
Polar Codes for Terabit/s Data Rates

Erdal Arıkan, Altuğ Süral, E. Göksu Sezer

Bilkent University and Polaran Ltd.
Ankara, Turkey

Dec. 4th, 2018
International Symposium on Turbo Codes and Iterative

Information Processing 2018 (ISTC 2018)
Hong Kong



Goals

◮ Provide some motivation and background for the problem



Goals

◮ Provide some motivation and background for the problem

◮ Discuss challenges for Tb/s Forward Error Correction (FEC)
with current VLSI technology



Goals

◮ Provide some motivation and background for the problem

◮ Discuss challenges for Tb/s Forward Error Correction (FEC)
with current VLSI technology

◮ Present a solution based on polar codes developed jointly in a
H2020 project (EPIC)



Goals

◮ Provide some motivation and background for the problem

◮ Discuss challenges for Tb/s Forward Error Correction (FEC)
with current VLSI technology

◮ Present a solution based on polar codes developed jointly in a
H2020 project (EPIC)

◮ State some remaining challenges



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications
◮ data kiosks



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications
◮ data kiosks
◮ ...



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications
◮ data kiosks
◮ ...

◮ Relevant standardization already underway (IEEE 802.15.3d,
LiFi)



Why do we need Tb/s FEC?

◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications
◮ data kiosks
◮ ...

◮ Relevant standardization already underway (IEEE 802.15.3d,
LiFi)

◮ Other technologies are also needed for Tb/s communications
but FEC is one of the most complex part of the transmission
chain



What are the challenges?

◮ Channel coding requirements not extraordinary



What are the challenges?

◮ Channel coding requirements not extraordinary
◮ Reliability: frame error rate of 10−6 to 10−12 without

retransmissions



What are the challenges?

◮ Channel coding requirements not extraordinary
◮ Reliability: frame error rate of 10−6 to 10−12 without

retransmissions

◮ Implementation challenges are beyond the state-of-the-art



What are the challenges?

◮ Channel coding requirements not extraordinary
◮ Reliability: frame error rate of 10−6 to 10−12 without

retransmissions

◮ Implementation challenges are beyond the state-of-the-art

◮ We will use the targets set by the EPIC Project experts

Technology 7nm

Throughput 1 Tb/s

Clock freq. ≤ 1 GHz

Silicon area ≤ 10 mm2

Pow. Den. ≤ 0.1 W/mm2

Area Eff. ≥ 100 Gb/s/mm2

Energy Eff. ≤ 1 pJ/bit



What are the challenges?

◮ Channel coding requirements not extraordinary
◮ Reliability: frame error rate of 10−6 to 10−12 without

retransmissions

◮ Implementation challenges are beyond the state-of-the-art

◮ We will use the targets set by the EPIC Project experts

Technology 7nm

Throughput 1 Tb/s

Clock freq. ≤ 1 GHz

Silicon area ≤ 10 mm2

Pow. Den. ≤ 0.1 W/mm2

Area Eff. ≥ 100 Gb/s/mm2

Energy Eff. ≤ 1 pJ/bit

◮ Goal: Obtain the best coding gain per code family subject to
these constraints



Feasibility check

◮ Does uncoded transmission meet the targets?



Feasibility check

◮ Does uncoded transmission meet the targets?

◮ Uncoded transmission (design at 40nm, scaled to 7nm on
paper)

EPIC target Uncoded

Technology (nm) 7 7

Throughput (Tb/s) 1 1

Clock freq. (GHz) ≤ 1 1

Silicon area (mm2) ≤ 10 10

Pow. Den. (W/mm2) ≤ 0.1 2.3× 10−4

Area Eff. (Gb/s/mm2) ≥ 100 100

Energy Eff. (pJ/bit) ≤ 1 2.3× 10−3



Feasibility check

◮ Does uncoded transmission meet the targets?

◮ Uncoded transmission (design at 40nm, scaled to 7nm on
paper)

EPIC target Uncoded

Technology (nm) 7 7

Throughput (Tb/s) 1 1

Clock freq. (GHz) ≤ 1 1

Silicon area (mm2) ≤ 10 10

Pow. Den. (W/mm2) ≤ 0.1 2.3× 10−4

Area Eff. (Gb/s/mm2) ≥ 100 100

Energy Eff. (pJ/bit) ≤ 1 2.3× 10−3

◮ There is room for 1000/2.3 = 435 times more complex
decoding operations relative to uncoded



Feasibility check

◮ Does uncoded transmission meet the targets?

◮ Uncoded transmission (design at 40nm, scaled to 7nm on
paper)

EPIC target Uncoded

Technology (nm) 7 7

Throughput (Tb/s) 1 1

Clock freq. (GHz) ≤ 1 1

Silicon area (mm2) ≤ 10 10

Pow. Den. (W/mm2) ≤ 0.1 2.3× 10−4

Area Eff. (Gb/s/mm2) ≥ 100 100

Energy Eff. (pJ/bit) ≤ 1 2.3× 10−3

◮ There is room for 1000/2.3 = 435 times more complex
decoding operations relative to uncoded

◮ Design space is narrowed significantly but still interesting



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and
◮ fc is the clock frequency.



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and
◮ fc is the clock frequency.

◮ For γ = 1 Tb/s, Q = 5 bits, R = 15/16, and fc = 1 GHz, the
bus width is W = 5333 bits.



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and
◮ fc is the clock frequency.

◮ For γ = 1 Tb/s, Q = 5 bits, R = 15/16, and fc = 1 GHz, the
bus width is W = 5333 bits.

◮ Better to use small Q and large R



I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and
◮ fc is the clock frequency.

◮ For γ = 1 Tb/s, Q = 5 bits, R = 15/16, and fc = 1 GHz, the
bus width is W = 5333 bits.

◮ Better to use small Q and large R

◮ Compress the LLR input as much as possible (syndrome
techniques)



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,
◮ P is the number of codewords being decoded in parallel



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,
◮ P is the number of codewords being decoded in parallel
◮ Q is the average LLR precision



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,
◮ P is the number of codewords being decoded in parallel
◮ Q is the average LLR precision

◮ Use advanced quantization methods to reduce Q



Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,
◮ P is the number of codewords being decoded in parallel
◮ Q is the average LLR precision

◮ Use advanced quantization methods to reduce Q

◮ Keep NP small



Polar code decoding algorithms

Algorithm

Type

Computational

Complexity

Space

Complexity

Time

Complexity

SC N logN N N

BP IN logN N logN I logN

SC-list LN logN LN N + K log2(L)
SC-stack DN logN DN -
SC-soft-out IN logN N logN IN

SC-flip N logN(1 + Pe (SNR)) N IN

MJL KN log 3 N log2(N)
Sphere Cubic - -

I : number of iterations, L: list size, D: stack depth

◮ Successive Cancellation (SC) decoder has the least
computational and space complexity



Polar code decoding algorithms

Algorithm

Type

Computational

Complexity

Space

Complexity

Time

Complexity

SC N logN N N

BP IN logN N logN I logN

SC-list LN logN LN N + K log2(L)
SC-stack DN logN DN -
SC-soft-out IN logN N logN IN

SC-flip N logN(1 + Pe (SNR)) N IN

MJL KN log 3 N log2(N)
Sphere Cubic - -

I : number of iterations, L: list size, D: stack depth

◮ Successive Cancellation (SC) decoder has the least
computational and space complexity

◮ Majority Logic (MJL) decoder has the least time complexity



Polar code decoding algorithms

Algorithm

Type

Computational

Complexity

Space

Complexity

Time

Complexity

SC N logN N N

BP IN logN N logN I logN

SC-list LN logN LN N + K log2(L)
SC-stack DN logN DN -
SC-soft-out IN logN N logN IN

SC-flip N logN(1 + Pe (SNR)) N IN

MJL KN log 3 N log2(N)
Sphere Cubic - -

I : number of iterations, L: list size, D: stack depth

◮ Successive Cancellation (SC) decoder has the least
computational and space complexity

◮ Majority Logic (MJL) decoder has the least time complexity

◮ We present a solution that combines the two approaches



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = 1
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = 2
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = N

2 + 1
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = N
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = N + 1
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = 3N
2

N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC Decoding Algorithm

O(N logN) computational complexity

O(N) space and time complexity

log2N

N

t = 2N − 2
N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC-MJL Decoding Algorithm
◮ Use length-8 MJL decoders for N ≤ 8 polar codes to reduce

the latency of pure SC decoding from 2N − 2 to 9N
8 − 2

logN − 3

N

8

Length-8 MJL Decoders

N,K

N

2 ,K−

-

N

4 ,K−−

-

N

4 ,K−+

+

N

2 ,K+

+

N

4 ,K+−

-

N

4 ,K++

+



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8
◮ use the Wagner decoder for single-parity-check codes



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8
◮ use the Wagner decoder for single-parity-check codes
◮ decode rate-0 and rate-1 codes trivially



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8
◮ use the Wagner decoder for single-parity-check codes
◮ decode rate-0 and rate-1 codes trivially
◮ use ML decoder for repetition codes



SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8
◮ use the Wagner decoder for single-parity-check codes
◮ decode rate-0 and rate-1 codes trivially
◮ use ML decoder for repetition codes
◮ use MJL decoder for all remaining length-8 codes



Pipelined Decoding

◮ Decoder can take a new CW at each time interval represented
by clock cycles

W++

W+−

W−+

W−−

t=1

1st CW



Pipelined Decoding

◮ Decoder can take a new CW at each time interval represented
by clock cycles

◮ Pipelining increases both hardware efficiency and power
density

W++

W+−

W−+

W−−

t=2

1st CW

2nd CW



Pipelined Decoding

◮ Decoder can take a new CW at each time interval represented
by clock cycles

◮ Pipelining increases both hardware efficiency and power
density

W++

W+−

W−+

W−−

t=3

1st CW

2nd CW

3rd CW



Pipelined Decoding

◮ Decoder can take a new CW at each time interval represented
by clock cycles

◮ Pipelining increases both hardware efficiency and power
density

W++

W+−

W−+

W−−

t=4

1st CW

2nd CW

3rd CW

4th CW



Progressive quantization of LLRs inside the decoder

(1024,854)

(512,361)

5

(256,131)
5

(128,36)5

(128,95)

4

(256,230)

4
(128,103)4

(128,127)

3

(512,493)

4 (256,238)
4

(128,111)4

(128,127)

3

(256,255)

3
(128,127)3

(128,128)

1



SC Performance



SC-MJL Performance



Effect of progressive quantization



Post-synthesis results at 7nm

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL

Quantization (bits) 6 6 5-to-1 5-to-1

Combining used? x x x X

Throughput (Gb/s) 1000

Area (mm2) 10

Area Eff. (Gb/s/mm2) 100

Pow. Den. (W/mm2) 0.19 0.13 0.10 0.04

Energy Eff. (pJ/bit) 1.90 1.28 0.96 0.42

Latency (Clock cycles) 157 127 127 40

Freq. (MHz) 585.5

◮ Two independent pipelined decoders are used each operating at 500 Gb/s



Post-synthesis results at 7nm

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL

Quantization (bits) 6 6 5-to-1 5-to-1

Combining used? x x x X

Throughput (Gb/s) 1000

Area (mm2) 10

Area Eff. (Gb/s/mm2) 100

Pow. Den. (W/mm2) 0.19 0.13 0.10 0.04

Energy Eff. (pJ/bit) 1.90 1.28 0.96 0.42

Latency (Clock cycles) 157 127 127 40

Freq. (MHz) 585.5

◮ Two independent pipelined decoders are used each operating at 500 Gb/s

◮ Memory dominates the area and energy efficiency



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high
◮ MJL decoding for speeding up decisions



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high
◮ MJL decoding for speeding up decisions
◮ Adaptive quantization to reduce memory usage



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high
◮ MJL decoding for speeding up decisions
◮ Adaptive quantization to reduce memory usage
◮ Reducing pipeline depth by combining simple steps



Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high
◮ MJL decoding for speeding up decisions
◮ Adaptive quantization to reduce memory usage
◮ Reducing pipeline depth by combining simple steps

◮ Storage complexity dominates the design



Final remarks

◮ With VLSI technology reaching its limits, FEC designers will
have to learn more about VLSI implementation constraints



Final remarks

◮ With VLSI technology reaching its limits, FEC designers will
have to learn more about VLSI implementation constraints

◮ The situation is reminiscent of the first three decades of
coding when hardware complexity was a binding constraint
but hardware at that time was very simple



Final remarks

◮ With VLSI technology reaching its limits, FEC designers will
have to learn more about VLSI implementation constraints

◮ The situation is reminiscent of the first three decades of
coding when hardware complexity was a binding constraint
but hardware at that time was very simple

◮ The discrepancy between the desired data rates and available
clock frequency may never have been as high as today



Final remarks

◮ With VLSI technology reaching its limits, FEC designers will
have to learn more about VLSI implementation constraints

◮ The situation is reminiscent of the first three decades of
coding when hardware complexity was a binding constraint
but hardware at that time was very simple

◮ The discrepancy between the desired data rates and available
clock frequency may never have been as high as today

◮ We may hope that new types codes will emerge as we
understand VLSI complexity vs FEC performance better



Acknowledgments

◮ This work has been carried out in part by support from EPIC
project, with funding from the European Union’s Horizon 2020
research and innovation programme under grant No. 760150.

◮ We thank Y. Ertuğrul for help with simulations and figures.



Thank you!


	Decoding Algorithms
	Performance
	Conclusions

