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1. This paper falls into two distinct portions, Parts I-IV and
Parts V-VI. The object of the first four parts is to develop some of
the practical consequences of the law of ln-th reciprocity proved in my
two papers entitled " An Extension of Eisenstein's Law of Reciprocity."*
The notation used in the first four parts is as follows.

p = mlH-\-l is a rational prime number.
£ is a primitive Zn-th root of 1.
The field of complex numbers defined by £ is called k{£).
This paper is confined to the cases ln = 23, 24, and 32.
Rational numbers are denoted by italic letters, and complex numbers

of the field &(£) by Greek letters.
7T is a prime factor of p in the field &(£).
q is a rational prime, different from I and p.
All congruences are to mod q, unless the contrary is stated.
E is the exponent to which q belongs, mod ln, so that

qE = 1 (mod ln).

Q is written for {qE—l)l~n.

• Proc. London Math. Soc., Ser. 2, Vol. 6, First Paper, p. 16 ; Second Paper, p. 265.
These are hereafter cited as " first paper " and "second paper."
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F is denned by the following equations :—

when I = 2, EF = Vl~2;

when I =£ 2, EF — V"-\l—V).

\ffg, where g = 1, 2, ..., Z'1—2, denotes the reciprocal factors of p, so
called because of their property

In my first and second papers I have shewn how these reciprocal
factors may be expressed in terms of TT and its conjugates.

We know from Format's theorem that

q1'-' ~ 1 (mod TT),

and it follows from this that q"1, that is, q{l'~l)r'\ is congruent, mod IT,
to some power of £. That power of £ is denoted by !<?/7r|r or \q\-n\,
the suffix I'1 being omitted when there can be no doubt which I'1 is meant.
In Parts I and II, [gltr] means \qlir\s; i n Part III it means !gr/7r}16;
and in Part IV it means \q/ir\y.

When \qlir\ = 1, then r . , .
'*' ' ^ = x' (mod/));

and, conversely, Itf/Trf = 1 is the condition that q is the residue of the
Z'l-th power of some number, mod p.

If v is composite, and its prime factors are TT, ir\ ..., then \a\v\ is
denned to mean j a\ir \ \ a\-Kf \ —

2. The general results proved in my first and second papers, which
will be used in this paper, are as follows:—

{q\-!T \ 'l = fa fa . . . \/rfy_i (mod q) * ;

the law of reciprocity, namely,

where -w is " primary" (in the sense defined in my papers) and, when
l = % q'\Q taken with such sign as to make

q = 1 (mod4);t

* First paper, § 7 ; and second paper, § 19.
t First paper, § 19 ; second paper, § 23.
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when I = 2, and q =£ — 1 (mod 2n),

\-n-lq} = n-nir-w{'Qr-u (mod q) (u = 0, 1, ..., F-l),

wherein /• denotes 5 or some# power of 5 chosen to satisfy

q = ± rF (mod 2W).

/•_„ denotes the least positive residue of r~w (mod 2n),

7rn denotes sV , that is, 7r(£r"),

9 being the substitution which changes £ into £r, and ir* denotes sw<7r,
that is, ir(£-'"),

t being the substitution which changes £ into f"1 ;*
and lastly, when I is odd,

{ir/q} = ILTTI*-" (mod?) (u = 0, 1, ..., F-l),

wherein r is a primitive root, mod l'\ chosen to satisfy

q =rF (mod ln),

and TTU denotes s'V, that is, 7r(^r"),
s being the substitution which changes £ into £r.J

3. In the first four parts of this paper, it is shewn how the general
results mentioned in the previous paragraph may be simplified in the
cases I'1 = 8, 16, and 9, and how, for any given value of q, the value of
•|<7/7rJ- may be calculated; and also the simplest expressions for {q/ir] are
ascertained for certain small values of q. Some of these latter results
have been enunciated by Bickmore§ and by Lt.-Col. A. Cunningham, jj but
it is believed that no proofs of them have hitherto been published.

In the paper just cited, Cunningham has also stated some other
expressions for {ql"^]^ which he has discovered by induction frorn
numerical results. In Parts V and VI the proofs of these expressions are
obtained. I niay refer to the first section of Part V for a general account
of the subject-matter of Parts V and VI. In the theory of numbers
important theorems have often (indeed, usually) been discovered by means
of numerical instances, or, one may say, experimentally, and have after-
wards been rigidly proved ; while their existence would never have been
suspected if the discoverer had not marshalled his columns of figures and
observed the general law running through chem. Cunningham's new
expressions for {q/Tr}H form a remarkable instance of this tendency.

* Second paper, § 19 ; and below, § 15.
X First paper, §5.
§ "On the Numerical Factors of a"—1," Messenger of Math., Vol. xxvi, p. 1.
|| "On 8-vic, 16-ic, &c. Residuacity," ante, p. 1 of this volume.
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PART I.

Criteria for the Value of q^v-V (mod p) in Terms of the Prime Factors
of p in the Field of 8-th Boots of 1 or of the Reciprocal Factors
of p in that Field.

4. It is convenient to begin with Gauss's law of quartic reciprocity for
numbers in the field of 4-th roots of 1; this is included as a particular
case in my second paper, Part II, and I shall deduce it from the general
formula of §§19 and 28.

In the field of 4-th roots of 1, the primary prime factors of p are

ir = a-\-bi and TT+ = a—bi,

where b is even, and p = TTTT* = a2+62.

When q = 4fc+l, Q = i ( ? - l ) = k,

and SO | q/ir \ 4 = {-rr/q } 4 = (TTTT^ ^f.

And, when q = 4fc-1, Q = i (? 2 - l ) = k(q-l),

and TT'1 = {a+bt)'1 = a+bi1 = irf,
and then -J — g / i r} 4 = i TT/Q' 14 = ^

if (g/p) , \ql

and then { ~$/7ril4 = (7r7r+ ~

And if i? = 8m+l , { — qlir\i = |

Assuming that (g/p) = 1 and j9 = 8??i+l, we see that the two cases
q = 4&-fl and 4& — 1 take the same form,

5. The criterion for jg/7r}4 = 1 is now easily obtained for any given
value of q. Let

where X and X' are rational functions of a and 6 ; then

(a-bi)k = X-tX' and ]g/?r[4 = 1

if, and only if, X' =. 0.

This is a congruence of degree k, and its solution gives as the criteria
results of some of the forms

a = 0, 6 = 0, a = ±xb.
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For all values of k, b = 0 is one of the roots, and, when k is even,
a = 0 is also a root. Then p = a2-\-b2 = b2, a2, or (l+x2)b2 respec-
tively. Cunningham has calculated these criteria for all values of q up
to 50.*

6. We now take the field of 8-th roots of 1; the notation to be used
will be that of my second paper, § 29, namely,

p = c2+Ztf = (c+dw)(c-dw),
s is here the substitution (£: £"), and t is (£ : £~1).

The values of the reciprocal factors in this field are given in my second
paper, § 29. whence we obtain

AISO fa+Sy = V'z-

It should be remembered that the numbers a+bi and c-\-dw are defined
in terms of ir, which is a given primary prime factor of p in the field.
It follows from this definition that a = c (mod 4 ) ; a and c are therefore
not necessarily positive, but possess such sign as to satisfy this congru-
ence. In order to fix the sign, I take

a = c = 1 (mod 4).

Then, using the formula of the second paper, § 19,

{qlTr}f> = \f,1...\Js(I-.1,

and operating on it with st when q = 3 (mod 8), with s when q = 5 (mod 8),
and with t when q = 7 (mod 8), we obtain

when g = l (mod 8), [qjir] =p^-

when q = S (mod 8), {-q/ir} =p^-

when q = 5 (mod 8), {ql-rr} =p^q-

when q = l (mod 8), { -q/ir] = ^ -

* Unpublished.
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In the particular cases of {g/ir} = ± 1, the signs of t and a> in these
congruences are immaterial, for the substitutions s and t can be applied
without altering {qlTr\.

Assuming that \qlir) = ± 1, we have, from § 5, X! EE 0, and so

Writing k' for the index of c+dw, viz., %(q—1) or %(q-\-l), we have

y = Y+Y'w,

where Y and Y' are functions of c and d.
Then, since \qlir} = + l, Y' = 0, which gives as one root d = 0 ;

and, when k' is even, c = 0 is another root; and the other roots are of
t h e f o r m c = ±yd,

Then p = c2+2<? = ca, 2^ , (2+2/5V respectively.

Finally, ) + g M = ^ 3 T ,

where j is the index of p in the above congruences ; and this is readily
simplified for any given value of q, taking in turn the different roots of
X' = 0 and T = 0.

I give the full results for q = 3 and 5, and the values of [qjir]^
supposing that {ql'rr}^ = 1, for q = 7, 11, and 18.

7. T&e case <? = 3. Since p = a2+b2 = c'2-f 2d?, when p = l, either
a or b = 0, and d = 0 ; when _p = — 1, a = ± 6, and c = 0. We then
obtain, from the results of the previous paragraph:—

(i) When p = 1 and b = 0, |3/TT[ = (— l)mac,

(ii) When y = 1 and a = 0, {3/TT[ = (—l)'"6ct,

(iii) When p = - 1 and a = — b, )3/TT} = (-l)wadf,

(iv) When ^ = - 1 and a = 6, {3/TT} = (-l)mad£a.

The first of these results was discovered by Bickmore* by means of
numerical induction, and it can be easily identified with Cunningham's
criterion.! For, if his a = 0 (mod 2), my a = 1 (mod 8), and if his
a = 1 (mod 2), my a = — 1 (mod 8); that is, a = (—l)a (mod 3), and
similarly c = (—1)Y (mod 3); and so in case (i), when |3/7r}4 = 1,

j S M =(_l)»+*+y,

which is Cunningham's criterion.

* Messenger of Math., Vol. xxvi, p. 15.
+ Ante, p. 10 of this volume.
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8. The case q = 5.

(i) When p = ± 1 and 6 = 0,

(1) if d = 0, \ 5/TT [ = pac,

(2) if d = ± 2c, {5/TT} = -2pac .

(ii) When p = + 1 and a = 0,

(1) if d = 0, {5/TT} = - _p6ct,

(2) if d = ±2c, \5lir\=

(iii) When p = ± 2 and a = b,

(1) if cEEO, {5M =

(2) if ^ = ± c, | 5/TT } = -

(iv) When p = ± 2 and a = — b,

(1) if c = 0, { 5/TT( = -

(2) if d = ± c, -| 5/TT[ = -pad?.

The results of case (i) are due to Jacobi.* In order to deduce Cunning-
ham's criterion from them, we need only the following:—

When jp = 1, « = ( — l ) a , and c = (—1)Y or 2(—I)7, according as
d = 0 or not.

And, when p = - l , a = 2 ( - l ) a ; and c = 2(—1)* or -(—1)Y,
according as d = 0 or not.

9. TA-e case q = 7.

Assuming that |7/-7r}4 = 1,

when 6 = 0 and c or d = 0, |7/TT| = (—l)w,

when b = 0 and c = ± 3d, {l/ir} = ( - l ) m + 1 ,

when a = 0 and c or d = 0, ]7/TT} = ( - l ) m + 1 ,

when a = 0 and c = ± 3d, |7/TT} = (—l)m.

Cunningham's definition of a and y in this case amount to this,
that a = 0 (mod 2) when 6 = 0, and a = 1 (mod 2) when a = 0 ; that
y = 0 (mod 2) when d = 0, and y = 1 (mod 2) when c = ± 3d.

* Bickmore, ioc. cit., p. 15.
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10. The case q — 11.

Assuming that {ll/7r}4 = 1, and introducing for brevity the definition
that K = 0, when d = 0 or + c, and K = 1, when d = + 2c, we obtain

In this case, Cunningham's definitions of a and y are, that

(-l)« = (a/ll) and (-1)* = (c/11).

11. The case q = 18.

Assuming that {18/7r(4 = 1, |18/7r} = 1 when

a EE c, —2c, —8c, —5c, 6c ;

also, when 6 = 0 and a = 4c, and when b = + 4a and a = — 4c.
And, if any of these congruences are true with the sign of c changed, then

{ 1 8 M = - 1 .

12. From the value of |l+i/7rf4, one of the so-called supplementary
laws in the field of 4-th roots of 1,* the value of ]2/7r} may be easily
deduced. For 2 = — i(l + <)2 and 6 = 0 (mod 4), and so

= I

If b = 0 (mod 8), then a = 1—4m (mod 16), and so

And, if b = 4 (mod 8), then a = 1—4(m+2) (mod 16), and so

The former of these expressions for | 2/TT \ was stated by Reuschle, in
1856, in a slightly different form ; he discovered it by induction from
numerical instances, t It is remarkable that the proof of the criterion
for { 2/TT [ should now be published apparently for the first time.

13. Combining the value of |2/7r[ with that of {qlir\, we can easily
find the value of {Zqlir}, or, in particular, a. criterion to decide whether
it is ± 1. The results stated by Bickmore for ]6/7r} and |10/7r[ are thus

* Gauss, " Theoria Residuorum Biquad.," Comm. II (1831), Werke, Bd. n ; and H. J. S.
Smith, " Report on the Theory of Numbers," Collected Papers, Vol. i, p. 77.

t A. Cunningham, Proc. London Math. Soc, Ser. 1, Vol. xxvn, p. 88.
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verified. Similarly criteria may be derived for [qq'/ir], q and q' being
different primes. Thus {15/irf = 1, when

) 8 M = r . \5H=£-n <n = 0, 1,..., 7);

but the combinations of the different cases are too numerous to be set
out. For any given value of TT, it is simpler to calculate \qlir\ and
{q'JTr\ separately.

14. So far, the value of \qlir\ has been expressed in terms of the
reciprocal factors of p, that is, a-\-bi and c-\-dw. These expressions are
convenient for numerical calculations, because there are extensive tables
of a, b, c, and d* Criteria for \qlir\ may, however, be also obtained
in terms of -K itself. For, if n be any prime or power of a prime, the
law of reciprocity shews that the residues of IT (mod q) are divisible into
n sets, one of which contains the values of ir such that \qlir\a = 1, and
the other n—1 of which correspond to the other values of {qlir) lt. A
table, which for given values of n and q gives those residues of -K (mod q)
making •[ qjir \ n = 1 or any given power of £, would be a theoretically
complete solution of the question. Legendre has given such a table as
this for quadratic residues for all values of q not divisible by a square
up to 79.+ But in most of the cases considered in this paper, such
a table would be of great size, and it must therefore suffice to state the
conditions which TT must satisfy in a more condensed form.

15. It should be observed that the expressions for \vjq\ given in my
second paper, § 19, are not in general unique ; when q = — 1 (mod 4),
but not = — 1 (mod 2'1), the factorising group§ of q, that is, the group
of operations leaving q (a prime factor of q) unaltered, is \sFt\ ; con-
sequently s7q = £q, and the conjugates of q may be written in the form

qn = suq and q* = s«tq (u = 0, 1, ..., F - l ) .

In this case we obtain for \v/q\ the same expression as when
q = 1 (mod 4), | and this will be found to be the best expression in
practice. This argument does not hold when q = — 1 (mod 2n), as then
the factorising group is {t\.

* A. Cunningham, Quadratic Partitions, London, 1904.
J TMorrie des Nombres, 3rd edition, Table III.
§ German, Zerlegungsgruppe.
|| This is given in § 2 above.
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The case q = 3.

Here Q = £(32-l) = 1, and

J-3/TTI = mr*-1.

Then | - 3 / T T ( = 1, if TT = ir\

which gives a2 = 0,

ax-{-a3 = 0.

T/ie case ^ = 5.

Here Q = £(52—1) = 3, and

J5/7r}=(7r7rt-1)3.

The solutions of K3 = 1 are

K= 1, 2+w, 2—o».

Therefore, if ]5/7r} = 1,

ITT^-1 = 1, 2+0), or 2—w (mod 1 + 20-

The application of t shews that each of these congruences is true
mod 1—2*, so we get

7T+ = IT, ( 2 + 0)) 7T Or ( 2 —0))7T J

and, conversely, each of these gives |5/7r| = 1.

If 7r+ = 7r, then a2 = 0, « i+a3 = 0.

If TT+ = (2+w) 7r, then a0 = ^+0 .3 , 2a2 = at — a3.

If 7r+ = (2—o))7r, then —a0 — % + % , — 2a2 = ax —a3.

The connection between these results and the criterion given before

is as follows. (JLY

so, assuming that

w h e n 7T+ = 7r,

when 7r+ = (2+o)) 7r,

when 7r+ = (2—o))7r,

In the first case, we get a = a?Q—2a.^ = c.

In the other two cases, we get

7rV 71

{5M

d =

d =

r[7r2 "

= 1,

o,
2c,

- 2 c .
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PART II.

Criteria for the Value of q^v~l) (mod p), in Terms of a, h, and e, f.

16. Besides the two reciprocal factors of p in the field of 8-th roots
of 1, which are defined in my second paper, § 29, there is one other way
of pairing the conjugate prime factors of p, namely,

inr* = e-\-fvr,

where ZJ = £+£"* and CT2 = 2.

We then have p = e2—2/2,

and e = «*+«; +<7;;-f «*,

/ = a^a^a^a^+a^a^—a3a0.

As is well known, there is a singly infinite set of values of e, f, satisfying
p = e2—2f2, which correspond to the set of prime factors of p, eV,
e being the fundamental unit 1-j-w. Assuming that ir is canonical [i.e.,
that ir = 1 (mod 2)], so also is €2XTT, for e2 = 3 + 2CT = 1 (mod 2); and
therefore for the present purpose we need only consider the e and / formed
from TT, and Irom TT = e7r. Let

then we find e = 1 (mod 4), and / = ax+a3 = d (mod 4);

also e'= — 1 (mod 4), and / ' = d + 2 (mod 4).

17. The formulae for {q/ir} of § 6 can be transformed so as to
eliminate c± dw, and to introduce e ± /CT. First, let q = 8rc-|-l; then
since , t * , , +

a—bi = TT7rJ, and c — dw = TT^TT,

\q\ir\ =px{a-bifx{c-d<ti)
ix

but 7rt8x

so {q/ir\ =



1910.] SOME CRITERIA FOR THE RESIDUES OP EIGHTH AND OTHER POWERS. 255

In a similar way we find

when q = 8x + 3, \ -q/ir] = p-x-l(a-bi)2x+l(e+f^)Ax+2,

when q = 8x + 5, \ q/ir] ^p—^

when g = 8x+7, | -qjir\ ^p-'-

If q = ±l (mod 8), ef'-x = 1,

and if q = ± 3 (mod 8), eq = elt and en+l = — 1.

When therefore { + q/Tr} is expressed in terms of e ± / W , the above
formulae remain true when q = + 1 (mod 8), but the sign of the right
side is changed when q = + 3 (mod 8).

These formulae may now be reduced for any given value of q, and thus
criteria for {q/Tr} may be found in terms of a, b, and e, f. In the rest of
this Part, it is assumed that \qlir\i = 1.

18. The case q = 3.

W h e n / = 0 , | - 3 M = « ;

when e = 0, {— 8/ir[ = —a.

Tta ca«e g = 5.

When / = 0, {5/TT} = ae ;

when e = + / , | 5/TT[ = — 2ae.

The case q = 7.

When 6 = 0 and / = 0, | -7 /TT} = (e/7),

when 6 = 0 and e = ± 2/, ) -7 /TT[ = - (e/7),

when a = 0 and / = 0, ] —7/TT}- = - (e/7),

when a = 0 and e = + 2/, { -7/7r} = (e/7).

T/ie case q = 11.

W h e n / = 0 o r / = ± 2 e > | - H / T T [ = (a/11),

when e = 0 or / = + 3e, {—11/TT} = - ( a / l l ) .

I have verified Cunningham's criteria in these cases, and find them
correct both for e, f, and for e, / ' .
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PART III.

Criteria for 3 or 5 being a Residue of a 16-th Power.

19. As might be expected, the evaluation of {g'/Trfie is more trouble-
some than that of |<?/7rf8, and, except when q = 8, the only practicable
method seems to be that already employed in §§14 and 15.

In this part the notation is the same as in Part III of my second
paper; IT is assumed to be primary; by the use of the tables of primary
residues given there, any prime factor of p can be made primary by
multiplying it by a suitable power of £. It is assumed that

l 9 M 8 = 1 > so that { g M = ± l .

20. The case q = S.

Using the general formula of § 19 of my second paper, and substituting
in it the values of ^ and \^2 given in Part III of that paper, we find

{8M8 = (-l)m **!.#,;

or, since we suppose [S/TT] to be + 1,

{ -3M = * i**

Now 3>i-£$i — P = 1»

so $2EE 1 - 8 / i r l ^ i ,

that is, 3>a (mod 3) belongs to the sub-field (wl( a)2, 0)3); and therefore

dA = 0, d2 = — d& d3 =. d5, dx = dlf

Therefore {-8M = ^s = -^i = ^ = - ^ . .

c0 cx c2 c3

It may be proved that c0 ^ 0, and so we find that

|— 3/ir( = cQdQ, and {3/TT} = (—l)mcodo.

2 1 . A criterion for {3/TT} may also be found in terms of ir. The
prime factors of 3 are 1—w and l+a>, and its factorising group is \st\;

and so ) - 8 M =(TTX'-1)6.
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The norm of 1—o> is 34, and so the number of incongruent residues of
x prime to 3 is (34—I)2, and the number of residues of x satisfying
| —S/TT\ = 1 is one-sixteenth of this number, i.e., 400.

Any residue of 1 — w may be written in the form

A = x-\-yco1-{-zoo.2-\-ww3 (mod 1—«).

Since s2t leaves A unaltered, and changes 1 —w into 1+w, we see that any
congruence (mod 1—u>) in the field {<olf a*,, W3) is also true mod 3.

If {— 3/xf = 1, we must have

xf = Ax (mod 1—<o),

where A satisfies A5 = 1 (mod 3).

Now < being any number of the field

therefore A3 = A+ = \lt A4 = A2, AA2 = 1, A2 = A3,

and the roots of A5 = 1 are

1, A, Aj, A2, A3.

By trial, values of x, y, z, and w are found which satisfy A2 = A3, and thus
we get . _ 1 ,

Now, since 7rf = ATT (mod 1—<o),

applying t, ir = X^ir* (mod l+<o),

that is, 7rf = A.J1^ = Ax (mod 1+w),

and therefore xf = Ax (mod 3).

Therefore the complete solution of {—3/x} = 1 is

xf = x, Ax, Axx, A2x, or A3x (mod 3) ;

and when m = 1 (mod 2), {3/x} = — { — 3 /x[ ,

and then the solution of {3/x )• = 1 is

— 7T* = X , A x , A X X , A2"7T, 01* A 3 X .

Each value of x x t - 1 corresponds to 34—1 values of TT; for instance,

x = xf gives 7 . 7

where b0, blt ... may have any values.
8ER. 2. VOL. 9 . NO. 1083.
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22. Yet another criterion for {—8/7r[ may be derived from the
results of the last paragraph; for, if

then

but

80

and conversely, if

then

and so

and if «

7Tf = X V ,

Jfj \X
Mrg ^ ^ 7T7Tj TT^ ^ 3 A . ,

7 r 7 r i7 r27 r3 — <i-\~bi = a,

$ 2 = a X t o ;

*2 = aXtt, a n d { 3 / T T [ 4 = 1 ,

t = X2 W7T

i-3M = i;

$a = —a\\ \— 8 M = — 1 .

23. The case q = 5.

Here Q = TV(54-1) = 89,

and )5/TT[ = (TTTr*-1)39.

As in the case of 5 = 3, any residue mod l + 2t may be written in the
form

and it only remains to find the solutions of

K39 = 1.

Now, if X u = l , and / * 8 = 1 ,

K = X V (* = 0, .... 12 ; y = 0, 1, 2).

Then X5 = X1} X25 = X2, X125 = X3,

and so XX2 = 1, and X3•= X2.

A value of X satisfying the latter congruence is found by trial to be

X =

whence X2 =

and X4 = — 2—(o1+co2+2ft)3 ;

and the other roots, besides 1, are Xw, X2, X£ (u = 1, 2, 8).
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We have seen in § 15 that a root of n3 =. 1 is 2+to; for the present
purpose it is better to take fx in the same field as X, and we find

fi = 1, 2 + 2w2, 2—2«2.

Finally, as in the case of q = 3, we find that

J5/TTJ- = 1,

when 7rf = XV T.

Also, as before, \^l7r\ = 1»

when 3>2 = a\x/j.y, and |5/7r}4 = 1,

and |5/TT[ = — 1,

when 3>2 = —a\x/j?, and |5/7r}4 = 1.

., The curious result follows from this, that whenever | 5 / T T J - 8 = 1 ,

<§2 (mod 5) belongs to the sub-field (o ,̂ ax2, c^).

24. Throughout this part, it should be observed that a-\-bit $x and
#2 afe defined as products of ir and its conjugates; for instance,

a-\-bi = 7r7r17r2'7r3.

The resul t of subs t i tu t ing exir for IT in any of these products is to mul t iply

it by the norm of e1 in the field of & ( £ + £ - 1 ) , tha t is, by — 1. Accordingly

if x is in one of t he eight p r i m a r y forms • e'2v e3, y)* we have

a = 1 (mod 8), c0 = 1 (mod 8), and dQ = 1 + i ^ (mod 4),

as in §§ 32 and 33 of my second paper ; but if -K is in one of the other
eight primary forms,* then

a = — 1 (mod 8), c0 = — 1 (mod 8), and d0 =. — 1—£6 (mod 4).

It will be seen that the only formulae of this part that are affected by this
are those of the last two sections containing $2.

* Tables of these are given in my second paper, §§31 and 36.

s 2
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PART IV.

Criteria for 2 or 5 being a Residue of a 9-th Power.

25. In this part, the notation is the same as in Part IV of my second
paper. It is assumed that ir is primary, and that |g/-7rf3= 1, so that
\VM =h p, or/a2.

The case q = 2.

As before, the general formulae of my second paper give

and also {2/irf = T^TT"1.

We infer that for every x, <j> = £x (mod 2).

The condition that {2/7rf3 = 1 is a' EE 0, and hence the interesting con-
nection between ir* = a-\-a'p and #, namely, that when a' =. 0, then

02 = 02 = ^ = 08 = 0 .

We also see that the criterion for {2/irf = 1 is that

c3 = 0,

or that ir = TT3.

The latter criterion gives

b3 = 0, bt = 68, b.2 = bv

and so 7T =

26. T/ie case q = 5.

5 is a prime in the field of 9-th roots of 1.
x* = Tnr,2TT^ = a+fl'p being a factor of p in the field of third roots

of 1, the condition that {5/-7rf3 = 1 is known to be :—

when p = ± 1, 7T* = 7j-*, that is, a' = 0 ;

when p = + 2, TT* = — 7r*, that is, 2a—a' = 0.

Now 7T5 = TT5, 7r& = Trif and generally 7r6 = 7r6_n,
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and so from TT* = + ir*,

that 18, 7nr.1iri = + TTJ 7T37r5,

we deduce 7r5
4+6-+i = + Tj*+^+ie

The reciprocity law gives at once

So if ]5/TT} = 1,

Since 5 4 + 5 2 + l = 3 .7 .31 ,

we find that when p = ± 1, |5/x} = 1, when 7r7 = 7i-g,

and that when p = + 2, ]5/7r} = 1, when i? = — -/Tg.

We have now only to solve X7 = 1.

The simplest equivalent congruence is X2 = X2, and this can be solved
by trial. The table at the end of this part gives the six solutions of
X7 = 1 other than 1.

As in Part III, the criterion for \ 5/-7T f = 1 may be expressed in terms
of the reciprocal factor

First, when p = ± 1, ir* =. a,

that is, 7r40 = airlt

and so <p = a\x.

Secondly, when p = ± 2, -K* = — TT* ,

that is, TT~4<J> = — 7r*<pz,

o r TC\<? = -TT\V.

Now in this ease

p = — 2a2 and (l + 2p)a = 2,

and so »̂ = ± (1 + 2/D) aXa..



262 DK. A. E . WESTERN

The Solutions of X7 = 1 (mod 5).
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A

A, = A 3

A o = A ;

A , = Afi

A., = A 4

\h = A5

1

2

1

2

1

2

1

c

1

1

2

0

2

- 1

C2

- 1

- 2

0

- 2

1

- 1

c:<

1

- 1

1

- I

1

- 1

C7

- 2

1

- 1

- 1

- 2

0

C

0

2

- 1

1

1

2

PART V.

The Quartic Field k(w, 6), where

o , = V ( - 2 ) , and 0 = i | -

27. Col. A. Cunningham has given in his paper* expressions for
\qlir\8 in terms of a, b, t, u, t', to', where

p = a2+b2 = e+qu2 = t'2-qu'2,

and it is assumed that {qlir\ = 1. When q = 11,

The object of Parts V and VI of this paper is to furnish proofs of these
expressions. As {q/-7r\ has already been expressed in terms of a, b and
c, d, these new results depend on certain congruences between a, b, c, d, t,
u, t', u. These congruences will be proved by the use of certain quartic
fields of algebraic numbers, containing as sub-fields two or three of the
quadratic fields k{i), &[-/(—2)], k(^/q), k[^/(—q)]. Quartic fields con-
taining a quadratic field have been studied by Hilbertt and Sommer.t
and are called by Hilbert "Dirichlet's Biquadratic Fields," because
Dirichlet was the first to investigate the theory of binary quadratic forms
whose coefficients and variables belong to the field k (<).

28. In this part I deal with the quartic field which contains w = V ( ~ 2),
and *s/{eq), where e= (—l)*^"1^ A basis of the quadratic field defined

* Ante, p. 10 of this volume.
t Bericht, Deutschen Math. Verein, Bd. 4, 1897, §87; and Math. Annalen, Bd. 45, p. 300.
\ Vorlesungen Uber Zahlenthearie, 1907.
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by a) is (1, to), and its discriminant is 8; a basis of the quadratic field
defined by */(eq) is (1, 0), where

and its discriminant is eq.
I therefore call this quartic field k(w, 6).
Since these discriminants are prime to each other, the discriminant of

A: (o>, 6) is 26^2,* and a basis is

( 1 , a>, 6, cod).

Therefore every integer of k{w, 6) is of the form

d0+d1u)+d.26+d3(ad,

where d0, dx, d^, d3 are rational integers.
The field k (co, 6) is clearly a sub-field of the field of Sg-th roots of 1,

and this fact furnishes another proof that (1, w, 6, w6) is a basis of k(a>, 6).

dx means £[— 1—*/{eq)~\,

k means ^(1—eq).

Then 6 and 0x are the roots of 02+6+k = 0.

f(x,y) means cx + 6y)(x+6ly) = x2—xy + ky2 = £[(2z—yf—eqy*].

Then f(x, y) = 0, or a quadratic residue mod q.

p or 7r denotes a prime factor of p in the field k(w, 6).

r is the substitution {0 : 6^.

s is the substitution (w : — &>).

^ is a primitive 8-th root of 1, and p a primitive <?-th root of 1.

29. In a similar way to that used by Hilbert for the field k(t, 6),+ we
find that the rules of factorisation in k{w, 6) are as follows.

If p is an odd prime other than q,

it p = 1 or 3 (mod 8), and {p/q) = 1; then the weighty of p is 1, that is,
p has four conjugate prime factors ;

* Hilbert, Brricht, p. 267.
•f Math. Annalen, Bd. 45.
+ German, Grad.
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if p = 1 or 8 (mod 8), and (p/q) = — 1, the factorising group is \r];

if p = 5 or 7 (mod 8), and (p/g) = 1, the factorising group is \s\:

if p = 5 or 7 (mod 8), and (p/g) = — 1, the factorising group is \rs\;

in the last three cases, the weight of p is 2.

When q = + 1 (mod 8), a prime factor of 2 is (w, 8), of weight 1.
When q = + 3 (mod 8), a prime factor of 2 is w, of weight 2.
When # = 1 or 3 (mod 8), a prime factor of q is (K, <\/(eq)), of

weight 1, K being a factor of q in the field k(w).
When q E= 5 or 7 (mod 8), a prime factor of 3 is *s/(eq), of weight 2.

30. The next problem is to find the class-number of the field k(oo, 8)
for the values of q with which we are concerned. For this purpose I use
a theorem of Minkowski,* from which is derived this consequence:—

In any algebraic field of order n greater than 2, v being the number of
pairs of conjugate imaginary fields, and d being the discriminant of the
field, an ideal U exists in each ideal class of the field such that

In the field k(w, 8), n = 4, v = 2, and so

#00 < 3(2TT2)-1 | d | *

< gXl .22 .

So when q = 3, 5, 7, 11, 13,

N (tt) ^ 3, 6, 8, 13, 15,

and [#OJ)P < 1, 2, 2, 3, 3.

We now factorise all rational primes whose factors are of weight 1,
not exceeding the limit of IV (U); and if p has as factor a prime ideal p of
weight 2, then the norm of p is jp2, and so in this case, only those primes
p ueed to be factorised which do not exceed [.AT(to)]4.

The prime factors of all rational primes within these limits are given
in the table at the end of this part. This table shews that when

q = 3, 5, 7, or 11,

• Geometrie der Zahlen, pp. 122 and 134.
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all these prime factors are principal ideals,* that is, actual numbers, and
therefore the class-number is 1.

In the case q = 18, the prime factor p of 3 is not a principal ideal,
for, if it were, p.rsp would be a number of the form x-\-y*J(—26), but 3
clearly cannot have such a factor. Also p.rp = (1+w), and p.sp = (0),
and so rp and sp belong to the same class, and p and >sp belong to the
same class. Again p and sp belong to different classes, for, if not, p2 would
be a principal ideal, and then would x2+26z/2 = 9 be soluble. Therefore
there are three classes, whose representative ideals are 1, p = (1—a>, 6),
and .sp = (1+w, 0).

31. In the field k{a>, 6), Dirichlet's theorem! shews that there is a
single fundamental unit. For each value of q, which is = — 1 (mod 4),
I have calculated a unit e of k((a, 6) by multiplying the cyclotomic unit
1 —£p by some of its conjugates.

In each case in the table, e.rse is found to be the fundamental unit of
k[*/{—'2eq)\ and therefore e is the fundamental unit of k (w, 6).

When q = 1 (mod 4), it is readily proved that the cyclotomic unit
2? = 11(1—£/o) is a cyclotomic unit of k(6). And in the cases q = 5
and 13, it may be proved that no unit e exists such that e.se = +E ;
therefore in these cases E is the fundamental unit of k (w, 6).

82. We now consider the factors of p in the fields k{w) and k (6), formed

These are

and

where

and

Now

c

d'

c

AQ

— f(dQ,

= 2d0d

= «+'

'-\-d'(t) = ir .TIT,

-J-.djO = : 7T . S7T,

u<j) "~~ ia/ (fl(j, 6tg) ,

' — /7 /7 . ^ /7 /7 I O I'/j ^^ IVQ 1*3 ̂ ^ ttj 1*2T~ &th

• AXQ = x+y^/(eq),

* German, Hauptideal.
t Hilbert, Bericht, p. 214, Satz 47.
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where x = A0—^Alt

y = -Mi ,

and x2—eqif = p.

In Cunningham's notation, when e = 1, x = + t', y = +u', and
when e = — 1, x = + t, y = +u, except that when q = 11,

x = -jz^t, y = + \%i.

It will be observed that c' and cZ' may differ in sign from c and d as
defined in Part I.

Then 2x = 2/(rf0, tf,)

and so se = f(d0, do)

When q = 1 (mod 4), x is essentially positive.
When x is an integer, since x2—eqy2 =p and eq = 1 (mod 4), it

follows that x is odd, and y = 0 (mod 4).

Then /2 = (AQ-yf = i4j+2y (mod 16).

And so l + 8»w = p = x2 = ^Q+2</ (mod 16).

For brevity, I write / = f{d0, d2) and / ' =f(d1,di).

For the remainder of the work, each value of q must be treated
separately ; the cases q = 3 and 5 are dealt with below ; and the processes
for q = 7 and 11 are so similar that they are omitted. In each case, I
find Cunningham's corresponding criterion to be correct.

33. The case q = 3.

Here we have c = / + / ' ,

and/ and/ ' are = 0 or 1.
Since c and x are both prime to 3, it follows that c = 1.
But c = (—1)\ as in § 7, supra. So

c' = (—l)Yc = (—1)* = l + 2y (mod 4).

Since 7r = dQ-\-d2ti (mod w),

and 6 is in this case a unit, by multiplying T by a suitable power of 9
we get 7r in a form such that

d0 = 1, d2 = 0 (mod 2).
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Since

we must then have

If

then

But the unit

and so

We may therefore

Then

and so

Again,

So

Then, since

that is,

And so

d' = 0 (mod 2),

ds = 0 (mod 2).

di = l (mod 2),

Tr == l + « (mod 2).

e = 1+co (mod 2),

eir = 1 (mod 2).

take ir in a form such that

dQ — 1, dx = d2 = d3 = 0 (mod 2).

c' = 1 + ^ (mod 4),

d2 = 2y (mod 4).

^40 = 1+^2 (m°d 8),

= l + 2 ^ 2 (mod 8),

= l + 4y (mod 8).

A\= l + 8y (mod 16).

y = 4i; (mod 8),

l + 8m = A2
Q+2y (mod 16)

= l + 8y+8y (mod 16),

wt+y+y = 0 (mod 2).

gpi(p-i) = (_i)a+v+m = (_!)«+«' (mod »),

which is Cunningham's criterion.

84. The case q = 5.

Here c' =/-2/'

and / and / ' are = 0 or + 1.

Then we get the four cases—

(i) / = 0, then c' = x = ±l, p= 1, d' = 0.

(ii) y = 0, then c' = - a? = ± 2, ?̂ = - 1, rf' = 0.

(iii) / = / , then c = - 2z, p = — 1, d' ^ 0.

(iv) / = — f, then c' = 2x, p= 1, d' ^ 0
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Since in this case x is positive, it follows from Cunningham's definition
of T' and his condition* for (5/p)4 = 1, that

when p = l, x = (—1)T',

and when p = — 1, x = — 2 (—I)7*.

The only unit in this case being 0, we can get TT (by multiplying it by 6
or fl2) in a form such that

do = 1, dx = 0 or 1, dg = dg = 0 (mod 2).

Then c' = l + 2d1-|-d2 (mod 4),

so c ' = (—l)d'+id2c.

The values of c in terms of y are given in § 8 supra.

In case (i) we have c' = (— l)»+d'+w«, ic = (—1)T>,

so since c = x,

y + T ' S d i + i d g (mod 2).

And the same result is found in the other three cases.

Now Ao = l + 2di + 2d2 (mod 8).

So, if dx = 0 (mod 2), ^ 0 = l + 2d.2 (mod 8),

and A'l = l + 4d.2 (mod 16) ;

and if dx = 1 (mod 2), 4 0 = 3 + 2rf2 (mod 8),

and ylj = 9+4d.2 (mod 16).

So in each case A'2O = l + 8d1 + 4d2 (mod 16),

and then m+v' = | U j - l ) = dx+%d\ (mod 2).

Therefore, finally, m + y + r ' + i / = 0 (mod 2),

which proves that q^~l) = (_i)~+-+''+«' (mod p),

which is Cunningham's criterion.

It will now be shewn that this is true, taking any solution V, u', of

x*—5y2 =p.

Since fl3 = — 2+-v/5, fl6 = 9—4^5 gives the fundamental solution of

* Proc. London Math. Soc, Ser. 2, Vol. 1, p. 132.
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and therefore by multiplying T by a suitable power of 08, we can obtain T
in that form which corresponds to the fundamental or any other given
solution of x2—5y* = p.

Table of the Fields &(«, 0).

2

3

5

7

11

13

P

3

2

2

2

3

11

2

3

Weight
of p

1-1

2

1

2

1

1

2

1

P

0)

—

w

1—» + 0

(l-0>, 0)

Class
Number.

1

1

1

1

3

Fundamental
Unit.

1 + <w + 20

0

1 + 2o> + 20

3 + 7* + 6e

2 + 0

PART VI.

The Quartic Field k{t, 6).

35. In this part, 6, r and/(x, y) have the same meanings as in Part V.
The* field k(i, 6) is a sub-field of the field of 4q-th roots of 1. A basis of
the field is 1, i, 6, id, and its discriminant is 24^2.

denotes a prime factor of p in the field.
X denotes 1 + /.
t is the substitution (i, — i).
As in Part III, an ideal ti exists in each ideal class such that

So when

NQa) <qX'61.

q = 3, 5, 7, 11, 13,

N(rt) < 1, 3, 4, 6, 7.
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The table at the end of this part shews that for all these values of q the
class number of k{t, 6) is 1. The fundamental units have been calculated
as in § 31.

36. The factors of p in the three quadratic sub-fields k(i), k(^q), and
&[V(~~ ?)]. formed from -w are

'i = 7r.r7r,

Q = ir. to,

and x'-\-y'\/(—eq) = TT. /̂ 7r,

where a' = / (6 0 , b.^—f(bly 63),

z'=f(b
Q,

As in § 32, a; = -40—i/tlt y = ^^ i ,

when e = 1, £ = +£', ?/ = + -w', a;' = + t, y' = +u,

and when e = — 1, 2 = + ,̂ // = ± u, x ' = +<', J/' = + M

(with the same exception as in § 32 for q = 11). And as in § 32,

m+iy = 1(41-1) (mod 2),

whenever y = 0 (mod 4).

It will suffice to give the full proof of Cunningham's criterion for q = 3.
I have verified his criteria in the cases q = 5, 7, and 11.

37. The case q = 3.

Since ir = &0+&i~H^2+&3) # (mod X),

and 1, 0 and 02 is a complete set of residues (mod X), by multiplying TT by
a suitable power of the unit 6, we get

„ = 0 (mod2);

and then using a suitable power of <, we get

6 0 = l , bt = O (mod 2).
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If 62 — 3̂ == 1 (mod 2),

then 7T = 1 + 0 (1+0 = e (mod 2),

and then eir = e2 = 1 (mod 2).

Therefore, in the first place, we take

b0 = 1 , bt = b.2 = ba = 0 (mod 2).

Then 6' = 0 (mod 2),

and so b' = + b = 0 (mod 4),
and therefore b3 = 0 (mod 4),

and b'= 26j+63+6^3 (mod 8).

Also y' = ^3+^1^2 (mod 8).

Therefore b'+y' = 26X (mod 8),

that is, j8+i/' = ^6X (mod 2).

x is positive, and so t' =• x = l+6.2 (mod 4),

and T = %(t'—l) = %b.2 (mod 2).

Therefore /S+r '+y ' = i(bi-\-b.2) (mod 2).

Also y _= 0 (mod 4), and AQ = 1 + 2(^+6.2) (mod 8),

and so m+v = 2 (̂ 1 + 2̂) (mod 2),

and, finally, W + J S + I Z + T ' + I / ' = 0 (mod 2),

which proves the criterion for the case of u = 0 (mod 2).* Since 7r may
be multiplied by any power of e2 without affecting the argument, the
criterion holds for any solution of t'2—Su'2 = p in which u ==. 0 (mod 2).

For the second case, in which t' = 0 (mod 2), we take eir instead of TT,
and corresponding to this, we get

and so T' = 2 '̂— 8M'.

Defining TO by T' = 4ro+2,t

Ti = i ( i ' - 1 ) + K (mod 2)

= T '+V ' (mod 2).

Therefore in this case the desired congruence is

m+/3+u+To = 0 (mod 2),

which proves the criterion for the case of t' = 0 (mod 2).

* Ante, p. 10 of this volume, Table II, last column,
t Cunningham writes r' for Ty.



•272 SOME CRITERIA FOR THE RESIDUES OF EIGHTH AND OTHER POWERS.

Table of the Fields k(i, 6).

q

3

5

7

11

13

P

—

—

•2

0

5

2

Weight
of p

—

—

1

2

1

•2

—

—

l + i + 0

l + «

l + « + fl

l + «

Class
Number.

1

1

1

1

1

Fundamental
Unit.

1 + 0 + 10

0

1 + 2«-0 + «0

l + 2»-0 + i8

2 + 0


