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1. Introduction.

1.1. The problem considered in this paper may be stated as follows.
Suppose that &> and w' are two positive numbers whose ratio 0 = w/o>'

is irrational; and denote by A the triangle whose sides are the coordinate
axes and the line

(1.11) u>x+oo'y = >7>0,

and by N(rj) the number of lattice-points* which lie inside A. How
accurate an approximation can we find for N(rj) when y is large ? And
how does the accuracy of the approximation depend upon the arithmetic
character of 6? We call this problem Problem A.

Such "lattice-point" problems are, in general, very difficult. It
is enough to recall the two most famous of them, the problem of the
circle (the problem of Gauss and Sierpinski), and the problem of tJie rect-
angular hyperbola (Dirichlet's divisor problem), both of which have been
the subject of numerous researches during the last ten years. The
particular problem which we consider here has not, so far as we know,
been stated quite in this form before. It is however easily brought into
connection with another problem which has attracted a certain amount of
attention, and which has been considered, from varying points of view, by
Lerch,t by Weyl,+ and by ourselves. § This problem, which we shall call

* A lattice-point (Gitterpunkt) is a point whose coordinates x and y are both integral.
t M. Lerch, VInterme'diaire cles Mathematiciens, Vol. 11 (1904), pp. 145-146 (Question 1547).
% H. Weyl, " Uber die Gleichverteilung von Zahlen mod. Eins", Math, Annalen,

Vol. 77 (1916), pp. 313-352.
§ G. H. Hardy and J. E. Littlewood, " Some problems of Diophantine approximation",

Proceedings of the fifth international congress of matliematicians, Cambridge, 1912, Vol 1,
pp. 223-229.
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Problem Bt is as follows. Suppose that, as usual, [x\ denotes the integral
part of x, and that

(1.12) \x\ =x-[x-]-l

Then what is the most that can be said as to the order of magnitude of

(1.13) s(0,n) = 2 \vd\
v-l

when n is large'?

1.2. We begin, in § 2, by proving the formula which establishes the
connection between Problems A and B, and shows that the first problem
is a generalised and more symmetrical form of the second. We prove in
fact that

(1. 21) NM =

where S(n) is a sum very similar to the sum 1.13.
It is trivial that

(1.211)

the area of the triangle, together with an error of the order of the peri-
meter. The second and third terms of (1 . 21) occur naturally when we
consider, instead of A, the similar and similarly situated triangle whose
vertex is at (1, 1) instead of the origin ; for the area of this triangle is

q2 _ Ji >/ • 1
2&)ft)' 2a> 2(«' "*" 2 '

Bat no closer approximation than (1.211) is in any way trivial; and,
when 6 is rational, S(i) is effectively of order tj, so that a universal
formula, professing to be more precise than (1.211), would necessarily
be false.

In § 3 we deduce transformation formulae for IV and S, which are
generalisations of a formula given without proof by Lerch, and which
enable us to study these sums by means of the expression of 0 as a simple
continued fraction. In § 4 we prove (a) that

(1 . 22) S(v) = o{r,)

for any irrational 6, and (6) that (1.22) is the most that is true for every
such irrational. Incidentally we obtain the corresponding results con-
cerning Problem B : the first of them at any rate is in bhis case familiar.
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[n § 5 we consider more closely cases in which the rate of increase of the
quotients in the continued fraction is comparatively slow, and in particular
the case in which they are bounded; and we prove that in this case

(1 • 23) S(,) = O(log v),

and that this result too is a best possible result of its kind. There are
naturally analogous results for Problem B; that corresponding to (1.23)
was stated as a new theorem in our communication to the Cambridge
congress, but had, as was pointed out to us by Prof. Landau, been given
already by Lerch.

Up to this point our argument is entirely elementary, and both methods
and results are of a kind to be found in our previous papers on Diophantine
approximation or in those of other writers. We have therefore aimed at
the maximum of compression and have omitted a good deal of elementary
algebraical calculation. The concluding section (§ 6) is more novel. In
it we prove that if 6 is algebraic then

(1. 24) 8b) = OOf),

where a < 1. This result is unlike any which we have been able to prove
before, and is obtained by entirely different methods, based on the proper-
ties of the analytic function

1
(1. 25) fas, a, to, w) = I j-r-—-p—-.

This function will be recognised as a degenerate form of the " Double
Zeta-function " introduced into analysis by Dr. Barnes.*

2. Reduction of Problem A.

2 . 1 . We write

where 0</<l, 0 </'<!.

* E. W. Barnes, " A memoir on the Double-Gamma-function ", Phil. Trans. Roy. Soc,
(A), Vol. 196 (1901), pp. 265-387 ; see in particular pp. 314-349. For a study of some of the
properties of the degenerate function (for which the ratio u/w' is real) see G. H. Hardy, " On
double Fourier series, and in particular those which represent the double Zeta-function with
real and incommensurable parameters ", Quarterly Journal, Vol. 37 (190C), pp. 53-79.

SER. 2. VOL. 20. NO. 1378. C
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Suppose first that there is no lattice-point on the line (1. 11), or .17>'
of the figure. Then the number of lattice-points inside OAB is

Now [—x] = — [x]—l-f-f.,., where e, is 1 or 0 according as x is or is not
an integer; and fiS—f cannot be an integer, since then »;—/j.w would be
an integral multiple of «' and there would be a lattice-point on .17*. Thus

(2 . 13) [j'-rf] = - M - / ' ] - l = -Ou0-/')+ [fxO-fl -I

Substituting into (2. 12), and using (2.11), we obtain, after a little, re-
duction

(2.14) L
law MO Zw

where

(2.14D

and

(2.142)

Since <j> is bounded, the problem is reduced, substantially, to the dis-
cussion of Sin)-

The preceding argument requires a trifling modification when there is
a lattice-point on.-ijB; there cannot be more than one, since 6 is irra-
tional. In this case the sum (2,12) gives Nin)-{-l instead of N(nl
There is one value of /A for which /J.0—f is integral, and for this /* the
— £ in (2.18) is changed into I. The net result is to leave the final
formnlfp. unchanged.

3. The Transformation Formula.

3 . 1 . In order to obtain a formula for the transformation of N(t^ or of
S'(»;), we employ the familiar device of adding together the number of
lattice-points of the triangles OAB, O'A'B' of the figure.

If we take new axes O'X, O'Y, as shown in the figure, it is plain that
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and the equation of AB, referred to the new axes, is

(3.11) co'X+cY = , ,+« ( l - / )+» ' ( l - / ' ) = H,

say. Kepeating the arguments of § 2, we find, for the number N'(H) of

A'
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lattice-points of O'A'B',

«3.12) 1

where

i3.121)

and

tf. 122)

I? and F' being defined by

(3.123) ^ . = r ^

3.2. We suppose now that o> < <a\ 6 < 1. A glance at the figure
shows that

S'(H) =
/ / /«•

Substituting for H in terms of »/, frcm (3 .11), we find at once that

(3.21) F' = 6(l-f).

The same argument shows that

[3.22) = o -*>
c 2
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where p is an integer; it happens that the value of p is not material to
the argument.

It is also clear from the figure that

(3 . 23) Nh)+N'(H) = [-2-1 [-3-1-e,
L w J Lro J

where e is zero unless there is a lattice point on AB, and then unity.
Substituting for N(n) and N'(H) from (2.14) and (3 .12), using (2 . 11),
(3 .11), and (3 .21), and reducing, we obtain, finally,

l 3 • 24)

3 . 3. It is important, in view of Problem 6, to show that this formula
includes a formula given by Lerch.* Suppose then in particular that
</ = 1, w = 6 < 1, and write

(3.91) * = IU0S, « ' = l { ~ .

where m is the integral part of nO.
Starting with an arbitrary positive integral n, we write nd = M+S.

where M is an integer and 0 < S < 1, and take

17 = Af+1 =

Then / ' = 0, F = jf (mod 1),

by (2.11) and (3.22); and there is no lattice point on AB, so that e = 0.
Suppose now that q is a positive integer and

m , »; . 1 — 8 i i J- r 1 — 8Then -j = n+—j- = n+q+f, / = -g ?•

Also / / = »/+1 + 0(1—/) lies between M+2 and M+S. Hence

* M. Lerch, he. cit.
t It is easy to see that (1 —S)/0 cannot be integral.
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and

Also

(3.33) .S = 2 ><9f = 2 U0f = s+ 2 \(n+r)6\ = .s+S0,

say. And (n-\-l)d, ..., (n+q)6 have all the integral part ,¥, since
. Hence

(8.84) So = 2 (n$+r6—M—£) = 2

Substituting from (3.32), (3.821), (3.83), and (8.34) into (8.24), and
reducing, it will be found that

(.3.35) ,+,' = ij_^p?),

which is the formula of Lerch.

4. Results concerning an arbitrary irrational 6.

4 . 1 . THEOREM Al.— If 0 = co/w' is irrational, then

We may clearly suppose that 6 < 1. Suppose that

1 1 ) 0 =

(4.12) ^ =

We have, from (3.24)r

(4.13) S+S' = 0(1/0),

the constant of the 0 being independent of both 17 and
We write n — <o£, so that

and we write / , and MI in S' instead of F ' and v. Then

S' =W2 * £ - / / [ = 0(1)+ 2
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say ; so that

(4. 14) .<? = 0(1/6)-Sv

Similarly, we have

where S.2, S8. ... are sums of the types

82 = 2 {/*20g—/3[, S3 = 2 |A*3^8—/a!

.so that S2 = 0(^0,), S3 =

It follows that

(4 .151) 8 = 0 ( y

and

(J . 152) S = 0 ( j

We shall require both of these equations.

4 .2 , We choose v so that

(4 . -21) # 0 , ... e._,0i. < 1 < ^00,... 04,_,.

It may be verified at once*- that 0,0,+i < \ for every s. Hence on the
one hand

(4.22) •00,...-0,._l= 0(2-4-).

and on the other

From (4 .151), (4 . 22), and (4 . 28), we obtain

(4.24) ,S=Owk2-

since i/ tends to infinity with L:; and the theorem follows from (2.14) and
(4.24).

• See our paper "Some problems of Diophantine approximation ( I I ) " [Acta MaOie-
•matica, Vol. 37 (1914), pp. 193-238 (p. 212)j.
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4 . 3. To Theorem A l corresponds, for Problem B, the well known
theorem :

THEOREM B l . — / / 6 is irrational, then

s(6,n) = 1 [ud\ = o(«).

The proof of this theorem is included in that of Theorem A l . We
have only to take »/ = W , where k is an integor, so that / ' = 0, and to
write (; = >//« = k/0, n = [£].

4 . 4. THEOREM A2.—.// ^ ( I J ) is any function of >; which tends steadily
to infinity with >/, then there is an irrational 0 such tiiat each of the-
inequalities

2,(0 zw

ijs satisfied for a sequence of indefinitely increasing values of >;.

Thus Theorem A l is the best possible theorem of its kind.
Making the transformations indicated in 4 . 3, we see at once that it

is enough to prove

THEOREM B2.—If yfr(n) is any function of n which tends steadily to
infinity with n, then there is an irrational 6 such that each of the in-
equalities

s(M>>-7TTx, s(6,n)<-

is satisfied fur an infinity of values of n.

To prove this we use Lerch's formula (3 . 35). Writing

{4 . 41) «! = [n&] = nd—8, n2 = n^—olt ..., nr+\ = nr0r—8r,

(4 .42 ) ^ = H_4^|r«f

we have

{4 . 48) s(6, n) = <f>0—s (jj-, % ) = <f>0—

We suppose ar+\ even, and exceedingly large in comparison with the pre-
ceding quotients ax, a2, . . . , .ar, and take nr = i«r+i. Then ?iv+1 = 0 and
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<Ji is practically %, so that £<5,.(1—#,.) is certainly .greater than #. Having
fixed n(, we can determine «,_i, n,. 2, .-•,ni, nfrom the equations (4.41); and

6 fy0l 66i... ur_i 661 ... 0 r _ i

It is then plain that, if a,+i is sufficiently large in comparison with the
preceding partial quotients, s(6, n) will have the sign of (—IK, and

And, by choosing a 6 for which sufficiently violent increments in the
order of magnitude of the quotients occur at an infinity of stages in the
continued fraction, we can secure the truth of (4 . 41) for an infinity of
values of n.

5. Results concerning special classes of irrationals.

5 . 1 . THEOREM A3.—If the quotients an in the continued fraction for
6 = w/w' are bounded, then

-, ~ f - -T", + O(log v).
row 2ro 2co

THEOREM B3.— Under the same condition,

s(6,n) = O(\ogn).

To prove Theorem A3, we return to the analysis of 4 . 1 and 4. 2, but
use (4.152) instead of (4.151). In th'is case we have plainly

S i n c e

we have v — O(log f) = O(log tj); and the theorem is proved. Theorem B3
follows a fortiori: this is the theorem which, as we explained in 1.2, was
claimed as a new theorem in our communication to the Cambridge con-
gress, but is really due to Lerch.

It will easily be verified that, if we assume
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we obtain an error term of the order

if we assume atl = O(ep"), where p lies below a certain limit, we obtain

S = Oiff) (<r < 1).*

As so little is known concerning the order of magnitude of the quotients
in the continued fractions which express irrationals of particular types, it
is hardly worth while to go into further detail.

5.2. THEOREM A4. — There are values of 0 = «/<o', with bounded
quotients, such that each of the inequalities

where K is a positive constant, is satisfied for a sequence of indefinitely
increasing values of t\.

THEOREM B4.—There are values of 6, with bounded quotients, such that
each of the inequalities

s(6, n) > K log n, s(d, n) < — K log n

is satisfied jor an infinity: of values of n.

Thus Theorems A3 and B3 are also best possible theorems of
their kind. To prove this, it is plainly enough to prove Theorem B4:
and this we shall do by considering the simplest irrational of all, viz.

2 1 + 1 + 1+...*

We write ~a = ^ 2 — '

and take the convergents to 6 to be

PQ 0 pj 1 p% 1

Then it is easily verified that

,/,=s i _ ( O 5 + ] - f ( - l

Compare p. 214 of our mezaoir in the Acta Matheniatica referred to aboTe (p. 22).
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5 . 8. We first take n = q» in the formula (8 . 31). We find without
difficulty that r Q-, . » a r m zu+i

if s is even, and [g,0] = g.,-i — 1. (J = 1—• 0*+I,

if s is odd ; and that in either case

(5.81) <r,= 2 [vB\

satisfies the equation

(5 .32) o-.+er,., = J ( ( P ^ + l - i r 1 ^ * ) .

Using this lecurrence equation to express o-.« in terms of

we find, after reduction, that

(5.33) <r, = |^_ i ( . i r «f l . i> + (- . i ,« + i - ^ .

Suppose now that

(5 . 34) s(d, n) = i -I rd: (9. < n < q,+1).
1

We can express n in one and only one way in the form

where s, slt s2, ... are descending integers differing by at least 2: and

Now <7?# differs from an integer by less than does any JUL$. Hence

and {(

s(0, w) =
We now write

and so on, and repeat the argument. We thus obtain

(5. 35) «(0,n) = o-s+cr,lH-o-s.J-f-...+o-4.i
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5 . 4. If in (5 .35) we substitute the values of the <r's given by (5 . 33),
the first two terms of (5 .33) will plainly give a contribution bounded for
all values of s, so that

(5.41)

Agaiii
k. i /.

(5.42) & = 2?4, = 4? 2
r~\ ' V '> i-\

and the sum of the second terms is numerically less than k, and a fortiori
than s. The sum of the contributions of all such terms to (5 . 35) is
therefore less in absolute value than

30*+1+Si0*I + l + ... = 0(1).

These terms, then, may be disregarded. Making this simplification, and
substituting from (5.41) and (5 . 42) into (5 . 35), we obtain, finally,

(5 t 43)

—*)

5.5. This formula enables us to study the behaviour of s(0,-n) for
different forms of n, and in particular to. prove our theorem. Let us take,
for example,

s = 4£+4 ; «, = 4A-, s.2 = 4A—4, ..., % = 4.

Then the right-hand side of (5 .43) becomes

1 / d4 \ 1
= ^ ( ^ ^ - 0 ) = - ^ ^ 0 :where

and s(0, ?0 is negative and greater than a constant multiple of s. Simi-
larly, if we were to take

a = 4fc + 8, st = 4fc — 1, ..., »/.- = 3,
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we should find s (9,n) to be positive and greater than a constant multiple
of s. Since s is greater than a constant multiple of log n, this com-
pletes the proof of Theorems A4 and B4.

5.6. We should perhaps, before passing to more transcendental in-
vestigations, add a word concerning the case, so far excluded, of a rational
6. It is easy to see that, when 6 is rational, no such results as we have
proved in the irrational case are true: s{6, n) is effectively of order n, and
the oscillatory part of N(t]) of order >/. Thus, to take a simple case, the
series 2 j §^) is

and s(% n) — — £w.

In general, for a fixed rational 0 = pjq, we have s(0, n) — Aqn. where
Aq-+0 when q -»> oo.

H. Transcendental methods : results true for all algebraical values of 6.

6 . 1 . The substance of our concluding section lies somewhat deeper.
Our goal is to prove

THEOREM A5.—If 6 = co/w' is an algebraic irrational, then

where u < 1.

THEOREM B5.— Under the same conditions

s(6, )i) = O(w') (a < 1).

We require some preliminary lemmas concerning the function

(6.11) £3(s, a, to, to') = ^ r

w, ,i=o (a+rnw+nw')''

where a, w, and to' are positive, and .s = o--|-^. This function is a de-
generate form of the double Zeta-function of Dr. E. W. Barnes. Barnes
considers only the case in which (as in the theory of elliptic functions) the
ratio* 0 = to/w' is complex. The series (6.11) defines the function in the
first instance for <r > 2.

6 . 21. LEMMA a.—The function £2(s, a, to, w')is an analytic function
of s, regular all over the plane except for simple poles at the points s =• 2
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and s = 1, where it behaves like

w-t-w —:
10 S — 2 ' s — 1

respectively.

This is proved by Barnes when 0 is complex, and his proof, depending
on the formula

(6.211) j , a, (v, to') =
2ir

is equally applicable in the case considered here. We should observe that
(-u)s- J

 = e('-i)iog(-i<)> w h e r e log(-«) has its principal value, that the
contour of integration is the same as in the well-known Riemann-Hankel
formulae for the ordinary Gamma and Zeta functions, and that the formula
is valid for all values of s except positive integral values.

6 . 22. LEMMA /3.—Suppose that 0 < a < &>-fw\ and that 0 = <o/w'
its an algebraic irrational. Then there is a K such that

(6 . 221) (s, a, q>, (./) _ sin ;

1-1 sin ma

sin

to/"

sin 17
/br o- < — A'.

To prove this formula we start from the integral (6.211) and integrate

round the contour shown in the figure. We suppose, as plainly we may,
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that the horizontal lines (3) pass at a distance greater than a constant <?
from any pole of the subject of integration, and that the loop (1) passes
between the origin and the poles + 27ri/w, + 27ri/w' nearest the origin.
This being so, it is easy to see that the contributions of the rectilinear
parts of the contour tend to zero when the sides of the rectangle move
away to infinity, and that

£,= T(l-s)\im2B,

where R is a residue of the integrand. A simple calculation shows that
the residues yield the two series required. If 6 = to/w' is algebraic, we
have

sin
mw'-rr

> vi' sin >

where c is a constant depending on the degree of the algebraic equation
which defines 6. It follows that the two series of the lemma are abso-
lutely convergent if <r is negative and sufficiently large.* We shall
suppose in what follows that the series are absolutely convergent for
<r < — K. Thd formula (6.221) may of course hold in a wider region
than this.

6 . 23. LEMMA y.—If \ t \ -* <x> then

£2(s, a, w, w') = 0(e(t),

for every positive e, and uniformly throughout any finite i?iterval of
values of <x.

Suppose that <rx ^ <r ^ or.2. We may suppose the contour of integra-
tion in (6 .211) deformed in such a manner that

at every point of it, and | 0 | = ihr+Je

at all distant points. We have then

| (- /0s-1 \<A\ u I'1 e*'= < A\u\A

where A is a number depending on <TX and <r2,

* It is hardly necessary to give fuller details of the proof, as the substance of the lommu
is Contained ift the paper of Hardy referred to in the footnote to p: 17. ..



1920.] SOME PROBLEMS OF DIOPHANTINK APPROXIMATION. 3]

6. 24. Lemma y is required only in order to prove a somewhat deeper
lemma, viz.:

LEMMA O.*—The function £o(s, a, w, w') is of finite order in any half-
plane rr > <r0, and its ix-function m{rr) satisfies the relations

(»i. 241) fi(a) = O (er>2),

(6.242) ^)<

(6.248) u(o-)<^-o- ( c r< -A ' ) .

Of these relations, (6.241) is obvious, since the series (6.11) is
absolutely convergent for < r > 2 ; and (6.243) follows from (6.221),
since we have

(27r)v"1 F ( l —,s)sin -.

= 0{\t\k-~')

uniformly in m, and, of course, a similar result in which « and to' are
interchanged. Finally, (6. 242) follows from (6.241). (6.243), and the
well-known theorem of Lindelof. t Lemma y is used only to show
that the conditions of Lindelof's theorem are satisfied.

6 . 25. Our last lemma is of a different character. We write

(6 . 251) a-\-?n(0-\-noo' = lp,

the numbers lp (no two of which are equal, since 6 is irrational) being
arranged in order of magnitude. We suppose that £ is not equal to any

LBM.MA €. — Suppose that c > 2, T > 1 , and ^' = y/(l,,lq+i)- Then
there exists a number H, independent of T and £, such that

* For explanations concerning the "/x-function " of a function/(s), defined initially by
;i Dirichlet's series, see G. H. Hardy and M. Riesz, "The general theory of Dirichlet's
scries,'' Cambridge Mathematical Tracts, no. 18, 1915, pp. 14-18.

| Theorem 14 of the tract referred to above.
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We have

2 * J c _ r r s ,, 2x* J e _ i T V /,, / S

the right-hand side of (6.252) may be written in the form

j, v&in jc-i* 2in Jc.+iT/ \ lp I s v

say. Now*

Hence

(6. 258)
i-iT S

If we write lp = <?~A", i = ep, the series becomes

(6.254) ^T^T-r

and p = ^(X,+X,/+i).

Now Bohr,t generalising a result of Landau,! has shown that the series
(6 . 254) is bounded, provided only that

(C) there is a number I, positive or zero, such that

I

>\m + 1 ~~~ An

for every positive S;

and it is easy to verify that the condition (C) is satisfied by our series
2j~s = 2e~sV For

lp+i—lp = a-\-m'(o-{-?i'u)—a—mw—nw' = h(a-\-kw' = uf (k-\-h6),

say, and so, since 6 is algebraic and lp+i < lp+H,

Hi;";

* Landau, Handbuch, § 86.
+ H. Bohr, " Einige Bemerkungen zum Konvergenzproblem der DirichletBoher Reihen

Rendiconti del Circolo MatemaPico di Palermo, Vol. 37 (1914), pp. 1-16.
X Handbuch, § 235.
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H, wherever it occurs, denoting a positive constant, not of coarse the
same at different occurrences. Thus Bohr's condition is satisfied, and
Lemma e follows from (6 .258).

6 .3 . "We can now prove our theorems. We take T = &, where
0 < y < 2. We choose arbitrary positive numbers 8 and e, and take
c = 2+<s.

We then apply Cauchy's theorem to the integral

taken round the rectangle

(c-iT, c+iT, -K+iT, -K-iT),

the sides of which, taken in order, we denote by (1), (2), (3), and (4).
Using Lemma a, we obtain

+f [
(2) J(3) J(4)

Now

(6 .32) f =
Jo)

by Lemma e ; and

(6.33) J 3 = o (tK \T
 T 111 *-*+« at) = o ( ^ r ^ ) = o(tKHK+i)y+t)>

by Lemma S. It remains to estimate the contributions of the horizontal
sides; and it is clear, from Lemma S, that the contribution of either is of
the form 0 ( M a x »>-'+•) = 0(Max &),

, . f ( ^ + g ) ( 2 o ) , l , .where n = o-+ - 2 j ! ' 1 y + e (—

It is clear that ^ cannot exceed the greater of its values for <r = — K
and <r = c, viz.

The possible error-term arising from the first of these values may be
absorbed into that already present in (6.33). That corresponding to

SER. 2. VOL. 20. KO. 1379. D
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the second, as well as that in (6.82), may be absorbed in a single term
•O(£2+s~y+t). We have therefore, on collecting our results,

•(6.84) ^ w + ^ 2 a

have still y at our disposal. Taking

$)y =

2+S+K
we obtain 7 =

(which is, us we supposed, positive and less than 2), and

a + < - y =

This is equal to ( 1 + i f ) / ( § + # ) < 1 when 6 = 0, and is therefore less
than unity if S is sufficiently small. We have therefore

(6-35) £i*£22

where a < 1. In order to obtain Theorem AS, it is only necessary to
attribute to a the particular value w+w' and to replace (- by rj, since Wig)
then becomes N{TJ).

Our argument naturally yields a definite value for a. But it becomes
clear, when we consider the particular case of a quadratic 6, that the
value so obtained is, in the light of Theorem A2, not the best value possible.
We are therefore .content to show that a is in any case less than unity.

Additional Note {March 13th, 1921).

We have developed the transcendental method of § 6 considerably
since this paper was first communicated to the Society.

Suppose that k ^ 0 and

Then Wd£) ~ — F* £ (s) r<*+pr(*) c.,+^s

if c > 2. We transform this equation by (1) moving back the path of
integration to the line o- = —q < 0, with the appropriate corrections for the
residues, (2) substituting for fa(s) from (6.221), and (3) integrating term
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by term. This process can be justified if 6 = w/w' is algebraic and k and
q are chosen appropriately, and we obtain an expression for WkH) in the
form of an absolutely convergent series.

We then make use of a lemma which is of some interest in itself,
viz.: if there are constants h^l and H > 0 such that

(1) nh | sin nQir | > H

for all positive integral values of n> then the series

1
w nu+e | sin ndir \

is convergent for every positive e.

Using this lemma and our series for Wk(£), we are able to show that
*/ (1) is true for all positive integral values of n, then

2

(2) N(v) = 2

where a = (h—T)/h, for every positive e. This is included in Theorem A3
if h = 1; but is in all other cases considerably more precise than any-
thing proved in the paper.

In (2) the index a = (h—l)/h of the power of y is the best possible
one. For we can also show that if

(3) nh\sinneir\<H

for an infinity of values of n, then each of the inequalities

where A is a positive constant depending on h and H, is true for a
sequence of indefinitely increasing values of r\.

We are further able to obtain an "explicit formula " for N{y); viz.

2 coco'

2u7T , ,.
COS (»7 — £ft>) COS —

O) i 00
27T ^ I • MW 7T . l/ft)7T

1 u sin - — v sin —7-

D 2
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Here 6 = w/co' is irrational and algebraic, and the series is to be inter-
preted as meaning .. y

when B -> oo in an appropriate manner.
The most difficult of the remaining problems is that of determining

whether there is any 9 for which the error-term in N(tj). or the sum
s(6, n) is hounded. The answer is in the negative. We can prove, in
fact, that there exists an A>0 such that, for every irrational 6,

\s(d, 7i)\> Alogn

for an infinity of values of n. Further, given K, there exists a
B = B(K) > 0 such that, for every 6 for which an < A', the inequalities

s(d, n) > B log n, s(0, ?i)< — B log n,

are satisfied each for an infinity of values of n.
The corresponding Cesaro means behave rather differently. It is

possible to find 0's for which the first Cesaro mean <r(0, n) of s{6, n) is
bounded, and others for which a(6, n)/log n tends to a limit other than
zero.

We may take this opportunity of correcting a missfcatement in our
communication to the Cambridge Congress referred to on p. 15. It was
stated there that „

for every irrational 0. This is untrue; bat the equation holds for very
general classes of values of 6, and in particular for any 6 whose partial
quotients are bounded.


