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Introduction..

1. The problems discussed in this paper aro the analogues for a
plane rectangular or circular plato of the well-known investigations
of the stability of a thin wiro or shaft, due in tho first place to
Euler, and since developed by Groonhill. I have employed the
energy criterion of stability, tho uso of which I have already illus-
trated in this connexion in two papers published in the Proceedings
of the Cambridge Philosophical Society.*

The caso of a plate supported on equidistant parallel ribs will be
considered moro fully, on account of the practical use of such struc-
turos in the construction of ships.

Suppose a piano elastic plate is submitted to edgo tractions in its
own plane which produce compression of its middle surface, and let
every point of that surface receive a displacement normal to the
plane, such displacements being chosen in accordance with the pre-
scribed boundaiy conditions. If this displacement bo everywhere of
the first order of small quantities, the surface of tho plato will
thereby become extended by small quantities of the second order,

* (Jamb. P/iil. r,vc, Vol. vi., pp. 1D9, 28C.
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and the strains produced in the surface will also be thereby
diminished by quantities of the second order. Multiplying these
strain variations by the corresponding stresses, and integrating over
the surface, we find the work done by the stresses. This work is the
loss of potential energy consequent on stretching, or, more strictly,
on diminution of the compression originally produced in the middle
surface by tho given edge tractions. If this loss is greater than the
corresponding gain of potential energy dependent on the bending of
the surface, the total energy will be greater in the plane form, which
will therefore be a form of unstable equilibrium. The plate will
then be liable to " buckle up," and corrugations will appear on its
surface.

If equilibrium is " critical," the displaced form is also in equili-
brium, and may be investigated by the method of variation.

General Theory of the Stability of a Plane Plate.

2. Take any rectangular axes of x and y in the plane of the plate,
and let the stresses due to the edge tractions at a point (x, y) of the
surface consist of a thrust Tx (per unit length) parallel to x, a thrust
T2 parallel toy, and a shearing stress of magnitude M. Let the plate
be displaced in such a manner that the point (x, y) receives a dis-
placement w perpendicular to the plane of the plate. Let <rv <rs be
the resulting extensions parallel to tho axes of x, y at the point, w
the shear of the angle between them. If ds is an element of length,
measured between any contiguous points on tho deformed surface,
then evidently

d

But, since w is a function of x and y,

j VW j . VW ,

dw = ^~dx+ — dy,
ox dy

whence, substituting,

Also, (?s'== (l+<r1)
tdx'+2i*dxdy + (l+(Tiy dy*;

therefore, neglecting powers of to after the second,
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Tho loss of potential energy due to extension, or the work done by
the streesos, is equal to W, where

= [f scr,) dxdy

Lot 2/i bo tho thickness of tho plate, E Young's modulus, a
Poisson'B ratio, and let /3 bo given by

Then, if V be the potential energy due to bending, we have

(3).

The condition of stability is that V must bo greater than W for
evory possible typo of displacement. If for any displacement V< TF,
tho plane form will be unstable, and the plate will buckle up. The
number of corrugations produced when this happens will be deter-
mined by tho form of w as a function of x and y.

Supported Rectangular Flute.

3. Consider tho caso of a rectangular plato bounded by the lines
x = 0, x = a, y = 0, y = &, and supported at these edges so as to
prevent lateral motion. Suppose also that the given edge tractions
are uniform and perpendicular to the edges, being 21, per unit length
on the edges x = 0, x = a, acting parallel to the axis of x, and T3 on
the edges y = 0, y = bt parallel to the axis of y. Then, in the ex-
pression for \V, M = 0, and 2\, 2\ are constant over the plate, having
the values given at tho edges.

Since the edges are supported so that the normal displacement w
is zero round the boundary, it follows that to can be expanded by
Fourier's theorem in the form

mrAmnb\n — .cam ~-y ( 4 ) .
a b
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Therefore

w — a Ti\ ] 2,2, Am* — cos— « Bin — i/ V dx dy
Uiol- a a b )

In like manner, we find on integration

The plane form will therefore be stable, provided that, for all values
of the constants Amn%

W> , a
2 ~ • (7).

Supposo that the thrusts Tv T2 are given, then inequality (7)
determines the limit to the value of /3, and hence, the limiting thick-
ness of the plate in order that it may just not buckle. To find this
limit, we must choose the constants Amn so that the right-hand side
of (7) is a maximum. This will be the case when all but one of the
constants are zero, and, if Amn be this constant, the limiting value of
/3 will be given by

the numbers m, n being so chosen as to make this expression for /3
the greatest possible.

The corresponding form of the displaced surface is given by

6 • <«•
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w vanishes along the lines

m = a/ra, a = 2a fm, z = 3a/m, Ac,

and also along the lines

y =s b/n, y =: 2bfn, y = 3&/n, <fco.

Hence it readily follows that, if the thickness of the plate be less
than that given by (8), the surface will buckle up, and the corruga-
tions will divide it into mn rectangles, over which the displacement
is alternately to one side and to the other.

We shall see hereafter that one of the numbers m, n must be unity,
so that the corrugations can only divide the plate into a single row
of rectangles. The methods of determining the number of corruga-
tions are, however, better shown by first considering the following
special cases.

4. Let T, = Tt. Put each of those = T.
Equation (8) becomes

ft is greatest when m and n are least, that is, when m = 1, n = I.
Therefore tho limit for ft is given by

a1 T 6"

If the plate be too thin, its initial form on buckling will be found by
putting m = 1, n = 1 in (8). We see that there will be a single
corrugation, all points being displaced towards the same Bide.

5. Let T, = 0.
Equation (8) becomes

Tho right-hand side is greatest when n = 1, but the same is not
necessarily truo as regards m. The number (m) of corrugations
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parallel to the side a will depend on the length a. The greatest
length a of a plate which will buckle into m corrugations will be
t h a t for which the limiting values of ft, corresponding to m and
m+1 corrugations, respectively, are equal. Therefore, pu t t ing
w = l i n ( l l ) , wo muBt have for this greatest length

m3 (m + 1)1

Put a/b = k, so that a = kb. The last equation gives

m' = ( m

whence m {(m + l)3+fc2} = =fc(i»+l) {m' + &2}.

Since A;2 is positive, we must take the upper sign to the radical.

This gives &3 = m (w + 1),

whence a = lj{m (m + 1)] ../ (12).

Similarly, the least length a for which the plate, if unstable, will
bucklo into m corrugations parallel to, the side a, will be given by

(13).

Hence there will bo m corrugations parallel to the side a, provided
that

o lies between the values i \ /{w(m—l)] and h*/\jni (wi + 1)}.

Condition (12) may also be writton

— : o = o : ,
m m + 1

which shows that, whether the corrugations divide the plate into m
or 7» + l rectangles, the ratio of their length to their breadth will,
be the same in both cases, but the directions of the longer and
shorter sides of tho rectangles will be interchanged.

Hence it roadily follows that the number of corrugations must
always'be such that tho ratio of tho longer to the shorter side of tho
rod angles diffoiu as little as possible from unity, that is, their shape
must be as nearly squaro as possible.



60 Mr. G. H. Bryan on the Stability of a [Deo. 11,

Hence it is evident that if the length of the plate becomo infinite,
the corrugations will divide it exactly into squares.

This may also be Bhown as follows:—
Supposing the strip infinitely long, or a = oo, let X = a/m, so that

X is the length of a corrugation. Then (11) gives

in which the right-hand Bide must be made a maximum by the
variation of X. By the ordinary methods we find that this is the
case when \ = 6.

6. As the collapse is of a different nature in the two cases above
considered, we will now investigate the limits to the ratio of T, to Tv

in order that any form of the plate may buckle up in a series of
corrugations. Let the length a be infinite, and let X be the length
of a corrugation. Putting n = 1, a/in = X in (8), the critical value
of /3 is found from the relation

m 1 I rp *

V 4 4

by making /? a maximum by the variation of X.

Write 6/X = /u, T%jTx = r ; then we must make the expression

a maximum by the variation of p. Differentiating with respect to
/i*, the condition is

1 2(

whence /f' + l = 2 (

or /i* = l -2 r ,

that is, & 7 * ' = 1-2T.JT, ,...K (15).
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In order that this may give a real value of X, we must have

T*<Wi (16),

and if this is not the case, the value of /3 will be greatest when
X = oo. If the inequality (16) is satisfied, equation (15) determines
the length of the corrugations produced in the case of collapse. We
notice that X diminishes as the ratio of T2 to Tx diminishes. If Ta

becomes negative, so that the strip is acted on by lateral tension
combined with the longitudinal thrust, the length X of the wrinkles
is less than b, and it diminishes as the.lateral tension increases.

The last-mentioned property may be easily illustrated by wetting
a sheet of paper in the middle, and then stretching it over two
parallel rulers. The moisture causes the surface of the paper to
expand and wrinkle, and if the rulers be pulled apart with in-
creasing force, the wrinkles will become finer and closer.

We also see (as previously stated) that a rectangular plate cannot
buckle up into a network of rectangles—i.e., that in, n cannot both be
different from unity. For this would require 2\<^r, and T^^T^
which are incompatible.

7. If Tj<-JTj, and we substitute for X from (15) in (14), we find
1.2 m 2

which determines the least thickness of an infinite strip of breadth
b, supported at its edges in order that it may resist an end-thrust
T,, and a lateral thrust Tr

In particular, if T% = 0, we must have

*V3 = - 4 - 2 \ (18).

If T%>\TV we must pat X = oo in (14), and we obtain

(19),

which is independent of T,, as it evidently should be, for the corre-
sponding displaced surface is given by

w — A sin ,2.b
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Here w is independent of x; hence no work is done by the thrust
Tx during the displacement.

If the length of the sfcrip be finite, the case will be different. The
limit for /3 will always depend on the values both of Tj and T2.

We notice that, when Tt = \'1\% the values of ft given by (17) and
(19) are equal, as they should be.

Comparing (19) with (18), we see that the strip is capable of
rosisting four times as much simple longitudinal thrust as of lateral
thrust.

We also see that, even when the lateral thrust is the greatest
which the strip can resist, it is still possible to subject it, in addition,
to any amount of longitudinal thrust on its ends, not greater than
double the lateral thrust, without diminishing the strength.

Applications to the Sides of a Ship.

8. The precediug results are applicable, without any modification
whatever, to the case of an infinite plate supported on parallel ribs
at distances b apart. This kind of structure is mot with in tho sides
of ships, a fact which adds considerably to the practical interest of
problems of this class.

We see that, in order to obtain tho greatest strength, the ribs
must be placed parallel with tho direction of the greatest thrust, and
that, to obtain the same strength, they may then be placed twice as
far apart as if they were perpendicular to the thrust.

Tho strength of the plate will not then be increased or altored in
any way by the addition also of a second set of ribs, perpondicular
to the first, and at distances apart equal to the natural length of tho
corrugations. Thus, if there is no lateral thrust, a plate supported
on parallel longitudinal ribs will not be strengthened by the addition
of transverse ribs which divide it into squares. If the transverse
ribs are at any other distance apart, however, tho system will bo
strengthened. In this particular caso, the most effective distanco
between tho transverse ribs will bo by/2, because [putting m — 1 in
(12)] each rectangle formed by the framework will buckle with
equal facility into ono or two corrugations, and the length of theso
corrugations will then differ as much as possible froiu their natural
length.

. Putting T.i — 0, m — n — 1, a = by/2 in (8), we find
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and the same increase in strength could be obtained much more
economically by diminishing the distance between the ribs from 6 to
hy/i-, i.e., §V2.b.

When, howover, the structnre is subject to thrusts of about equal
intensity in all directions, the advantage of a network of ribs will be
much greater. Moreover, tho framework itsolf will bo strengthened
—a consideration not brought out in our nresent theoretical treat-
ment, in which the framework is supposed perfectly rigid.

9. The general problem, to determiue tho number of corrugations
produced in the buckling of a finite rectangular plate (sides a, b)
under tho influence of both thrusts (Tv Tv where Tl>2T.i), may now
be considered. In the critical case when the plate will buckle with
equal facility into m o r m + l rectangles in tho direction of its length,
we have

m ™2 , m 1 m (™> + \ ) 2 , m 1

/(m+l)« l_\a~*

Whence, on reduction, wo find

} ^ ^ = 0 (20).
o

Solving as a quadratic in a2/&2, we find

(21).

In accordance with previous results, this will give a real value for
the ratio of a to b, provided that Tl>2T.i, and that tho r.ulical is
taken with the positive sign.

10. A few words on the mode of supporting the boundaries may
not be out of place. In his Theory of Sound, Vol. i., § 225, Lord
Bayleigh gives the following suggestion as a means of realizing this
kind of support:—"We may considor the plate to be held in its
placo by friction against the walls of a cylinder circumscribed closely
round it."

This method is strictly applicable to tho problems of tho presont
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paper, where the normal reaction of the cylinder is supposed to pro-
duce thrusts in the plane of the plate. But it is not applicable to
the problem considered by Lord Itayleigh, viz., the determination of
the frequencies of vibration. Obviously, the effect of the thrusts
will be generally to lower the pitch of all the vibrations, aud if the
thrusts be increased till the plane form is in critical equilibrium,
one of the frequencies will then vanish.

The annexed diagram shows a better means of support. The
boundaries, being brought to sharp edges, are made to fit in grooves
of a rather wider angle.

The sides of a ship are rivetted to the ribs, and this implies more
constraint than that afforded by mere support. This constraint
more closely resembles " clamping."

Application of Variational Method.—Clamped Circular Plate.

11. In applying the energy method to the rectangular plate, we
supposed to expanded by Fourier's series, and the success of our
method depended on the fact that the expression for the total energy
contained no products of the coefficients. In other problems it may
not be easy to discover the form of the functions in which we must
expand; we therefore use another method, more analogous to that
adopted by Greenhill in his paper on the " Stability of Shafting."*
If equilibrium in the plane form is critical, there must be another
form of equilibrium indefinitely near to it. To find this, we apply
the method of variation of energy, and the boundary conditions then
lead to a relation which must be satisfied in the critical case.
This equation determines the criteria of stability.

12. The method of variation may be illustrated by its application
to the critical equilibrium of a circular plato acted on by a normal

* 1'roc. Ltst. Mech. Eng., 1883.
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thrust T (per unit length) round the circumference. The slightly
displaced form being also in equilibrium, the displacement is found
by making

for all variations of w.

We take as our example the simplest case, in which the boundary
of the plate is clamped so as to allow of no variation of position or
direction. Let the radius of the plate be a.

Putting
Tx = T% = T and M = 0

in (1), we have

therefore

spp_ m IT f 3w dfav . dtv dhol , ,
J J <• dx Bx dy dy )

- T hw^-ds-T U tw&wdxdy.

Also,

ZV = /3 It 8w^*wdxdy + (lino integrals taken round the boundary).

Since the plate is clamped, wo have, round the boundary,

w = 0 , | ^ = 0 (22);
Or

thns, the line integrals all vanish, and the differential equation for w

is J3V4

Writing KS = T//3, this becomes

= 0 (23).

If this be transferred to polar coordinates, a solution which is not
infinite at the centre is

w = cosnd {Ar" + JiJn(i:r)} (2-4).
VOL. XXII.—NO. 4 0 3 . P
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The boundary conditions (22) give, when r = a,

Aan + BJn (ro) = 0 ^
' I (25).

nAa"-x + >cBJ'n («co) = 0 J

Eliminating the ratio A : B, we have

0 = w/,, («ra) — *ra/', (KO)
= »>•«/«+I («<*)i

by the well-known relations between Bessel's Functions. Therefore,
for critical equilibrium corresponding to the displacement of the form
(24), we must have

/„« («0 = 0 (26),

and we must choose n so that the value of K given by this equation is
the least possible.

If the plate be free at the centre, we may take

n = 0 ,

and the least solution of the equation

j ; («o) = 0
is known to be

KO, = 3-832....

Therefore T - 14-684 ... x /3/a2.

If the plate be supported at the centre, the solution (24) corre-

sponding to n — 0

cannot make w vanish, both when

r = 0,

and when r = a.

We must therefore take n = 1,

and we have J, (m) — 0,

whence *a = 5135 ..»,

and T = 26-308 ...XyS/a*.

If the boundary be supported or free, the solution of the differential
equation for w is still of the form given by (24), but the boundary
conditions will lead to a fur more complicated equation for K.



1890.] Plans Plate under Thrusts in its own Plane. 67

A very good illustration of the buckling of a circular plate is
frequently afforded by the lid of a circular canister, in which the

thrust is due to the tension of the rim. The "din t" in such a lid
can be readily pushed from one side to the other, but it is impossible
to keep the surface flat, as that position is unstable.

The same principle is also illustrated in the " castanets," in which
a " clicking " sound is produced by pushing a disc of metal from one
side to the other of the unstable plane form.

13. In all the cases discussed in this paper, the stresses in the sur-
face are proportional to /3; and, therefore, to the cube of tho thickness
of the plate. Since these stresses are distributed over the thickness
of the plate, the strains they produce are proportional to the square
of the thickness. If, therefore, the plate be thin, these' strains will
be small, and there will be no rupture of the material accompanying
the buckling. This accords with the general results obtained in my
paper " On the Stability of Elastic Systems."*

In a future paper, I hope to deal with further applications of the
variational method, with special reference to the stability of a rect-
angular plate or strip in certain cases when the shear M does not
vanish, and when the boundary conditions are different to those
assumed in the present communication.

On the Application to Matrices of any Order of the Quaternion
Symbols 8 and V. By HENRY TABER, Docent in Clark
University, Worcester, Mass. U.S.A.

[Head Dec. Uth, 1890.]

1. Properties of the Symbols S and V.

The conception of scalar and vector parts of a quaternion, or matrix
of tho second order, may be extended to matrices of any order.f
Regarded as.a matrix, the scalar of any quaternion is one half the
sum of its latent roots; following this analogy, I shall define the
scalar of any matrix m of order w as the u>th part of the sum of

• Camb. Phil. Proe., Vol. vi., p . 204.
t Seo paper by author on the " Theory of Matrices," Amer. Journ. Math., Vol. xii.
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