
When Channel Coding Hits
the Implementation Wall

Claus Kestel, Matthias Herrmann, Norbert Wehn
Microelectronic Systems Design Research Group, TU Kaiserslautern

67663 Kaiserslautern, Germany
{kestel, herrmann, wehn}@eit.uni-kl.de

Abstract—The continuous demands for higher throughput,
higher spectral efficiency, lower latencies, lower power and large
scalability in communication systems impose large challenges
on the baseband signal processing. In the future, throughput
requirements far beyond 100Gbit/s are expected, which is much
higher than the tens of Gbit/s targeted in the 5G standardization.
At the same time, advances in silicon technology due to shrinking
feature sizes and increased performance parameters alone will
not provide the necessary gain, especially in energy efficiency
for wireless transceivers, which have tightly constrained power
and energy budgets. The focus of this paper lies on channel
coding, which is a major source of complexity in digital baseband
processing. We will highlight implementation challenges for the
most advanced channel coding techniques, i.e. Turbo codes, Low
Density Parity Check (LDPC) codes and Polar codes and present
decoder architectures for all three code classes that are designed
for highest throughput.

I. INTRODUCTION

Mobile communication plays a central role in our informa-
tion society and is a key enabler for the connected world.
The first generation of mobile communication systems has
shifted the communication from landline to handheld devices,
followed by the third (3G) and fourth generations (4G) that
marked the advent of the mobile internet. We have seen a
tremendous increase in data rates over the different gener-
ations, e.g., the Global System for Mobile Communications
(GSM) featured about 10 kbps, the Universal Mobile Telecom-
munications System (UMTS) about 2Mbit/s, and Long Term
Evolution Advanced (LTE-A) about 1Gbit/s. The newest
standard, 5G, features data rates >10Gbit/s. Beyond 5G, data
rates towards 1Tbit/s are expected [1]. However, increasing
data rates are not the only driver. With the advent of 5G,
wireless communication is finding its way into a variety of ap-
plications with largely diverse requirements. Massive Internet
of Things (IoT) demands for extremely low power, massive
content applications (e.g. video streaming, cloud office) call
for very high throughput and the use of wireless communica-
tion in control applications (e.g. autonomous driving, remote
control, tactile internet) requires response times in the order of
1ms. Thus, communication has to support a huge throughput-
latency range (5 orders of magnitude in throughput, 3 orders
of magnitude in latency) and a large diversity of applications
with different Bit Error Rate (BER)/Frame Error Rate (FER)
requirements [9].

The tremendous improvement in mobile communication
has to be considered in the context of the progress in the

microelectronic industry, which started with the invention of
the transistor in the late 1940s [23], coincidentally at the
same time when Shannon published his famous article “A
mathematical theory of communication” [22]. In the following
decades, the semiconductor industry achieved an exponential
increase in the number of transistors on a single chip, known
as Moore’s law [17], which is a key driver of our information
society. In today’s 14 nm technology, 38 million transistors
can be integrated on 1mm2 of silicon.

For many decades, improvement in silicon process technol-
ogy provided better performance, lower cost per gate, higher
integration density and lower power consumption. However,
we have reached a point where Moore’s law is slowing down
for the following reasons [3], [12], [2]:

Cost of technology: The cost per wafer from 28 nm tech-
nology to 7 nm has more than doubled. At the same time, the
area density (yield not considered) increased by 6×. Thus, the
cost per mm2 is still decreasing but not with the same pace
as in the past.

Design cost: The average IC design cost in 14 nm is about
80 million $, compared to 30 million $ for a 28 nm planar
device, according to Gartner. It will cost 270 million $ to
design a chip in 7 nm. This creates a situation where less
and less designs each year have enough volume to be able to
support the cost of the design, since the cost must be amortized
over the number of parts produced. Thus, the use of the most
advanced technology nodes is no longer economically viable
for all products.

Decreasing performance gain: Over the last 10 years, the
semiconductor industry has succeeded in doubling the transis-
tor density every 2 to 2.4 years. However, the performance
gains have been much smaller, such that less than 40%
performance improvement of today’s processors come from
semiconductor technology. Until 2033, performance scaling
across 7 technology nodes (spanning from today to 2033) ex-
hibits only 1.7× frequency improvement from semiconductor
technology.

Power density/dark silicon: Since the power per gate de-
creases slower than the transistor density increases, the power
per mm2 continuously increases. In consequence, if a chip
has to be operated with the same power density over different
technology nodes, i.e. with the same Thermal Design Power
(TDP), not all transistors can switch at the same time (named
“dark silicon”), or the frequency has to be reduced. As dis-



cussed before, frequency at nominal supply voltage is expected
to improve by 1.7× until 2033 (e.g. for high performance
circuits from today’s 2.5GHz to 4.2GHz), whereas power
density increases at the same time by 8×. As a result,
frequency has to be reduced nearly by the same factor (e.g.
will stall to 0.5GHz for high performance circuits), if the
same chip is operated at constant power density. Thus for
the future, reducing the power consumption of a transistor
becomes more important than improving its performance.
After the “geometrical scaling” era, which was followed by the
“equivalent transistor scaling” era, we are entering the third
era of scaling, named “power scaling”.

Delay due to interconnect: Global wiring quadratically
increases with its length. In 14 nm technology, the interconnect
delay for 1mm wire is about 400 ps, which is one to two
orders of magnitude slower than the speed of light in such
material. In the future, interconnect resistance will exponen-
tially increase for tight metal pitches that are used in data
paths. Performance scaling across 7 technology nodes, span-
ning from today to 2033, exhibits a 9% technology node-to-
node performance improvement for data paths without wires.
However, if wires are considered, this improvement turns into
a 10% node-to-node penalty for data paths loaded with tight
pitch metal routing, i.e. the delay will increase.

Variability and reliability: With the continuously decreas-
ing feature sizes, variations in the device parameters largely
increase, resulting in large circuit performance/power fluctua-
tions. In addition, the reliability of the circuits decreases due
to, e.g., aging effects, hot carrier injection and soft errors.

Channel coding, or Forward Error Correction (FEC), is a
core technology component in any digital baseband and is a
major source of power consumption, silicon area and largely
contributes to the overall latency and throughput limitations.
In [9] it is shown that channel decoding is the most computa-
tionally intensive part in a 5G terminal baseband chip. In this
paper we consider the most advanced channel codes, i.e. Turbo
codes, LDPC codes and Polar codes [7]. These codes, which
are part of many communication standards, provide excellent
communications performance but imply huge implementation
challenges.

Let us consider the progress in channel coding in relation
to the progress of microelectronics. As a case study, we con-
sider two Turbo code decoders. Both decoders were designed
with the same design methodology and have a very similar
architecture that exploits spatial parallelism and processes
several sub-blocks on corresponding Maximum a Posteriori
(MAP) decoders in parallel. The first decoder is a fully
UMTS compliant Turbo code decoder in 180 nm technology.
Under worst case Process, Voltage and Temperature (PVT)
conditions a maximum frequency of 166Mhz is achieved,
which results in a throughput of 71Mbit/s at 6 decoding
iterations. The total area is 30mm2 [14]. The second decoder
is a fully LTE compliant Turbo code decoder in 65 nm
technology, achieving a maximum frequency of 450MHz
under worst case PVT conditions, resulting in a throughput of
2.15Gbit/s at 6 decoding iterations and 7.7mm2 area [13].

Three semiconductor technology nodes are between 180 nm
and 65 nm technology. We observe a throughput increase by
30× although the improvement of frequency, which is limited
by the critical path inside the MAP decoder, is only 3×.
The improvement in area efficiency (throughput/area) is 118×.
Progress in microelectronics contributed to a largely increased
area efficiency but much less to the frequency increase.
The throughput increase mainly originates from code design,
i.e. conflict-free Turbo code interleavers that enable efficient
implementation and a high degree of parallelism, advanced
algorithmic and architectural features, like next-iteration ini-
tialization, optimized radix-4 kernel, re-computation, advanced
normalization to reduce internal bit widths, etc.

We see that microelectronics cannot keep pace with the
increased requirements coming from communication systems.
Thus, the design of communication systems is no longer just
a matter of spectral efficiency or BER/FER. When it comes
to implementation, channel coding requires a cross-layer ap-
proach covering information theory, algorithms, parallel hard-
ware architectures and semiconductor technology to achieve
excellent communications performance, high throughput, low
latency, low power consumption, and high energy and area
efficiency [21].

100mm2 area is a feasible size for a baseband processor
chip [3]. Let us assume that 10% of this area is allocated to the
FEC Intellectual Property (IP). On 10mm2 about 400 million
transistors can be integrated. Due to the fact that the power
envelope for future communication systems cannot be largely
increased, designs are more and more power constrained.
Thus, a 1W power envelope is feasible for the FEC IP,
resulting in a power density of about 100mW/mm2. The
maximum frequency is upper bounded to 1GHz due to power
and design issues. If the power is constrained, increasing the
throughput requires decreasing the energy per decoded bit by
the same order. For example, for 1Tbit/s data throughput,
1000 information bits have to be decoded in each clock cycle
of length 1 ns with an energy budget of only 1 pJ per decoded
bit. For comparison, 1 pJ is the same order of magnitude as
performing a 32 bit integer multiplication in 28 nm technology
or one order of magnitude lower than accessing a single
bit from a state-of-the-art external Dynamic Random Access
Memory (DRAM). Due to the high design cost of a baseband
chip in advanced semiconductor technology, a large volume is
required. This means that the corresponding System-on-Chip
(SoC) has to be used in various applications and the FEC IP
must be very flexible to support various coding schemes, data
rates, latency and BER/FER requirements. Adding flexibility
to any architecture has a negative impact on throughput, energy
efficiency and area, which is called flexibility/efficiency trade-
off. For example, specialized hardware is 2 to 3 orders of
magnitude more efficient than processor based solutions, that
offer largest flexibility [4].

There are discrepancies between information theory ob-
jectives and efficient implementation objectives. Advanced
channel codes like Turbo codes and LDPC codes combine
irregularity and iterative/sequential decoding techniques to



achieve very good communications performance. On the im-
plementation side, however, large locality, regularity and large
parallelism are mandatory to obtain energy efficient, high-
throughput architectures.

Large parallelism is a must for high throughput and low
latency. Sub-functions of an algorithm that have no mutual
data dependencies can easily be parallelized by spatial par-
allelism. This is, e.g., the case for the Belief Propagation
(BP) algorithm for LDPC decoding in which all check nodes
can be processed independently from each other. The same
applies for the variable nodes. The situation is different for
the MAP algorithm where the calculation of a specific trellis
step depends on the result of the previous trellis step. This
is a sequential behavior and the different trellis steps cannot
be calculated in parallel. All iterative algorithms have this
sequential behavior, since data dependencies exist between
the different iterations. The part of an algorithm that cannot
be parallelized due to data dependencies strongly limits the
overall performance, which is known as Amdahl’s Law [6].
Functional parallelism/pipelining is an efficient technique to
speed up algorithms with data dependencies. We can “unroll”
the iterations and insert buffers between the different pipeline
stages. In this way, all iterations can be calculated in parallel
but on different data sets. Spatial and functional parallelization
are implementation techniques only, i.e. they are not changing
the algorithmic behavior. We can also modify the decoding al-
gorithm to enable parallelism. Let us again consider the MAP
algorithm. The data dependencies in the forward/backward
recursion can be broken up by exploiting the fact that the trellis
has a finite memory due to the underlying constraint length
of the code. This property enables the splitting of the trellis
into sub-trellises that can be processed independently of each
other. However, some acquisition steps are mandatory at the
border of the sub-trellises to get the correct probabilities. The
length of the sub-trellises and the corresponding acquisition
length impact the communications performance.

We see that there are various possibilities to increase the
throughput by parallel architectures. However, high throughput
architectures and especially heavily pipelined architectures
imply another challenge. A huge amount of data has to be
stored inside the architecture since many blocks are processed
in parallel. But storing and accessing data is costly in terms of
energy. For example, reading/writing 8 bit in a medium-sized
Static Random Access Memory (SRAM) in 28 nm technology
costs in the order of 1 pJ. At least one order of magnitude
difference in energy exists between storing/accessing (SRAM
or DRAM) and computing. Thus, re-computing can often be
more energy efficient than storing and accessing. In heavily
pipelined architectures, data is typically stored in registers.
Storing 8 bits in registers costs one order of magnitude less
energy and is about 3× faster than storing in an SRAM.
However, registers have to be driven by a clock tree. If a
design contains many registers, the clock tree can become
the dominant power consumer. As an example, we consider
a heavily pipelined high-throughput Polar code decoder with
successive cancelation decoding algorithm (see Section IV ),

which achieves a throughput of 636Gbit/s at a frequency
of 621MHz under worst case PVT in a low Vt 28 nm Fully
Depleted Silicon on Insulator (FD-SOI) technology for a
1024/512 code. The total area is about 3.12mm2, half of
which accounts for registers only. 47% of the total power
consumption amounts for the clock, 24% amounts for the
registers and only 29% for the combinatorial logic. Thus,
optimizing storage is a major challenge to reduce power. Effi-
cient quantization is a very powerful approach at algorithmic
level since the bit width linearly contributes to the memory
requirements.

As stated earlier, routing can also largely contribute to the
latency and energy consumption. A signal has to travel at least
7mm if it has to be transmitted from one corner to the other
in our FEC IP block of size 10mm2. With a frequency of
1Ghz, it will take 3 clock cycles, i.e. 2 pipeline stages have
to be inserted in the wire in 14 nm technology. This largely
increases the latency. Thus, a high locality in the architecture
is important to minimize wiring.

Table I summarizes the implementation properties of the
different code classes. In the following, we consider channel
decoder architectures optimized for highest throughput. All
designs were carried out in our research group, utilizing the
same design methodology and same semiconductor technol-
ogy, enabling fair comparison.

II. TURBO CODE DECODING

Among the three code classes, Turbo codes are most
challenging with respect to high-throughput decoding. The
decoding structure consists of two component decoders con-
nected through an interleaver/de-interleaver. These component
decoders work cooperatively by exchanging extrinsic informa-
tion in an iterative loop. State-of-the-art component decoders
apply the MAP algorithm that calculates the log-likelihood
probabilities for each bit in a block by a forward and a
backward recursion on the trellis, respectively. Thus, decoding
is inherently serial at component decoder and at Turbo code
decoder level.

We can use some of the aforementioned techniques (e.g.
unrolling and pipelining) at the algorithmic and the archi-
tectural level to parallelize the decoding at MAP and Turbo
code decoder level. For a detailed overview and discussion
of such a highly parallel decoder we refer to [24]. Figure 1
shows the corresponding layout of the decoder that achieves
102Gbit/s information bit throughput for a block length of
128 bit on a low Vt 28 nm FD-SOI technology under worst
case PVT conditions, running with 800MHz and performing 4
decoding iterations. Different colors represent the eight differ-
ent MAP decoders originating from the 4 unrolled iterations
(each iteration requires two MAP decoders). Although this
architecture achieves an information bit throughput of more
than 100Gbit/s for small block sizes, it suffers from limited
flexibility in terms of block sizes and varying number of
iterations, a large area and high power consumption.



TABLE I
OVERVIEW ON IMPLEMENTATION PROPERTIES

Code Decoding algorithms Parallel vs. serial Locality Compute kernels Transfers vs. compute
Turbo code MAP serial/iterative low (interleaver) Add-Compare-select compute dominated
LDPC code Belief propagation parallel/iterative low (Tanner graph) Min-Sum/add transfer dominated
Polar code Successive cancelation/List serial high Min-Sum/add/sorting balanced

Fig. 1. 102 Gbit/s Turbo code decoder, area 23.61mm2

III. LDPC CODE DECODING

LDPC code decoding is based on an iterative message ex-
change between variable and check nodes on the Tanner graph
that is represented by the parity check matrix H . This BP has
unlike the Turbo code decoding some inherent parallelism,
since all check nodes (variable nodes) can be processed inde-
pendently from each other. The decoder throughput is mainly
limited by the iterative data exchange between the check and
variable nodes. Hence, in contrast to Turbo code decoding,
the BP algorithm is data transfer and not compute dominated.
The result of each check node or variable node calculation
has to be spread via the edges of the Tanner graph to all other
connected nodes. The Tanner graph has very limited locality to
provide good communications performance, which challenges
an efficient implementation of the data transfers.

Let us consider an LDPC block code of length N and a
parity check matrix H that has #edges(H) 1-entries (number
of 1’s in H equals the number of edges in the Tanner graph).
Furthermore, let #proc edges(A) denote the number of edges
that can be processed in one clock cycle by an architecture A
and I the number of iterations to complete the decoding of
a block. A runs with frequency f . Then, the corresponding
coded bit throughput T (H,A) can be estimated as follows:

T (H,A) =
#proc edges(A)

#edges(H)
·N · 1

I
· f [bit/s] (1)

We can classify different decoder architectures depending
on the degree of parallelism P = #proc edges(A)

#edges(H) :
Partially parallel architectures: Only a subset of edges

and nodes are processed in parallel, i.e. (P < 1). These
architectures are very common for large block sizes that use

quasi-cyclic (QC) block codes. Here, several QC matrices
are processed in parallel. This can be performed either in a
row-based or in a column-based manner. The implementation
challenge for this class of architectures lies in an efficient
memory scheme and a corresponding flexible routing network,
since the values calculated by the check and variable nodes
have to be buffered. Hence, these architectures are memory
dominated. Special constraints are imposed on H to avoid
memory access conflicts. Depending on the structure of H ,
layered decoding becomes possible, which improves the com-
munications performance.

Fully parallel architectures at iteration level: All edges
are processed in parallel, i.e. (P = 1). This architecture
corresponds to a one-to-one mapping of the Tanner graph into
hardware. Check nodes and variable nodes are instantiated
and the corresponding edges are hardwired. Because of the
low locality in the Tanner graph, routing congestion is a big
challenge in these architectures. Thus, these architectures are
routing dominated. Moreover, layered decoding is unfeasible.

Unrolled fully parallel architectures: These architectures are
similar to the fully parallel architectures but the iterations are
unrolled and pipelined, i.e. (P = I). In every clock cycle, a
new block is processed. Advantages of this architecture are 1)
highest throughput and, 2) less routing congestion since the
pipelined architecture implies mainly local wires.

To achieve a throughput larger than 100Gbit/s, only the last
architectural approach is feasible [20], [10]. Let us consider
the IEEE 802.11ad code with N = 672 and #edges(H) =
1890 and a frequency of 400MHz that is feasible in a low Vt

28 nm FD-SOI technology. We assume 9 decoding iterations.
Based on Equation 1, a throughput of 10Gbit/s results for the
partially parallel (row-wise), 29Gbit/s for the fully parallel
and 268Gbit/s for the unrolled fully parallel architecture.

Figure 2 shows the layout of the LDPC decoder in the
same technology and PVT assumptions as the Turbo code
decoder. Different colors represent the individual iterations (in
total 9). The power consumption is about 1.5W, resulting in
5.6 pJ/bit. If 4 iterations are sufficient, the area reduces to
1.3mm2 and the power consumption to 700mW, yielding an
energy efficiency of 2.5 pJ/bit.

IV. POLAR CODE DECODING

Successive Cancelation (SC), Successive Cancelation List
(SCL) and BP are the most prominent decoding algorithms
for Polar codes. Decoding corresponds to a traversal of the
corresponding Polar Factor Tree (PFT) in which the received
log-likelihood ratios from the channel are processed by the tree
nodes. SC and SCL decoding is a depth-first traversal of the
PFT, BP a breadth-first traversal iterating from the leaves to the



Fig. 2. 268Gbit/s LDPC code decoder, area 2.8mm2

root and backwards. Different operations have to be performed
at the tree nodes visited during the traversal, depending on the
decoding algorithm. Corresponding node results are forwarded
to the child/parent nodes, respectively. BP needs a large set of
iterations to achieve the error correction performance of SC
and is not well suited for very high throughput and low latency
[5]. SC and SCL, on the other hand, have sequential behavior
due to the mandatory depth-first tree traversal. To achieve
a very high throughput, the tree traversal can be unrolled
and pipelined [11], very similar to the iteration unrolling in
Turbo code and LDPC code decoding. Whenever a node is
visited during the tree traversal, a corresponding pipeline stage
can be instantiated. In this way, for a block length of N
(= number of leaves in the PFT), the maximum number of
pipeline stages is 2 ∗ (2N − 2) + 1. The complexity of the
decoding architecture is directly proportional to the size of
the PFT, which can be reduced by various transformations.
For example, if a subtree represents a repetition code or a
parity check code, the corresponding subtree can be replaced
by a single node. Alike, we can merge rate-0 and rate-1 nodes
into its parent nodes [19] or use majority logic decoding in
subtrees.

As already said in the introduction, heavily pipelined high-
throughput architectures require a huge amount of registers,
which cost area and power. This memory requirement can
be reduced at algorithmic level, e.g. by efficient quantization.
Techniques like retiming enable the reduction of registers
at (micro-) architectural level. Beyond that, registers can be
replaced by latches. Latches are much more energy and area
efficient than registers and largely reduce the load for the clock
tree.

Here, we consider a 1024/512 Polar code that is decoded
with an SC algorithm. The same technology and PVT setup
as for the Turbo code and LDPC decoder is applied. The
unoptimized PFT has 2047 nodes, corresponding to 4093
pipeline stages. The tree optimization yields a reduction to 385
stages. Implementing this tree in a fully pipelined architecture
would require about 310KB memory. Retiming with a fre-
quency constraint of 800MHz results in a partially pipelined

architecture with only 111 pipeline stages, which require about
90KB memory. The power consumption of this design is
5.7W, of which more than 70% is consumed in registers and
the clock tree. In a further step, we replace registers by latches.
This process is fully automated and compatible with a standard
VHDL synthesis flow and standard libraries. In the new design,
the area is reduced from 3.12mm2 to 2.95mm2, the power
consumption from 5.7W to 3.3W, and the throughput is
increased from 636Gbit/s to 764Gbit/s. Only 33% of the
overall power accounts for registers and clock tree. The design
is running with a frequency of 746MHz, which results in a
coded bit throughput of 764Gbit/s. Figure 3 shows the layout
of the Polar code decoder. Each color represents a pipeline
stage (111), the black color is memory.

Fig. 3. 764Gbit/s Polar code decoder, area 2.95mm2

V. CONCLUSION

Table II compares the different decoders in terms of im-
plementation efficiency. It is important to mention that com-
munications performance is not considered. It is important to
mention that there is a strong interrelation between communi-
cations performance and implementation efficiency [15]. Code
block lengths and code rates differ. Thus, the communications
performance will be different for the various decoders [8].

However, some general conclusions can be drawn. LDPC
decoder architectures run with lower frequency. This is due to
the routing issue that originates from the BP algorithm. The
LDPC decoder is superior to the Turbo code decoder in terms
of throughput, area and energy efficiency. A reason for that is
the fact that BP is inherently parallel. Thus, some researchers
investigated the use of BP decoding also for Turbo codes
[18], [16]. However, its communications performance cannot
compete with the MAP decoding performance. The Polar code
decoder has the highest throughput of all decoders. Area and
energy efficiency for Polar code and LDPC code decoders are
comparable for a low number of LDPC decoding iterations.

Throughputs beyond 100Gbit/s are feasible for all three
code classes by appropriate “unrolling” and utilizing heavy
pipelining and spatial parallelism. However, this architectural
approach is limited to small block sizes (area, power, routing



TABLE II
COMPARISON OF CHANNEL CODE DECODERS

Code Blocksize Code rate Frequency Throughput Area Power Area efficiency Energy efficiency
[bit] [MHz] [Gbit/s] [mm2] [mW] [Gbit/s/mm2] [pJ/bit]

Turbo code (4 iter) 128 1/3 800 102 23.6 - 4.34 -
LDPC code (9 iter) 672 13/16 400 268 2.8 1500 95.7 5.6
LDPC code (4 iter) 672 13/16 400 268 1.3 700 215 2.5

Polar code 1024 1/2 746 764 2.95 3300 259 4.4

congestion) and small number of iterations (Turbo code,
LDPC code), which negatively impacts the communications
performance. Moreover, although pipelining largely increases
the throughput and locality, it also increases the latency.
The reduction of latency at the implementation level is very
restricted. A large latency improvement is only possible by de-
grading the communications performance, e.g. by reducing the
number of iterations or using simplified decoding algorithms,
etc. All architectures suffer from limited flexibility in terms
of block sizes (all three codes), varying number of iterations
(Turbo code, LDPC code) and code rate flexibility (LDPC
code and Polar code).

Summarized, the biggest challenges for very high-
throughput decoder architectures are:

• Improving the communications performance under the
aforementioned implementation constraints.

• Providing block size, code rate and algorithmic flexibility.
• Power density is in the order of 1W/mm2, which is far

too high for air cooled packages.
As discussed in the introduction, microelectronic progress

will largely contribute to an improved area efficiency but not
much to an increased performance and a reduced power den-
sity. Thus, further research is mandatory to keep pace with the
increasing requirements on communication systems in terms
of throughput, latency, power/energy efficiency, flexibility, cost
and communications performance.

ACKNOWLEDGMENT

We gratefully acknowledge financial support by the DFG
(project-ID: 2442/8-1) and the EU (project-ID: 760150-EPIC).

REFERENCES

[1] EPIC - Enabling Practical Wireless Tb/s Communications with Next
Generation Channel Coding - https://epic-h2020.eu/results.

[2] Foundry Challenges in 2018 - https://semiengineering.com/foundry-
challenges-in-2018/.

[3] International Roadmap for Devices and Sys-
tems (IRDS) 2017 Edition: More Moore -
https://irds.ieee.org/images/files/pdf/2017/2017IRDS MM.pdf.

[4] ISSCC Keynote 2014, Mark Horowitz -
http://eecs.oregonstate.edu/research/vlsi/teaching/ECE471 WIN15/
mark horowitz ISSCC 2014.pdf.

[5] S. M. Abbas, Y. Fan, J. Chen, and C. Y. Tsui. High-Throughput and
Energy-Efficient Belief Propagation Polar Code Decoder. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 25(3):1098–1111,
March 2017.

[6] Gene M. Amdahl. Computer architecture and Amdahl’s Law. Computer,
46(12):38–46, 2013.

[7] Erdal Arikan. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE
Transactions on Information Theory, 55(7):3051–3073, 2009.

[8] A. Balatsoukas-Stimming, P. Giard, and A. Burg. Comparison of Polar
Decoders with Existing Low-Density Parity-Check and Turbo Decoders.
In 2017 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), pages 1–6, March 2017.

[9] G. P. Fettweis and E. Matus. Scalable 5G MPSoC architecture. In 2017
51st Asilomar Conference on Signals, Systems, and Computers, pages
613–618, October 2017.

[10] R. Ghanaatian, A. Balatsoukas-Stimming, T. C. Müller, M. Meidlinger,
G. Matz, A. Teman, and A. Burg. A 588-Gb/s LDPC Decoder Based
on Finite-Alphabet Message Passing. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(2):329–340, February 2018.

[11] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross. 237 Gbit/s unrolled
hardware polar decoder. Electronics Letters, 51(10):762–763, 2015.

[12] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muham-
mad Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip
systems in the nano-era: Lessons learnt and future trends. In Proceedings
of the 50th Annual Design Automation Conference on - DAC ’13, page 1,
Austin, Texas, 2013. ACM Press.

[13] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn. A 2.15GBit/s turbo
code decoder for LTE advanced base station applications. In 2012
7th International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), pages 21–25, August 2012.

[14] Michael J. Thul, Frank Gilbert, Timo Vogt, Gerd Kreiselmaier, and
Norbert Wehn. A Scalable System Architecture for High-Throughput
Turbo-Decoders. In The Journal of VLSI Signal Processing-Systems
for Signal, Image, and Video Technology, volume 39, pages 152–158,
January 2005.

[15] F. Kienle, N. Wehn, and H. Meyr. On Complexity, Energy- and
Implementation-Efficiency of Channel Decoders. IEEE Transactions on
Communications, 59(12):3301–3310, December 2011.

[16] Lianxiang Zhu, Jifeng Wang, and Shizhong Yang. Factor graphs
based iterative decoding of turbo codes. In IEEE 2002 International
Conference on Communications, Circuits and Systems and West Sino
Expositions, volume 1, pages 46–50, Chengdu, China, 2002. IEEE.

[17] G. E. Moore. Cramming More Components Onto Integrated Circuits.
Electronics, pages 114–117, April 1965.

[18] Ahmed Refaey, Sebastien Roy, and Paul Fortier. On the application
of BP decoding to convolutional and turbo codes. In 2009 Conference
Record of the Forty-Third Asilomar Conference on Signals, Systems and
Computers, pages 996–1001, Pacific Grove, CA, USA, 2009. IEEE.

[19] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross. Fast Polar
Decoders: Algorithm and Implementation. IEEE Journal on Selected
Areas in Communications, 32(5):946–957, May 2014.

[20] P. Schläfer, N. Wehn, M. Alles, and T. Lehnigk-Emden. A new
dimension of parallelism in ultra high throughput LDPC decoding. In
SiPS 2013 Proceedings, pages 153–158, October 2013.

[21] Stefan Scholl, Stefan Weithoffer, and Norbert Wehn. Advanced iterative
channel coding schemes: When Shannon meets Moore. In 2016 9th
International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), pages 406–411, Brest, France, September 2016.
IEEE.

[22] Claude E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(4):623–656, 1948.

[23] William Shockley. The Theory of p-n Junctions in Semiconductors and
p-n Junction Transistors. The Bell System Technical Journal, 28:435–
489, 1949.

[24] S. Weithoffer, C.A. Nour, N. Wehn, C. Douillard, and C. Berrou. 25
Years of Turbo Codes: From Mb/s to beyond 100 Gb/s. International
Symposium on Turbo Codes & Iterative Information Processing (ISTC),
December, 2018, Hong Kong, China, 2018.


