified with - - Y ~ d I I / d y .  Thus 

4~'a~ / f - - / ~  (110) B = - -  V ~ + 2 ~  . . . . .  

At a great distance we have 

tLt--I~ kSa3e - ~  [z  x \ 
/ '  g ' / ~ =  ~ T 4 ~  ~ " X~' 0, - -  7); (111) 

4 ~ r g - = ) . , + 2 / .  - - ~ ,  r ~  , . (112) 

By addition of (111) to (106) and of (112) to (107) we 
obtain the complete values of f; g, h, a, fi, ql when both the 
dielectric constant and the permeability undergo variation. 
The disturbance corresponding to the primary waves h = d  k~ 
is thus determined. 

When the changes in the electric constants are small, (106), 
(iii) may be written 
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wT _,k~( A K x z  ~ ; )  
f.---- ~U r e (, K ~'~ + ' (113) 

7rT -i~ AK yz ( . . . . .  

h =  7rTe-~k~(AK x~+Y~ 5/~ x) (115) 
V~ ~ K r ~ t~ r ' 

where T=~Tra ~, k=27r/k. These are the results given 
formerly * as appJicable in this case to an obstacle of volume 
T and of arbitrary form. When the obstacle is spherical 
and AK/K is not small, it was further shown that AK/K 
should be replaced by (KI-K)/ (K~+2K),  and similar 
reasoning would have applied to A/~//L. 

The solution for ~he case of a spherical obstacle having the 
character of a perfect conductor may be derived fi-om the 
general expressions by supposing that Kt=  ~ ,  and (in order 
that V' may remain finite) /2=0. We get from (106), (111), 

k~a3e-~k~(xz z) (116) 
/ =  7 ~ + ~ , ,  ' 

k2a% - ~  ~/z 
g = r ~ . . . . . .  (117) 

in ~greement with the results of Prof. J. J. Thomson t. As 
was to be expected, in every case the vectors (f, g, h), (~,/~, 7), 
(x, y, z) are mutually perpendicular. 

Obstacle in the ~orrn of an -Ellipsoid. 
The case of an ellipsoidal obstacle of volume T, whose 

principal axes are parallel to those of x, y, z, i. e. parallel to 
the directions of propagation and of vibration in the primary 
waves~ is scarcely more complicated. The passage from the 
values of the disturbance in the neighbonrhood of the 
obstacle to that at a great distance takes place exactly as in 
tim case of the sphere. The primary magnetic potential in 
the neighbourhood of the obstacle is 47rVy, and thus, as 
before, u=0 ,  v=47rV, w = 0  in (1). Accordingly~ by (14), 
A = 0 ,  C = 0  ; and (28) gives 

, (119)  

• "Electromagnetic Theory of Light," Phil. Mag. vol. xii. 10. 90 (1881). 
t ' Recent Researches/§ 377. 
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corresponding to (99) for the sphere. In like manner the 
electric potential is 

K I -  K Tz 
X=---4~rK+(K, K)Nr- ~. . . (120) 

These potentials give by differentiation the values of a,/9, 7 
and f~ g~ h respectively in the neighbourhood of the ellipsoid. 
Thus at a great distance we obtain for the part dependent on 
(KI--K),  as generalizations of (106), (107), 

l, K I - - K  k~Te-~k~/ xz yz x~+yS'~ 
g' ' =  4-~-K + (K'--  K) N ---7--- ~,-- C '  -- r ~' ~ ] ; 

• (121) 

6, /9, 9 f__  K I - - K  k~Te-ik~/y .x ) 
4~-V - - 4 7 : K + ( K ' - - K ) N  r \ r '  - -~ '  0~. (122) 

To these are to be added corresponding terms dependen~ 
upon ( / - - ~ ) ,  viz. :-- 

PTe-lk~ I" z O, ) x (123) 

- V '  ' • 

. (12 ) 

The sum gives the disturbance at a distance due to the 
impact of the primary wave% 

ho=e~  flo=47rYdk~ . . . .  (125) 

upon t]ce ellipsoid T of dielectric capacity K ~ and of permea- 
b i l i t y / .  

As in the case of the spher% the result for an ellipsoid of 
perfect conductivity is obtained by making K '=o~,  /~'=0. 
Thus 

/ =  7 ' (126 )  

Pe -~k" T yz 
g =  r :Np,  . . . . . . .  (127) 

. k~e-ik'/T x:+y 2 T ~). 
(128)  

~ex~ to the sphere the case of greatest interest is that of a 
flat circular disk (radius=R). The volume of the obstacle 
then vanishes, but the effect remains finite in certain cases 

.Phil. Mag: S. 5. ¥o1. ~ .  :No. 266. July 1897. E 
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notwithstanding. Thus, if the axis of the disk be parallel 
~o x, that is to the direction of primary propagation~ we have 
(21) ,  ( 2 5 ) ,  

T 4R ~ T - - = 0  . . . . .  (129) 
-- 37r ' 47r--M 

In spite of its thinness, the pla~e being a perfect conductor 
disturbs the electric field in its neighbourhood; b~t Lhe 
magnetic disturbance vanishes~ the zero permeability having 
no effect upon the magnetic flow parallel to its face. I f  the 
axis of the disk be parallel to y {see (24) }, 

T 4R ~ T 2R ~ 
~T - -  3~r ' 47r-- M = 37r ; (130) 

and if the axis be parallel to z, 

~ -=0 ,  T @r--M =0 ,  . . . .  (131) 

so that in this case the obstacle produces no effect a~ all. 

Circular .dperture in Conducting Screen. 

The problem proposed is the incidence of plane waves 
(ho=e i~x) uponan infinitely thin screen a~ x = 0  endowed with 
perfect electric conductivity and perforated by a circular 
aperture. In the absence of a perforation there would of 
course be no waves upon the negative side, and upon the 
positive side the effect of the screen would merely be to 
superpose the reflected waves denoted by h0=--e -i~. We 
wish to calculate the influence of a small circular aperture of 
radius 1%. 

In accordance with the general principle the condition of 
things is determined by what happens in the neighbourhood 
of the aperture, and this is substantially the same as if the 
wave-length werz infinite. The problem is then expressible 
by means of a common potential. The magnetic force at a 
distance from the aperture on the positive side is altogether 
8~'¥, arid on the negative side zero ; while the condition to 
besatisfied upon the faces of the screen is that the force be 
entirely tangential. The general character of the flow is 
indicate~l in fig. 1. 

The problem here proposed is closely connected with those 
which we have already considered where no infinite screen 
was present, but a flat finite obstacle, which may be imagined 
to coincide with the proposed aperture. The primary 
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magnetic field being/3= 4rrV, and the disk of radius R being 
of infinite permeabiliiy~ the potential at a distance great 

Fig. 1. Fig. 2. Fig. 3. 
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compared with R (but small compared with X) is by (27) 
(2s) 

~ = -- t~r¥ 4,~-~3 ~3 . . . . .  (132) 

By the symmetry the part of the plane x = 0 external to the 
disk is not crossed by the lines of flow, and thus it will make 
no difference in -the conditions if this area be filled up by a 
screen of zero permeability. On the other hand~ the part of 
the plane z = 0  represented by the disk is met normally by 
the lines of flow. This slate of things is indicated in fig. 2. 

The introduction of the lamina, of zero permeability effects 
the isolation of the positive and negative sides. We may 
therefore now reverse the flow upon the negative sid% giving 
the state of things indicated in fig. 3. But the plate of 
infinite permeability then loses its influence and may be 
removed~ so as to re-establish a communication between the 
positive and negative sides through an aperture. The 
passage from the present stale of things to that of fig. 1 is 
effected by superposition upon the whole field of fl=47rV, so 
as to destroy the field at a distance from the aperture upon 
the negative side and upon the positive side to double it. 

As regards the solution of the proposed problem we have 
then on the positive side 

and on the negative side 
R ~ 

qF= 4 ~ r V ~  ~ . . . . . .  (131) 
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Thus on the negative side at a distance great in comparison 
with the wave-length we get, as in (99), (111), (112), 

{z ), 
. . . . .  (135) 

47rV--- 3~r r 2' r ~ ' r ~ " 

On the positive side these values are to be reversed, and 
addition made of 

h 0 = ¢ ~ -  e - %  & = 4 ~ V ( e ' ~ + e - ' % .  (137) 

representing the plane waves incident and reflected. 
The solution for h in (135) may be compared with that 

obtained (27), (28) in a former paper *, where, however, the 
primary waves were supposed to travel in the positive, 
instead of, as here, in the negative direction. It had at first 
been supposed that the solution for ¢ there given might be 
applied directly to h, which satisfies the condition (imposed 
upon ~b)ofyanishing upon ~he faces of the screen. If  this 
were admitted, as also g=O throughout, the value of h would 
follow by (95). The argument was, however, felt to be in- 
sufficient on account of the discontinuities which occur at the 
edge of the aperture, and the value now obtained, though of 
the same form, is doubly as great. 

Terling Place, Witham. 

¥I .  Thermal Transloiration and l~adlometer Motion. 

To the Fditors of tile Philosophical Magazine. 

G~ENTLEMEN~ 

I N the Phil. Mag. for Feb. 1897, Prof Osborne Reynolds, 
in commenting upon my paper on Thermal Transpiration 

and Radiometer Motion, remarks freely on errors into which 
I have fallen therein. I fancy that most readers of my paper 
will recognize that the particular errors mentioned by Prof. 
l~eynolds are rather the result of his own misinterpretation 
than of my blundering; but still, as he has taken six pages 
of the Phil. ~Iag. in which to lay these errors to my charge, 
I should hke" to point out briefly, how the errors, are his, own. 

First :--On page 143 Broil l~eynolds writes : - -  while 
Mr. Sutherland expressly excludes the action of these walls 

* "On the Passage of Waves through Apertures in Plane Screens, and 
Allied Problems," Phil. Mag. vol. xliii. 1 o. 264 (1897). 


