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◮ Discuss challenges for Tb/s Forward Error Correction (FEC)
with current VLSI technology

◮ Present a solution based on polar codes developed jointly in a
H2020 project (EPIC)

◮ State some remaining challenges
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◮ Exploit the vast spectrum potential above 90 GHz

◮ Bring wireless systems to optical speeds for new applications
for use in
◮ fronthauling/backhauling
◮ data centers
◮ on/intra chip communications
◮ data kiosks
◮ ...

◮ Relevant standardization already underway (IEEE 802.15.3d,
LiFi)

◮ Other technologies are also needed for Tb/s communications
but FEC is one of the most complex part of the transmission
chain
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◮ Channel coding requirements not extraordinary
◮ Reliability: frame error rate of 10−6 to 10−12 without

retransmissions

◮ Implementation challenges are beyond the state-of-the-art

◮ We will use the targets set by the EPIC Project experts

Technology 7nm

Throughput 1 Tb/s

Clock freq. ≤ 1 GHz

Silicon area ≤ 10 mm2

Pow. Den. ≤ 0.1 W/mm2

Area Eff. ≥ 100 Gb/s/mm2

Energy Eff. ≤ 1 pJ/bit

◮ Goal: Obtain the best coding gain per code family subject to
these constraints
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Feasibility check

◮ Does uncoded transmission meet the targets?

◮ Uncoded transmission (design at 40nm, scaled to 7nm on
paper)

EPIC target Uncoded

Technology (nm) 7 7

Throughput (Tb/s) 1 1

Clock freq. (GHz) ≤ 1 1

Silicon area (mm2) ≤ 10 10

Pow. Den. (W/mm2) ≤ 0.1 2.3× 10−4

Area Eff. (Gb/s/mm2) ≥ 100 100

Energy Eff. (pJ/bit) ≤ 1 2.3× 10−3

◮ There is room for 1000/2.3 = 435 times more complex
decoding operations relative to uncoded

◮ Design space is narrowed significantly but still interesting
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I/O Bottleneck

◮ Decoder input bus width

W =
γ × Q

R × fc

where
◮ γ is the throughput in b/s,
◮ Q is the quantizer precision in bits,
◮ R is the code rate, and
◮ fc is the clock frequency.

◮ For γ = 1 Tb/s, Q = 5 bits, R = 15/16, and fc = 1 GHz, the
bus width is W = 5333 bits.

◮ Better to use small Q and large R

◮ Compress the LLR input as much as possible (syndrome
techniques)
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Memory bottleneck

◮ Decoder storage requirement

M = N × P × Q

where
◮ N is the code block length,
◮ P is the number of codewords being decoded in parallel
◮ Q is the average LLR precision

◮ Use advanced quantization methods to reduce Q

◮ Keep NP small



Polar code decoding algorithms

Algorithm

Type

Computational

Complexity

Space

Complexity

Time

Complexity

SC N logN N N

BP IN logN N logN I logN

SC-list LN logN LN N + K log2(L)
SC-stack DN logN DN -
SC-soft-out IN logN N logN IN

SC-flip N logN(1 + Pe (SNR)) N IN

MJL KN log 3 N log2(N)
Sphere Cubic - -

I : number of iterations, L: list size, D: stack depth

◮ Successive Cancellation (SC) decoder has the least
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Polar code decoding algorithms

Algorithm

Type

Computational

Complexity

Space

Complexity

Time

Complexity

SC N logN N N

BP IN logN N logN I logN

SC-list LN logN LN N + K log2(L)
SC-stack DN logN DN -
SC-soft-out IN logN N logN IN

SC-flip N logN(1 + Pe (SNR)) N IN

MJL KN log 3 N log2(N)
Sphere Cubic - -

I : number of iterations, L: list size, D: stack depth

◮ Successive Cancellation (SC) decoder has the least
computational and space complexity

◮ Majority Logic (MJL) decoder has the least time complexity

◮ We present a solution that combines the two approaches
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SC-MJL Decoding Algorithm
◮ Use length-8 MJL decoders for N ≤ 8 polar codes to reduce

the latency of pure SC decoding from 2N − 2 to 9N
8 − 2

logN − 3
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SC-MJL Decoding Algorithm (Continued)

◮ Use SC decoder to decompose a length-N polar code into two
length-N/2 polar codes until length N = 8 is reached.

◮ At length N = 8
◮ use the Wagner decoder for single-parity-check codes
◮ decode rate-0 and rate-1 codes trivially
◮ use ML decoder for repetition codes
◮ use MJL decoder for all remaining length-8 codes
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Pipelined Decoding

◮ Decoder can take a new CW at each time interval represented
by clock cycles

◮ Pipelining increases both hardware efficiency and power
density
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t=4
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Progressive quantization of LLRs inside the decoder
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Effect of progressive quantization



Post-synthesis results at 7nm
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Quantization (bits) 6 6 5-to-1 5-to-1

Combining used? x x x X

Throughput (Gb/s) 1000

Area (mm2) 10

Area Eff. (Gb/s/mm2) 100

Pow. Den. (W/mm2) 0.19 0.13 0.10 0.04

Energy Eff. (pJ/bit) 1.90 1.28 0.96 0.42

Latency (Clock cycles) 157 127 127 40

Freq. (MHz) 585.5

◮ Two independent pipelined decoders are used each operating at 500 Gb/s



Post-synthesis results at 7nm

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL

Quantization (bits) 6 6 5-to-1 5-to-1

Combining used? x x x X

Throughput (Gb/s) 1000

Area (mm2) 10

Area Eff. (Gb/s/mm2) 100

Pow. Den. (W/mm2) 0.19 0.13 0.10 0.04

Energy Eff. (pJ/bit) 1.90 1.28 0.96 0.42

Latency (Clock cycles) 157 127 127 40

Freq. (MHz) 585.5

◮ Two independent pipelined decoders are used each operating at 500 Gb/s

◮ Memory dominates the area and energy efficiency
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Summary

◮ 1 Tb/s FEC appears feasible with 7nm technology with a 6
dB coding gain

◮ The proposed solution brought together some existing
techniques
◮ SC decoder in initial stages of decoding where parallelism is

high
◮ MJL decoding for speeding up decisions
◮ Adaptive quantization to reduce memory usage
◮ Reducing pipeline depth by combining simple steps

◮ Storage complexity dominates the design
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Final remarks

◮ With VLSI technology reaching its limits, FEC designers will
have to learn more about VLSI implementation constraints

◮ The situation is reminiscent of the first three decades of
coding when hardware complexity was a binding constraint
but hardware at that time was very simple

◮ The discrepancy between the desired data rates and available
clock frequency may never have been as high as today

◮ We may hope that new types codes will emerge as we
understand VLSI complexity vs FEC performance better
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