

INDO AMERICAN JOURNAL OF PHARMACEUTICAL RESEARCH

A REVIEW: AN APPROACH TOWARDS THE ANALYTICAL METHOD DEVELOPMENT FOR DETERMINATION OF NEWER DRUGS

Kirtimaya Mishra^{*}, Dr. K. Balamurugan¹, Dr. R. Suresh¹

^{*}Department of Pharmacy, Annamalai University, Chidambaram, Tamilnadu-608002, India. ¹Annamalai University, Chidambaram, Tamilnadu-608002, India.

ARTICLE INFO	ABSTRACT
Article history	In this present scenario for treating various diseases several new drugs were invented. Before
Received 21/12/2016	launching to the market these drugs must undergo analytical validation process. In this review
Available online	some of analytical techniques such as ultraviolet/ visible spectrophotometry, fluorimetry,
31/01/2017	capillary electrophoresis, and chromatographic methods (gas chromatography and high-
	_ performance liquid chromatography), LC-MS, GC-MS, SOLID PHASE EXTRACTION,
Keywords	NMR, MASS Spectrophotometry LC/MS/MS LC/UV X-ray crystallography were discussed.
GC-MS,	
Solid Phase Extraction,	
LC/MS/MS.	

Corresponding author

Kirtimaya Mishra PhD., Research Scholar, Department of Pharmacy, Annamalai University, Chidambaram, Tamilnadu-608002, India. kirtimishra.pharma@gmail.com

Please cite this article in press as *Kirtimaya Mishra* et al. A Review: an Approach towards the Analytical Method Development for Determination of Newer Drugs. Indo American Journal of Pharmaceutical Research.2017:7(01).

Copy right © 2017 This is an Open Access article distributed under the terms of the Indo American journal of Pharmaceutical

INTRODUCTION

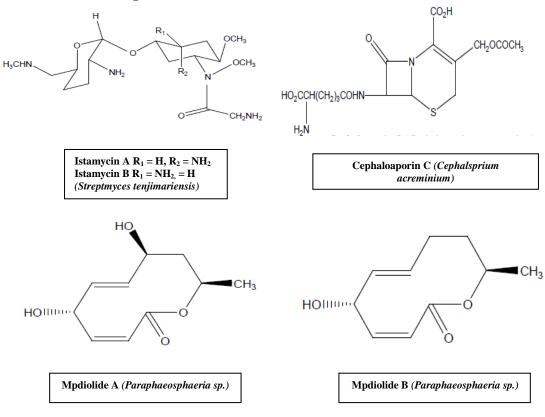
Modern drug discovery involves the identification of screening hits, medicinal chemistry and optimization of those hits to increase the affinity, selectivity and oral bioavailability. Once a compound that fulfills all of these requirements has been identified, it will begin the process of drug development and in-vitro analytical studies prior to clinical trials.^[1] The marine environment is a rich source of both biological and chemical diversity. This diversity has been the source of unique chemical compounds with the potential for industrial development as pharmaceuticals, cosmetics, nutritional supplements, molecular probes, fine chemicals and agrochemicals.^[2] About five lakh species of marine organisms have been reported from the oceans and seas from various parts of the world. Some of the organisms are antimicrobial, antiviral, antibiotic, anticancer, anti-inflammatory and prostaglandins. Many of the species contains toxic compounds.^[3]

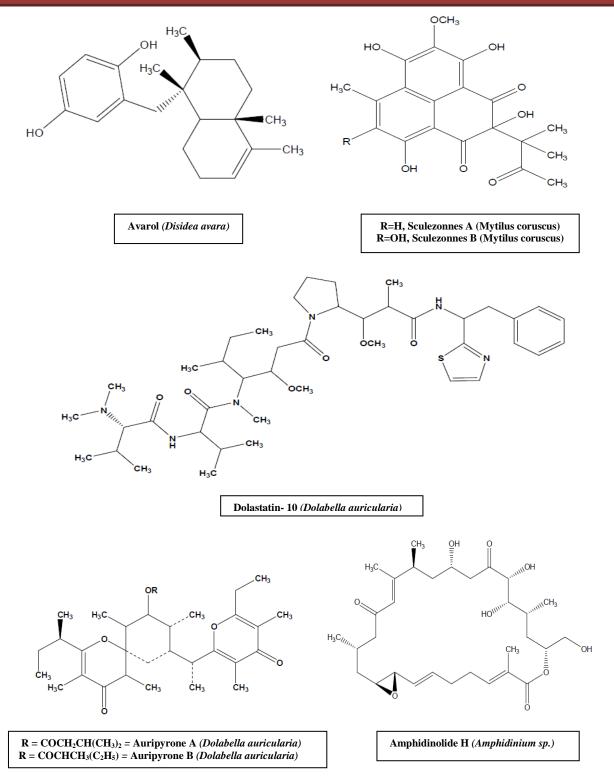
UV-Visible spectrophotometry is one of the most frequently employed technique in pharmaceutical analysis in which ultraviolet or visible radiation absorbed by a substance in solution. ^[4] Capillary electrophoresis (CE) offers several advantages over high-pressure or high-performance liquid chromatography (HPLC). These include simplicity, rapid analysis, automation, ruggedness, different mechanisms for selectivity, and low cost. ^[5]

High-performance liquid chromatography (HPLC) is a type of liquid chromatography used to separate and quantify compounds that have been dissolved in solution. HPLC is used to determine the amount of a specific compound in a solution. ^[6] Gas chromatography technique is a sensitive, accurate, reproducible, quantitative and versatile tool well adapted for the analysis of complex mixtures. ^[7] Liquid chromatography-mass spectrometry (LC-MS, or alternatively HPLC-MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry.^[8] Gas Chromatography–Mass Spectrometry (GC-MS) is a method that combines the features of gas-liquid chromatography and mass spectrometry to identify different substances within a test sample.^[9] Solid phase extraction (SPE) is an extraction method that uses a solid phase and a liquid phase to isolate one, or one type, of analyte from a solution. ^[10]

Pharmaceutical Potentials

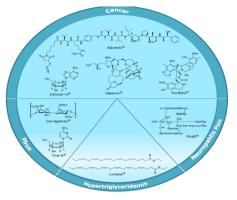
Despite the much compounds isolated from marine organisms and the biological activities attributed to many of them, those that have either been marketed or are under development are very few. The potential for marine natural products as pharmaceutical was first developed in the 1950, which led to two marine-derived pharmaceuticals that are still in use today. Ara-C is an anti-cancer drug (used against acute myelocytic leukemia and non-Hodgkin's lymphoma) and Ara-A used as an antiviral drug for treating herpes.


Drugs	Therapeutic Category	Source
2S-acetamido-3sacetoxy-5E	Antimicrobial	Pseudodistoma sp
5α-pregna-1,20-dien-3-one	Anti-inflammatory	Capenella thyrsoidea
Amphidinolides G and H	Anticancer	Amphidinium sp
Aplidine	Anticancer	Aplidium albicans
Apratoxin	Anticancer	Lyngbya sp.
Ara A	Antiviral	Tethya crypta
Auripyrone A and B	Anticancer	Dolabella auricularia
Avarol and Avarone	Antiviral	Disidea avara
Axisonitrile 3	Antimalarial	Acanthella klethra
Bryostatins 1 And 2	Anticancer	Bugula neritina
Cephalosporins	Antimicrobial	Cephalosporium acremonium
Cephalostatin 1	Anticancer	Cephalodiscus gilchristi
Clavepictine A and B	Anticancer	Clavelina picta
Dictyostatin 1	Anticancer	Spongia genus
Didemnin B	Antiviral	Trididemnum sp
Discodermolide	Anticancer	Discodermia dissolute
Dolastatin H	Anticancer	Dolabella auricularia
E7389	Anticancer	Halicondria okadai
Ecteinascidin 743	Anticancer	Ecteinascidia turbinate
Eleutherobin	Anticancer	Eleutherobia sp
Isodolastatin H	Anticancer	Dolabella auricularia
Istamycin	Antimicrobial	Streptomyces tenjimariensi
Kalihinol A	Antimalarial	Acanthella sp
KRN 7000	Anticancer	Agelas mauritianus
Lejimalides A-D	Anticancer	Eudistoma cf. rigida
Manzamine A	Antimalarial	Haliclona sp
Modiolides A and B	Antimicrobial	Paraphaeosphaeria sp
Niphatesine D	Anticancer	Niphates species
Okadaic acid	Molecular probe	Prorocentrum belizeanum


Potential therapeutic compounds from marine sources. ^[11]

Kirtimaya Mishra et al.

Orthopedic implants	Bone grafting	Coral (Family Isididae)
Polyketide synthase	Enzyme	Pseudoceratina clavata
PrialtTM	Analgesic	Conus magus
Rietone	Antiviral	Alcyonium fauri
Salinosporamide A	Anticancer	Salinospora
Seragakinone A	Antimicrobial	Cocodinium sp
Sesquiterpene furan	Anti-inflammatory	Sinularia sp
Sesterterpene, palaulol	Anti-inflammatory	Fascaplysinopsis sp
Sorbicillactone A and B	Anticancer	Ircinia fasciculote
Speradine A	Antimicrobial	Aspergillus tamari
Speradine A	Ca2+-ATPase and	Aspergillus tamari
	histone deacetylase	
	inhibitor	
Spongiostatin 4	Anticancer	Spirasrella spinispirulifer
Sporiolides A and B	Anticancer	Cladosporium sp
Squalimine	Anticancer	Shark
Topsentin	Anti-inflammatory	Spongosporites ruetzleri
Tsitsixenicin A	Anti-inflammatory	Capenella thyrsoidea
Tsitsixenicin B	Anti-inflammatory	Alcyonium valdivae
α-Kainic acid	Antiparasitic	Digenia simplex


Chemical structure of few marine drugs ^[11, 12]

Page7357

Chemical structures of marine drugs on the market divided by therapeutic area (13, 14)

Marketed marine natural products in the pharmaceutical sector ^[13]

Compound Name	NP	Original NP/ Source Organism	Treatment	Status 2013
(Trademark)	or Derivative			
Æ-941 (Neovastat®)	NP mixture	Shark cartilage	Cancer	No data
ASG-5ME	NP derivative	Dolastatin 10/ sea hare Dolabella auricularia	Cancer	Phase I
Brentuximab vedotin (SGN- 35) (Adcetris®)	NP derivative	Dolastatin 10/ sea hare Dolabella auricularia	Cancer	FDA/EMEA approved
Bryostatin I	NP	Bryozoan Bugula neritina	Cancer Alzhemier's	Phase I Phase II
CDX-011	NP derivative	Dolastatin 10/ sea hare Dolabella auricularia	Cancer	Phase II
Conotoxin G (CGX-1160)	NP	Marine snail Conus geographus	pain	No data
Cytarabine (Cytosar-U®; Depocyt®)	NP derivative	Spongothymidine/ sponge Cryptotethya crypta	Cancer	Approved
Discodermolide	NP	Sponge Discodermia dissouta	Cancer	No data
DMXBA (GTS-21)	NP derivative	Anabeseine/ worm Paranemertes peregrina	Alzhemier's	Phase II
E7389	NP derivative	Halichondria B/ sponge Halichondria okadai	Cancer	No data
Elisidepsin (Irvalec®)	NP derivative	Kahalides/ Sea slug Elysia rufescens	Cancer	Discontinued
Eribulin mesylate (Halaven®)	NP derivative	Halichondrin B/ sponge Halichodria okadai	Cancer	FDA/EMEA approved
Hemiasterlin	NP	Sponge Hemiastrella minor	Cancer	Discontinued
HTI-286	NP derivative	Hemiasterlin/ sponge Hemiastrella minor	Cancer	No data
Iota-carrageenan (Carragelose®)	NP	Iota-carrageenan/ redAlgee Eucheuma/Cnondus	Antiviral Viral	Over-the-counter drug (OTC)
IPL-576092 and derivatives	NP derivatives	Contignasterol/ Sponge Petrosia contignata	Anti-asthmatic	No data
Kahalalide F	NP	Sea slug Elysia rufescens	Cancer	No data
KRN-7000	NP derivative	Agelasphins/ sponge Agelas mauritianus	Cancer	No data
Lurbinectedin (PM01183)	NP derivative	Ecteinascidins/ tunicate Ecteinascidia turbinata	Cancer	Phase II
Marizomib	NP	Salinosporamide A/ Marine actinomycete Salinispora tropica	Cancer	Phase I
NVP-LAQ824	NP derivative	Psammaplin A/ sponge Aplysinella rhax	Cancer	No data
Omega-3-acid ethyl esters (Lovaza®)	NP derivative	Omega-3-fatty acids/ fish	Hypertriglyceridemia	Approved
Pliditepsin (Aplidin®)	NP	Ascidian Aplidium albicans	Cancer	Phase II/III
Plinabulin (NPI-2358)	NP derivative	Halimide (NPI-2350)/ marine	Cancer	Discontinued
		fungus Aspergillus sp.		

Vol 7, Issue 01, 2017.		Kirtimaya Mishra et al.		ISSN NO: 2231-6876
PM00104 (Zalypsis®)	NP derivative	Jorumycin/ sea slug Joruna funebris	Cancer	Phase II
PM060184	NP	Sponge Lithoplocamia lithistoides	Cancer	Phase I
Pseudopterosins	NP derivative	Pseudopterosins/ Soft coral Pseudoptergorgia elisabethae	Wound healing	Discontinued
SGN-75	NP derivative	Dolastatin 10/ sea hare Dolabella auricularia	Cancer	Phase I
Soblidotin	NP derivative	Dolastatin 10/ Sea hare Dolabella auricularia	Cancer	Discontinued
Spisulosine (ES-285)	NP	Marine clam Spisula polynyma	Cancer	No data
Squalamine	NP	Dogphish shark Squalus acanthias	Cancer	No data
Synthadotin	NP derivative	Dolastatin 15/ Sea hare Dolabella auricularia	Cancer	Discontinued
Tasidotin (ILX-651)	NP derivative	Dolastatin 15/ sea hare Dolabella auricularia	Cancer	Discontinued
Trabectedin (Yondelis®)	NP	Ecteinascidin 743/ tunicate Ecteinascidia turbinata	Cancer	EMEA approved
Vidarabine (Vira-A®)	NP derivative	Spongouridine/ sponge Cryptotethya crypta	Anti-viral	US discontinued
Ziconotide (Prial®)	NP derivative	ω-Conotoxin/ marine snail Conus magus	Neuropahtic Pain	Approved

Analysis of Cephalosporin and Anti-cancer drugs from marine source by different analytical methods ^[15-23]

Drug	Method	Description
Cefuroxime axetil	Ultraviolet spectroscopy	Wavelengths: 281 nm
		Solvent: 0.1N HCl
		Linearity Range: 0.4 – 2 mg/ml
		Correlation Coefficient: 0.998
Ceftriaxone sodium	A simple	Wavelength: 490.4 nm
	spectrophotometric	Linearity Range: 5-25 µg/ml
	estimation	Correlation Co-Efficient: 0.998
Cefixime trihydrate	Ultraviolet spectroscopy	Wavelength: 287 nm.
		Linearity Range: 2-20 µg/ml
		Correlation Coefficient: 0.999
Cefuroxime axetil	HPTLC	Stationary Phase: Precoated Silica Gel 60F 254
		Mobile Phase: Chloroform: Methanol: Toluene (4:2:2V/V)
		Wavelength: 290 nm
Cephalexin	HPTLC	Stationary Phase: Aluminum Backed Layer Of Silica Gel 60 F254
-		Mobile Phase: Toluene: Methanol: Tri ethyl amine (6:4:0.1 V/V/V)
		Wavelength: 254 nm
Cefotaxime sodium	RP-HPLC	Stationary Phase: SS Wakosil II- C8 Column (250 mm ×4.6 mm I.D., 5 mm)
		Mobile Phase: Ammonium :
		Acetate Buffer (Ph 6.8) : Acetonitrile (85:15 V/V)
		Wavelength: 252 nm
		Flow Rate: 0.8 ml/min
Ceftriaxone sodium	HPLC	Stationary Phase:18 Inert sil Column (150 mm × 4.6 mm, 3 mm)
in pharmaceutical		Mobile Phase: Degassed Mixture Of Buffer: Methanol (74:26 v/v)
formulations		Wavelength: 241.5 nm
Cefpirome sulfate	RP-HPLC	Stationary Phase: Lichrocart Lichrospere 100 C18, (250 mm X 4 mm, 5µ)
		Mobile Phase: Methanol : Water (50:50 V/V)
		Wavelength: 270 nm
Cepodoxime	RP- HPLC	Stationary Phase:
proxetil and		Kromasil C 18 Analytical Column (250×4.6 mm, 5 mm)
dicloxacillin sodium		Mobile Phase: Acetonitrile: Methanol: Tri floro acetic acid (0.001%) With PH 6.5
in tablets		(30:50:20V/V/V)
		Wavelength: 235 nm
Cefoperazone and	RP-HPLC	Stationary Phase: Kromasil C8 (15 Cm \times 4.6 mm , 5 μ)
sulbactam in		Mobile Phase: Phosphate Buffer Ph 3.5 Adjusted With Ortho Phosphoric Acid and
parenteral		Acetonitrile(35:65)
preparation		Wavelength: 215 nm

 $_{\rm Page}7358$

Vol 7, Issue 01, 2017.		Kirtimaya Mishra et al.	ISSN NO: 2231-6876
Cefuroxime axetil and potassium clavulanate in pharmaceutical dosage form	RP-HPLC	Stationary Phase : Micros orb MV 100-5 C-18 C Mobile Phase : Methanol: Water (90 :10 V/V) Wavelength: 230 nm	Column (250mm×4.6mm,5µm)
Cefuroxime axetil and its impurities	RP-HPLC	Stationary phase : Lunn c-18 column Mobile phase : water and methanol Wavelength: 278 nm	
Cefoperazone and Tazobactam in marketed formulation	RP-HPLC	Stationary Phase : 0.02 Mm Potassium Di hydrogen Phosphate Buffer, PH 4.0 and Met Mobile Phase :Thermo BDS Hypersil C18 Colu Wavelength: 250 nm.	
Aplidine	HPLC	Stationary Phase : octadecyl modified silica Mobile phase : water–acetonitrile mixture at pH Wavelength: fluorescence detection at 410 and 5	
Bryostatin	HPLC	n-hexane/EtOAc/MeOH/H2O (26:5:1:0.01) as r HPLC and acetonitrile (CH3CN)/H2O system for	
Ecteinascidin- 743	RP-HPLC	Stationary Phase : Zorbax SB-C18 column (75× Mobile phase : acetonitrile–25 mM phosphate buffer, pH 5.0 (7 Wavelength: 210 nm	4.6 mm I.D., particle size 3.5 μm)
Dolastatin-10	HPLC	Stationary Phase : C8 reversed-phase Mobile phase : acetonitrile-2-propanol-water	
Cytarabine	RP-HPLC	Stationary Phase : HC-C18(2) column Mobile phase : Acetonitrile and purified water with previously orthophosphoric acid (2: 98 v/v) Wavelength: 280 nm	adjusted pH 2.8 with

CONCLUSION

The efficient development and validation of analytical methods are critical elements in the development of pharmaceuticals. This review represents that few drugs are approved for the use in market obtained from marine source. According to the literature review it can be concluded that for marketed marine formulations in single component and its combination with other drug spectroscopy and chromatography methods available. Comparing various validation parameters of already reported methods, it can be concluded that different analytical methods like spectrophotometric, HPTLC, HPLC, GC-MS and LC-MS can be developed for these formulations. There is a great scope for development of newer analytical methods for latest drugs because there is no reported method for some newly approved drugs and their combination with other drugs.

REFERENCES

- 1. Anson D, Ma J, He JQ (1 May). "Identifying Cardiotoxic Compounds". Genetic Engineering & Biotechnology News. Mary Ann Liebert. 29 (9) (2009) 34–35.
- 2. Anake Kijjoa, Pichan Sawangwong, Drugs and Cosmetics from the Sea, Mar. Drugs. 2 (2004) 73-82.
- 3. C.K.Kokate. Pharmacognosy, Nirali Prakashan, Fourty second edition, 2008, 15.1.
- 4. UV-Visible Spectrophotometric Method Development and Validation of Assay of Paracetamol Tablet Formulation Siladitya Behera, Subhajit Ghanty, Fahad Ahmad, Saayak Santra, and Sritoma Banerjee Behera, J Anal Bioanal Techniques (2012), 3:6
- 5. Ahuja & Jimidar, Capillary Electrophoresis Methods for Pharmaceutical Analysis, 1st Edition. (2008)
- 6. Tom Kupiec, PhD, Analytical Research Laboratories, Oklahoma City, Oklahom, Quality-Control Analytical Methods:High-Performance Liquid Chromatography, International Journal of Pharmaceutical Compounding. 8 (2004) 3
- 7. Santosh Kumar Bhardwaj, K. Dwivedi and D. D. Agarwal, A Review: GC Method Development and validation, International Journal of Analytical and Bioanalytical Chemistry. 6(1) (2016) 1-7
- Dharmendra Patel International Journal Of Pharma And Bio Sciences Matrix Effect In A View Of Lc-Ms/Ms: An Overview. Vol 2 (2011) 559.
- 9. Lakshmi HimaBindu M.R, Angala Parameswari S, Gopinath C, A Review on GC-MS and Method Development and Validation, International Journal of Pharmaceutical Quality Assurance. 4(3) (2013) 42-51.
- 10. A. Żwir-Ferenc, M. Biziuk, Solid Phase Extraction Technique Trends, Opportunities and Applications, Polish J. of Environ. Stud. 15 (2006) 677-690.
- 11. Yogesh Murti and Tarun Agrawal, Marine derived pharmaceuticals- Development of natural health products from marine biodiversity, International Journal of ChemTech Research. 2 (2010) 2198-2217.
- 12. Mohammad. Shahin, K. Ayesha begum, Mohammad Saleem, Analytical Methods for Determination of Anticancer Drugs from Marine Sources, International Journal of ChemTech Research. Vol.2 (2010) 2198-2217.

- 13. Ana Martins, Helena Vieira, Helena Gaspar, Susana Santos, Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success, Mar. Drugs. 12 (2014) 1066-1101.
- 14. Marine natural products as anticancer drugs source:http://mct.aacrjournals.org/content/4/2/333.long.
- 15. Marine Sources. http://www.pharmatutor.org/articles/natural-anti-cancer-drugs-and-recent-development-in-it.
- 16. Journal of Chromatography B. Biomedical Sciences and Applications 729(1-2) (1999) 43-53.
- 17. Yoshiaki Kamano, Ayano Kotake, Toshihiko Nogawa, Hatsue Hiraide, George R Pettit and Cherry L, journal of liquid chromatography and related substances. 23(3) (2000) 399-409.
- Rosing H, Hillebrand MJX, Jimeno JM, Gómez A, Floriano P, Faircloth G, Cameron L, Henrar REC, Vermorken JB, Bult A and Beijnen JH, Journal of Chromatography B: Biomedical Sciences and Applications. 710 (1–2) (1998) 183–189.
- 19. Pettit GR, Kantoci D, Herald DL, Barkóczy J and Slack JA. Journal of liquid chromatography. 17(1):191-202.
- 20. Anuj Bhatnagar, Satyavert Loura, Manu Chaudhary, A Stability Indicating RP- HPLC Method for Determination of Anticancer Agents Cytarabine in Lyophilized Dosage Form. Eurasian J Anal Chem 7(3) (2012) 160-167.
- 21. Jain Pritam, Development and validation of UV spectrophotometric method for determination of cefuroxime axetil in bulk and in formulation, International Journal of Drug Development & Research, October-December (2011) 3.
- Varanasi S. N. Murthy, A. Rohinib, K. E. Pravallikaa, A. Prameela Rania and S. A. Rahamanc, Development and validation of a novel UV-Visible spectrophomtric method for cytarabine in bulk and pharmaceutical dosage forms, Der Pharmacia Lettre. 5 (4) (2013) 51-55.
- 23. Anake Kijjo and Pichan Sawangwong, Review-Drugs and Cosmetics from the Sea, Mar. Drugs. 2 (2004) 73-82.

