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1.

The object of this paper is to investigate certain extensions to multiple
and repeated series of the following well-known theorem due to Abel:—

If the series
(1)
is convergent, the series
(2)

is absolutely convergent for all values of x whose modulus is less than
unity, and if f(x) denotes the function represented by the series (2), the
limit of f{x) when x approaches 1 along the straight line (0, 1) is equal
to the sum of the series (l).t

Notation and Terminology.

It will be found essential in dealing with these questions to lay down
as definite and concise a notation and as unambiguous a terminology as
is possible, since those usually employed are in some ways misleading.

Suppose that

S » i i , m 2 , . . . . m.' — • " 2J . . . 2J &ii, U, ...,iH >
j1=0 U=0 i,,=0

then we denote by
2 a

( 1 , 2 , . . . . v) ( P + l . •••• 1) ••• ( r + l . - i » )

* Mr. Hardy communicated his share of the paper on February llth. 1904, and discovered
shortly afterwards that Prof. Bromwich had at an earlier date arrived independently at the
results of §§1-5. § 6 and §§ 12-17 are due more particularly to Mr. Hardy, and §} 7-11 to Prof.
Eromwich. Some of the earlier results (those relating to double series sumim-d by rows or
columns) were also obtained by Mr. A. Brown, to whom the subject had. been suggested by
Prof. Bromwich for a dissertation. As regards the latter part of the paper, each of the
authors had arrived by conjecture at the other's results, but had not worked out formal proofs
at the time when it was decided to unite them in one paper.

t The theorem is still true if x approaches 1 by any path (in the complex-plane) which does
not touch the circle of convergence ; but it is not with extensions of this kind that we shall be
concerned now.
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the result (if it be determinate) of making the suffixes m^, m^, ..., mn tend
to infinity in groups, the group wi,.+1, ..., mn being made first to tend
simultaneously to infinity, and so on, the groups corresponding to the
brackets written under the sign of summation. Thus, to take the simplest
case—that of two integral parameters iv i2—the expressions

2 a, 2 a, 2 a
(1, 2) (1)(2) (2)(1)

denote respectively the double series

in Pringsheim's sense, and the two repeated series in which the sum is
effected with respect to one parameter first. A similar notation will be
used for limits. Thus,

2 a = lim s, 2 a = lim s.
(1.2) (1,2)

Where there is more than one bracket the operation of proceeding to
the limit which corresponds to the bracket on the right is always to be
performed first. The same notation applies to limits of functions of
continuous variables. Thus, if f(xv x2) is a function of xx and x2, both
of these being positive and less than 1, lim / means lim (lim / ) and lim /

(1)(2) x1 = l x., = l (1 ,2)

means the double limit lim / .
X\ = \, X 2 = l

It is always to be understood that the limits of summation, unless the
contrary is expressly stated, are zero and infinity, and the limiting value
of every variable, which we shall always assume to be real and positive,*
unless the contrary is expressly stated, is 1, and the term " double limit "
will be used always as indicating that two variables (integral or continuous)
are made to tend simultaneously to their limiting values. When there are
several distinct passages to the limit the result is a repeated limit; thus,

lim
0, 2)(3, 4)

would denote a repeated limit—in this case the double limit of a double
limit.

The expression 2 a
(i)

denotes the result of summing with respect to ix only, and so on. Also,

* There is, of course, no such limitation on the value of a.
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if b depends on ilt ..., in,

A 6 = bil+i,u,...,i—bilti, ,-„,
(i)

A b= A b = AA6
(1. 2) (2, 1) (2) (1)

—'- Oii + l,i2+l,i3, ...,in Uiu i2+i,ia > ...,in O^ + i, i2i ,-3i t in"T "ii , h, h, .... f,,»

and so on.
Finally, all this notation may be generalised to denote, not limits, but

maximum and minimum limits ;* thus,

2 a

denotes the maximum limit for ix = x of the minimum limit of Siu ,-„ for
i2 = QO , and l a

(1,2)

denotes the maximum limit of sil>i2 when ix and i2 tend together to infinity.
And, again, exactly the same applies to such expressions as

lim/.
( ) ( 2 )

2. Statement of the Analogue of Abel's Theorem for the General Serits.

If the simple series 2a.; is convergent, there is certainly a constant C,
such that I s-1 < C

for all values of i. We express this by saying that such a convergent
series necessarily satisfies the condition of finitude. The same is not true
for multiple series. This being so, we cannot affirm that, if, e.g.,

2 a
a, 2,...,«)

is convergent, then 2 ax^x\; ... x)"
( 1 , 2, ..., >,)

converges for values of xlt x2, ..., x,,, less than 1, and it is easy to see by
examples that this is not necessarily the case.t

It is therefore essential to subject our series to some condition beyond
that of mere convergence. We shall assume that it does satisfy the
" condition of finitude," that is to say, that

(3) | *„„,,, »J < C

* Sometimes called " upper and lower limits of iudetennination."
t For instance, compare § 3, end.

M 2
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for all values of >%, mit ..., ma. Doubtless this condition is unnecessarily
narrow, but it is simple and fulfils all requirements.

The analogue of Abel's theorem is then as follows :—If the condition
of finitude is satisfied, and

(4) 2 a
,< / ) . . . ( r + 1 , . . , n)

is convergent, then

(5) 2 oaf if . . . aj^

is absolutely convergent for all values of xv ..., xn whose moduli are less
than 1, and iff{xx, ...,xn) is the function represented by this series, then

(6) lim /
(1.2,..., ) ( 1 ) ( )

is determinate and equal to the sum of the series (4).

We shall prove this theorem first for double series and give some
illustrations in which the series 2 a. has different sums when summed in
different ways, so that / has different limits when we proceed to the
limit in different ways.* We shall then consider some further extensions
of a different kind connected with double series. Finally, we shall
establish the general theorem by induction. In dealing with double series
we shall use i, j , x, y for ilt i2, xx, x.2 in order to avoid suffixes, and we
shall write 2 , 2 , 2 , lim, lim, lim for 2

Since

and

it follows that

(7)

and hence that

8. Double Series.

|*..,'|<c,

| a ; j | < 4 C f

2 a,- ,- a: V

is absolutely convergent. Let/(re, y) denote its sum. Then

(8) /(*, y) = 2«u(l-»)(l-y)aty>

* This course seems best because this simple case affords the clearest illustration of the ideas
ou which our extensions of Abel's theorem are based, and its treatment does not involve the
algebraical difficulties which occur in proving the more general theorems.
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as is at once evident if we compare the coefficients and use condition
(7).*

Now to say that 2 a is convergent is the same as to say that there is

a quantity s such that, however small be <r, we can determine M and N
so that I c _ J > .

if only m^ M and n^N. It is evident, moreover, that | s | < C.
Now, since

2(i-z)(i-</)xy = i,

it follows that f(x, y)—s = 2 (sit j—s) (1—x) (1—y) xhj

and \f(x, y,

But

since x < 1

and

Thus

—s

. y

M-l

i=0

l<

< i ,

00

2

•Jj

2

Y
i=n

M - l

2
i=0

and

21

j=0

^2'
j=0

+

<
—s

M - l »

2 2
i = 0 j = W

21 2
j = 0 i = Af + 2 2

2CMN (1—x) (1—y),

< 2C; also

< 2CM(l-x) 2 yd-?/) < 2CAf(1-x),

CO

2
j=.v

i V 2 X

./=0
2

XJ

» = 0

<2CN(l-y),

But when o- has been fixed M and N are fixed, and we can determine o, e,
so that i /•/ x \ ^ Ck

|/(a:, y)—s| <2o-,
if 1—x < 5, 1—y < e. Therefore

lim t = s.
(»- y) J

* The transformation

rto + o p r + fls*2 = ••• = ( 1 — « ) ( « „ + • « i a ' + * 2 * i + • • • )

was given by Dirichlet and used as the basis of a proof of Abel's theorem identical in principle
with the proof stated here of the corresponding theorem for double series, though (lit any rate in
the form in which he presents it) less simple than Abel's original proof. See Abel. lEucres,
Vol. i., p. 223 ; Dirichlet, Wtrke, Vol. n., p. 305 ; Pringsheim, Munch. Bcr., 1S97, p. 344.
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We may remark in passing that a similar proof applies to the general
case when it is the convergence of the multiple series

2 a
(1, 2, .... n)

which is given. The real difficulties begin when repeated limits are
introduced.

We may further remark that the necessity of some such limitation as
is implied by the condition of finitude becomes apparent when we consider
that, for example, the double series defined by the scheme

d]. — b0, «2, as, . . . ,

— ao+bv —ai — bv —a2, —a3, ...,

b2, —b2, 0, 0,

b3, —bs, 0, 0,

is convergent and has the sum 0 whatever be the quantities a, b; even if
av = bv = ul, in which case Haijx

iyi is not convergent for any values
of x and IJ except x = 0, y = 0 and x = 1, y = 1. If av = bv = 2",
the series is convergent and equal to (1—y)/(l — 2ic)+(l—x)/{l—2y) if
x and y are both < £, but divergent if £ ^ z < l or | ^.y < 1.

4. Repeated {Tioo-fold) Series.

Now let us suppose that Ha is convergent when summed by columns,
thus implying the convergence of every column, and that

2 a = s.
(00)

The series is of course absolutely convergent as before, in virtue of the
condition of finitude. To illustrate the necessity of some suoh con-
dition in this case we might suppose aitj given by the scheme

1, 2, 4, 8, ...,

—£» —1> —2, —4, ...,

-h ~h - 1 , - 2 , ....
H» ? ' 2 > •!•» • • • »

Then 2 a = 0, but the power series does not converge for any value of
(00)

y if £ < x < I.
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<2C,

Let

then, since

and

(9)

n

>i =

bi

0)

('•)

<2C

b-x*
(0

is absolutely convergent. Similarly,

^aitjx
l

is absolutely convergent. Further we can prove that

(10) 2 al}x
l

oxo
is convergent, and its sum equal to that of (9).*

For, if we introduce the abbreviation

j
bi j = 2 ci; i = A Si_i j ,

1=0 ' (i)

then the series (10) is equal to the limit

\im i^bijx'U

provided that this limit exists.
Now, by the condition of finitude,

\bitj\ = |As (_ l f j | < 2 C ;

so that | bij—bi | < 4C, for all values of i, j .
Hence, for all values of j ,

2 (bij- 2 xl = 4:CxMl(l—x).

Let M be chosen so as to make iCxMl0—x) less than an assigned
positive number <r; M being now fixed, N can be chosen so as to give

\bij-b;\<<r{l-X)

• This is a kind of converse of Weierstrass's theorem concerning aeries of power series.
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for every value oij^N and for i = 0,1, 2, ..., M— 1, since

Then

and hence

Thus*

2 (I
i=0

M-l

2 (bij-

lim
j = co

<

h j

.«*

M - l
2
;=o

+

6i.

CO

2
l=M

M-l

i=0 '

< 2cr, if ;

lim 2 6/ ;.c' = H bix';

that is to say, the series (10) converges and has the same sum. as (9).

5.

Hence lim f(x, ij) = lim S aitj xl = lim 2 2 ai jXl

W 0) (0

(by Abel's theorem)

= lim 2 xi X a,tj (by § 4)
(0 (J)

= 2 a» j (by Abel's theorem).
(00)

An exactly similar proof applies to the case in which the convergence
of 2 a is given. Hence, if the condition of finitude is satisfied, <and any

one of the three series 2 a, 2 a, 2 a is convergent, the corresponding
V,j) (00) 0X0

one of the three limits lim / , lim / , lim / is determinate and equal to
(*.*) COO;/) 1>M*)

the sum of tlie series.
By similar methods we can easily establish corresponding theorems,

in case the series 2 a,,,, 2 aitj, 2 a^j do not converge, but oscillate.
(OO) U K 0 (<•. J)

• An alternative proof of this equation can be found by writing each side as a repeated limit,
in the form / . \ / • x

lim f 2 4». ,•*"*). lira I 2 *„,._/*"•).
u. . . \»- -o • / •>,}. x » ' - o /

The equality can be then obtained by using conditions given by Bromwiuh (Froc. London Math.
Sjjc., Ser. 1, Vol. 1, 1903, p. 184).
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Thus we find

, 2/) < Jim/te, y) <

These results may be summed up in the statement that the maximum and
minimum limits of f{x, y), when x, y approach unity in any one of the
three standard ways, are included between the maximum and minimum
limits of"Laitj, when i,j approach infinity in the same way as x, y approach
unity.

6.

Before proceeding to the general case we shall illustrate this result
by some examples:—

(i.) Suppose aiJ = ^ ( ^ ~ 1 ) ! (*,i >0)

and oo, j = — 2"j (J > 0), ait 0 = 2"4 (i > 0), a0| o = 0. Then, if j > 0,

= —2-J+2-^-1(l—i)-^-1 —2"-» {(1—J)-J—1} = 0;

but £ a» o = £ 2 - i = 1.
o ' I

Hence 2 a = 1
(J)(0

and, as a7i j = — ati j ,

2 a = — 1 .

It follows by a well known theorem of Pringsheim's that the double series
2 a is not convergent. Hence we infer (assuming for a moment that the

(U)
condition of finitude is satisfied) that

lim / = — 1, lim / = 1,
(x)(y) (a)(*)

and therefore (by the same theorem) l im / is not determinate. It is

interesting to note that in such a case as this we can make this last
negative inference. In the case of Abel's theorem no negative inference
is possible.
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To verify that, as a matter of fact, the condition of finitude is satisfied,
we have only to observe that, ii m = n,

Sm, n = 0 ,

m ii in. n

w h i l e , i f m > n , s m > n = 2 2 a i ( j = 2 2 a i t j .
' {=0j=0 tJ i-n+1 j=0

In this last expression every term is positive, and
oo n.

Sm n ^ 2 2 0i j 5

but, since sn,» = 0,
00 11 CO 71

2J a% j —̂ ZJ 2J a$, j —• x .
i=n+l j=0 i=0 j=0

Thus we may take C = 1.
It is easy to verify our conclusions, for

lim/ = —1, lim/ = 1.

(ii.) Suppose that
1 a

sin- = ao+OjX+agic + . . . (0 < x < 1),

and consider the double series defined by the scheme

ttj ^~ 0Q» ^~ 01 "™~ 01 > ^~ 0J> ^~ 08* • • • 1

Then, if m > 2, n, > 2, sTO,» = 0 ; so that

2 aitj = 0.

But neither repeated series is convergent, since ao-f01+02+... is not
convergent.* In this case

f(x, y) = (l—x) sin-—- + ( l - y ) sin — - ;
i y I x

so that lim / = 0

while neither repeated limit exists.

* For, if it were, sin would by Abel's theorem have a limit for x = 1, which is not

1 — x
the case.
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It is true that we have not in this case verified the condition of
finitude, and it is difficult to see exactly how this can be done, as av is
a complicated function of v. But it is only necessary to observe that

to remove this objection we may replace sin by any function of x

which satisfies the following conditions :—

(i.) f(x) = ao+alx+... (0 < x < 1);
(ii.) |ao+a1+...+a,,| < C;
(iii.) f(x) oscillates between finite limits of indetermination for x = 1.

Such functions certainly exist.*

7. Statement of the Theorems of Frobenius and Holder.

Abel's theorem gives no information as to the behaviour near x = 1
of the function f(x), in case the series (1) is not convei'gent ; but if the
series oscillates it is quite possible that the limit

lim/(a;)
1 = 1

may be finite and determinate, in spite of the divergence of the series. +
Frobenius + was the first to obtain a result giving information about this
case ; his theorem may be stated as follows:—

Let sn = 2 aj;

in case sn approaches no definite limit as n increases to infinity, it may

* One may, in fact, be constructed as follows. Divide (0, 1) into the intervals

Let <r be an assigned small positive quantity. Choose n, so that throughout in,

| ( i _ 2 * ) - ( - l ) | < <r.

Now choose p? so that throughout »„,

u» so that throughout t,,, | l—2z + 2x''2—(+ 1) | < <r,

p3 so that throughout »„, xv* (1 + x + z2 + ...) < <r,

and so on. Then it is easy to see that, if

/(*) = l-2zp> + 2x'''-2z»' + ... (px = 1),

f(x) differs from — 1 by less than 3<r in «„_, t,,3, i,,5, ..., and from +1 by less than 3cr in »,s, i"4, i,,6, . . . .
The numbers plt pit p^, ... increase with very great rapidity.

t For example, let f(x) = 1/(1 + x) = 1 —a.- + a:—a^+ .. . ; then lim f(x) is equal to $, al-

though 1 —1 + 1 —1 + 1 —1 + ... is oscillatory. But it has been proved that if lim sn = » , then
lim f{x) — eo .
x - l

% Crelle'a Journal, Bd. LXXXIX., 1880, p. 262.
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liappen that the arithmetic mean

approaches a limit I; then the limit

Mm f{x)
x=l

exists and is equal to L
It may be noticed incidentally that, if Sj does approach a definite limit

I, then the arithmetic mean s™ will approach the same limit. For an
integer n can be chosen so that

I sj ~~ 11 < °">
if j > n ; n being fixed, choose N so that

I so+si+s2+---+Sn-i — nl | < N<r.
Then

if j > ?i and N; that is, lim s}1} = Z.
j=»

A similar method can be used to prove that if sn tends to infinity with
n, then the same is true of s™.

The theorem of Frobenius was extended further by Holder,* so as to
cover cases in which the first arithmetic mean has no definite limit.

Holder writes

S = = ^ S ° "• S l ' S 2 ' ' " • ' S n ' '

sf =
The extended theorem is then

lim sf < lim/(z) < lim/(a) < lim s{*\

provided that | ŝ ;) | < C for all values of n.

* Math. Annalen, Bd. xx., 1882, p. 535.
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8. Extension of Frobe?iius's Theorem to Double Series.

Let us write

(12) Sm>n= dij, 4 u = — — - — — 2 5 i j ;

( + l ) ( + l )
so that s^tn is an arithmetic mean amongst the sums smn. Then the
theorem is:—

(in, n)

then also lim f(x, y) = 2>

provided that

/or aW values of m, n {the present form of the condition of finitude).

In virtue of equations (12), we have

A fo'si-i.i-J = Si,j} A [si-u-j] = ciij.
(.hi) (i,j)

Hence, using (13), we deduce

(14) | Sij\ < C[(»+l)(; + l )+ t ( i+ l )+(*+l ) i+v] < 4O
and

(15) "* K, i l<16C( i+l )0 '+D-
It follows at once, from (13), (14), and (15), that the three series

are all absolutely convergent, since their terms are less numerically than
the corresponding terms in the series for

Further we find by direct multiplication that

Thus, using (8), it is clear that

(16) /(*, y) = {l-x)*0—y)*2

But, since the arithmetic means have the limiting value /, an integer N
can be found such that

(17) \$)-l\<<r, for i,j>N,

however small the positive number cr may be; further, from (13), it follows
t h a t \l | < C, | s^j-l | < 2(7, for all values of i, j .
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Thus, since {l-xf{l-yfL{i-\- l){j+l)xiyj = 1,

it follows, from (16), that

T I ' ) * / > / 1 ^^~ / ^^^ i | « ^ _ / j * i l l « ^ — ' J y I • i * J " ^ ^ l i ( / ) — » — i l i e ^̂ —• / 1 T * fjt *

p N - l N - l oo N - l oo co - i

—xf{l— yf\ 2 + 2 2 + 2 2 + 2 .
Li,j=0 i=0 j=N j=0 i=N i,j=N-»

But, from (17), it is evident that
CO

** _ y

also

2
i,j=N

N - l
N - l

< 2C 2 (i
•v/=o

N—1

2
i=0.

N - l

2
j = 0

oo

2
i=N

oo

2

W2 (i+l) 2
i=0 j=N

j = 0

Combining these four inequalities, we obtain

(18) \f{x,y)-l\

Now choose S so that

N(N+l)C82[%+%N(N+l)8*~] < a-,

which is possible, since N is now £sed.* Then plainly

N(N+l)C[(l-xf+(l-y)9'HN(N+l)(l-xf{l-y)2-] < a,

if 1—x < S, 1—y < 8 ; and so (518) :ieads to the result

\f{x,y)-l\<tor,
if 1—x < 8, 1—y < 6 ; that is,

(19) \imf(x,y) = l,
(*. y)

which is the analogue of Frobenius'c theorem.
It is easy to prove, by a similar method, that, in case sfj does not;

approach a definite limit, but oscillates between a maximum limit, and a
minimum limit, then

lim sf) < lim/(a>, y) < lim/(a>, y) < lim 8^.
(U) >J (xy) G^y) (O

f) < / y < /
(U) >J (x^y) G^y) (O

Before considering the case of repeated limits of the double series, we
.shall give an example of the result contained in equation (19).

• One way of doing it is to take for 8 the smaller of the two values [(r/4iV"(X+ 1) C]l>
r<r,'.\"2(-V+ 1)5C']* : the araaller will usually ba the first.
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9. Lord Kelvin's Series.

In Lord Kelvin's discussion of the electrical force between two equal
conducting spheres in contact,* he employs the double series given by

ai)j = (-l)i+jijl(i+j)2 (i, j = 1, 2, 3, ...),

the scheme for which is

. 1.1 2.1 , 3 . 1 4.1 ,_
"t* 2̂  ' 32 » ' 42 ' 5 2 » 1 • • • >

1 .2 . 2 . 2 3 . 2 , 4 . 2

1.3 2 . 3 , 3 ^ 4 . 3
42 ' 52 ' ~*~ 62 ' 72 '

1.4 , 2 .4 3.4 . 4 .4
52 ' "*" 62 ' 7a ' 8a '

He shows that! 2 a< j = 2 a* j = £(log 2 — ̂ ) = Z,
(00) O)W

say, the method employed being, essentially, the same as that used below.
Before proceeding to the general discussion, we shall evaluate f(x, x);

now here | a^\ ^ 5 , so that the series for f(x, y) is absolutely con-
vergent. Thus, we may write

f(x,x)= S
n=2

But Vo , , , . , = (-D-V^w-tJ/n9 = (-l)"^(n-l/w)
i = l t = l

and thus

fix, x) = J 2 (n-l/n)(-x)'1 = ^ 2 {n-Hn){-x)n

2 l

From this equation it is plain that

* PAiZ. Mag., April and August, 1853 ; Reprint of Electrical Papers, No. vi., Art. 140.

t I t is of some interest to observe that it is the repeated summation which gives the correct
expression for the force between the spheres. But this is NOT the force between the two sets of images ;
in fact, the latter force can only be regarded as lim S(j. where t, j approach infinity in such a way
that i/j tends to the limit unity ; but, as will be seen below, lim «,,- is then not detmninnte.
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a result which has sometimes been used to evaluate the sum of Kelvin's
series.*

Next, to find the general value of f(x, y), we write

/(*, y) = 2
but

2 xy-M =o ^ y ( i r 2 ^ v ( 2 x y M ( i r 2 ^
»=i ' * M2 dxcy\i=o I n2 dxoy\ x—y

n2L (x—yf ix—yf J

It will be observed that this expression is identically zero for n = 1, and so
the summation may be extended to include n = 1; then we have

(i-y)*f(x, y) = I (_i)»J^[(w

93

If we introduce the function <p(x) = 2 (—l)'1"1^'1/^2, it is clear that

0'(x) = 2 (-I)"-1*"-1/** = - log
and then

(x-y)\f(x, y) = (x + y)[<p
If we write, for the moment,

it will be found (after some reductions which are tedious, but not difficult)
that /(*, y) = -ii<P'"(i)-W(i)+i^R
where | B | < (f | ^ | + 2 ^ |)X < |X,

A being the greatest value of | <piv (̂ ) | when £ takes all values from x to y,
inclusive.

Thus \im f(x,y) = lim [ - * & ' " (£) -*0"

= - i lim [</»'" (I) + 30"

and it is clear that I is also the value of the two repeated limits

lim f{x, y) and lim/(x, y).
U)< ' ( ) ( )

* Forexample, by Prof. Tarleton, in his book on Attractions (Ex. 9, p. 279), where the result
i- obtained by processes which can hardly be justified.
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Next we consider the value of sm, »; and, to find this, use the theorem

(i+j)-2= r e-vwtdt ;
Jo

so that aitj = (-l)i+^ f ije-{i+i)ttdt.
Jo

Hence
e-*tdt

s. tdt\ 2 (-l)i+Hje^i+^\=\ <f>(m,t)<t>(n,t)
o Li,;=o J Jo

where <j>(m,t) = l + ( - l ) m - 1 \(m-\-l)e-irU-\-me-^+i)t\.

Now

Jo (1+e T Jo d + e ) Jo w

and accordingly

lim _M = 0 = km
™-» Jo (! + e ) m=w Jo

Similarly lim
w = o ° Jo

and so on ; and hence

the value of the integral being obtained by direct integration.* In the
same way, ,. ,

k m sm, n = I-
(m) (7i)

We have thus obtained an illustration of part of the theorem given in
§ 5 ; for we have proved directly that

2 dij= lim / , 2 a.,- j = lim / .
WO) ' (*)(3/) 0 ) ( i ) ' ( ) W

However, the double series 2 a is not convergent, in spite of the fact
(U)

* The indefinite integral is

This is the method employed by Kelvin, loc. cit.

8KB. 2. VOL. 2 . NO. 862.
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that lim / is perfectly determinate. For

from which it easily follows that

lim sm,m+i = 1—YQ, lim sW|W = Z+TV-

It is not difficult to prove that these are the general values of

lim sm ,i and lim sw „.

If w, >? tend to infinity in such a way that lim (m/n) = 1, $,»,„ oscillates
lietween these values; if in such a way that lim(?/i/«) = 0 or oo, sm>n

tends to the determinate limit I.
It will be seen that, in agreement with § 5,

2 fl;,<limf < 2 a, h
(•J) ' ( r . j , ) * (77;;)

Next, if we form the arithmetic mean of s,a>,,, it will be found that

(1) f"0 # / JN ; / .x C~~' tdt

8 = ^i(mt)^(n 0

where ^(/», 0 = 1 + l—^ ^ + ^TT + \ i f

This gives at once

r (i) f'0 e~ntdt j i-

and,to verify the condition of finitude, we observe that, since \\fr(ni, t)\ <. 4,

I SM, a I < 16 I
Jo

or \s%n\<*.

e~2ttdt for all values of m, n,
o

Thus the equation lim s%\ = li
("',") ' (.x, y)

is in complete agreement with the theorem proved in § 8.
From the preceding work it is clear that there is no justification for

assuming the equation
2 a,- j = 2 a,- j = l im/(x, x),

(00) 0)0) ' '=i

* It is easy to see that the conditions given by Bromwich (I.e., p. 201) for this inversion of
limits are satisfied.



1904.] ABEL'S THEOREM ON THE CONTINUITY OP POWER SERIES. 179

until we have proved (i.) that the repeated sums 2 a$ j , 2 a* j are con-
(i)O) ' O)(i)

vergent; and (ii.) that the double limit lim s\n!n is determinate, in addition
(m, n)

to verifying the condition of finitude.
It follows that this method of evaluating the repeated sums is really

far more complicated than Kelvin's direct method of summation; although,
superficially, the former method appears to be the easier.

10. Extension to Bepeated {Two-fold) Series of the Theorems of Frobenius
and Holder.

Returning to the notation of § 4, suppose that the limit

lim b; j

does not exist; it may then happen that the arithmetic means of btj,
namely, 1 j

approach a limit bf); so that

lim 6f> = b(1\

Suppose further that the condition of finitude is satisfied in the form

| bf] | < C, for all values of i, j ;

it follows that the two series

Xbf)x\ 2 6?V
(i) ' (')

are absolutely convergent. The same is true of the series

'EaijX1,

since bitj = Aj j f t f j j , a^j = A[6<ti_J ;

0) 0)

so that | bitj | < 2C0"+D, \ai,j\<

Now write

and 4} = j±l{Q+1+2+j

N 2
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Then plainly

(20) X?} = 2 bf)x\

But, by the process adopted in proving the last equation of § 4, it follows

j = oo (<) «.J (i) l

and so, from (20), we find

(21) lim 3™ = 2 bf}x\
j=« 3 (i) *

Now it has been proved that

and consequently 2at)j£'y' is absolutely convergent, its terms being less
numerically than those in the expansion of 4C(1— ̂ " ' ( l — y)~*. Thus

f{x,y) = y
0) (0

Frobenius's theorem can be applied to this series: and, in virtue of
equation (21), it follows that

lim fix, y) = lim Xf} = 2 6<V.
(?/) . j = » J 0 )

If now either the series 2 bf converges to a sum I, or if the arithmetic
(i)

mean process applied to b{ gives a definite limit I, then

lim f(x, y) = lim 2 &JV = I,
(*)(y) W (0

a result which follows at once from Abel's (or Frobenius's) theorem.
Obviously a similar method can be used to find the limit

lim f(x, y),
(y)(*)

the necessary modifications being made in the hypotheses.
As an illustration, take the series given by

* In § 4, the condition of finitnde was stated in a slightly different form ; but a glan.ee
the proof will show that | bf) \ < C is sufficient for the truth of the conclusion.
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which has the scheme

+ 1, - 1 , +1, - 1 , ....

- 1 , +1, - 1 , +1, ...,

+ 1, - 1 , +1, - 1 , ...,

In this case bij = 0, if j is odd ; and bitj = (—1)\ if j is even.

Hence b™ = lim bf] = £ ( - l ) \ and | bf] \ < 1 for all values of i,j. Thus
j=K

]imf{xty) = 2£(-l)V.
(2/) (i)

The series 2£(—1)* does not converge, but the arithmetic mean process
(i)

leads to the limit £; so that
lim f{x, y) = \,

which may be immediately verified, since f(x, y) = (l+x)~l (l+y)"1- In
this case, as a matter of fact, the theorem of § 8 can be applied ; for s,-, • = 1,
if both i and j are even, while Sij = 0 in every other case. Thus

lim «il] = J,

and so lim f(x, y) = J.
(•-;, y)

It is clear that the method used in this paragraph is capable of
immediate extension to any case in which a finite number* of arithmetic
means must be taken in order to obtain a limit from each column of the
scheme. A corresponding change must be made in the condition of
finitude. Then, if the limits so found from the columns either form a
convergent series with the sum I, or lead to a limit I after a finite
number of arithmetic means, the equation

lim f(x, y) = I
(*)(V)

is true.

A simple example which we do not pause to work out in detail is given

b y cnj = (-)i

* This number may vary with /, so long as it has a finite maximum. This is clear, in con-
sequence of a theorem proved in $ 7, according to which, if a limit is obtained from an arithmetic
mean of any order, the same limit will belong to all the subsequent arithmetic mean*.
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or, more generally,

au = (i+vp(j+ip exp |

11. Extension of Holder's Theorems to Double Series : Double Limit.

Continuing the notation of equation (12), let us write

.0) = * y s. .

^L> o(2) — 1 y o(1)

¥
Suppose that the condition of finitude

i,j

is verified for all values of i, j ; then, by a process analogous to that
used in (14) and (15), we deduce

(23) | « u | <4 t

\s(!;jr)\ < 4r{i+lY(j+lYC (r = 0,l, 2, ..., k-1).

From (28) it is clear that each of the series

Idijxtyi, lsitJ^t 2«!>V (r = 1, 2, ..., k)

is absolutely convergent; since their terms are numerically less than the
corresponding terms in 4fc+1(&!)2 C(l-

We prove next the following preliminary lemma:

Assuming the truth of the equation

(24) l i m ( l - x Y + 1 ( l y
( ' •< / ) (U)

where 0 is a polynomial of the form

i] P<p (if j) = —- J~~ -\- terms of lower degree,
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then also

(25) lim (l-xY+l(l-yrl 2 <f>{i, j)tfj^Y = I,

provided that (24) is valid for all integers p, q.
To prove the lemma, we use the identity

which gives

(26) 2 0(i j ^ ' j V ^ = (l-as)(i-y) 2 (i

[
(0

-yd-a ) 2 (t+D(;+l)[A
(i. j) (j)

-\-xy 2 (i-

But the polynomials appearing in these series are of the forms

(i+1)0'+1)0{i,j) = (p+l)(q + l) 7~rjy, (/j.!);"+" l o w e r t e r m s '

(i)

(j)

Thus, in virtue of (24), we find

(0

A
(J)

( / 2 /
(as, v) (i. j)

Combining the last four equations with equation (26), we see that

-y)5+1 2 0(t, j J ^ a s Y
(«, 1/) (i, i>

= Z,

and this is equation (25). Thus the lemma is proved.
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It is now clear that, if the equation

(27) - y r 1 2 0(»,
(*,»)

is true for all integers p, q and for any particular integer k, then also the
equation

(28) limU-zrM-yr1 2 <p(i,j)sitjxy = I
(*, y) (i, j)

is true.

We shall now establish the truth of (27), on the hypothesis that

Let us write for brevity

so that

An integer N can now be found, corresponding to any assigned positive
number a, such that

-l\<<r, if i,j>N.

values of i, j ;

Further, a number g can be found such that

and so, using the condition of finitude,

and

so that

Now

and

| <f>sfj\ < gCyfs, for all values of i, j ,

\1\<C;

(U)

.v-i

N-l N-l oo tf-1 « oo

2 + 2 2 - 1 - 2 2 + 2
i,j=O i=0 j=iV j=0 i = ^ i,j=N

i,j=O i.J=O

N - l CO

2 2
i = 0 j=W

ce AT—1

2 2
i-.V j=0

+1

i: ^ < ig+vc
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Hence we deduce

and we can choose 8 so that the right-hand side of this inequality is less
than 2<r, provided that l—x, l—y&re each less than 8. Hence

But ( l - x F + 1 ( l

and equations (27), (28) follow at once.
If we now take in (28) the special values*

it will be seen that
}im(l-x)(l-y) 2
{x, y) (t,;)

or, using equation (8), lim f(x, y) = I.

Thus the following theorem has been established :—

If% for all values of i, j , \ s^] \ < C, and if

lim sf\ = I,

then also lim /(as, y) = I.
(', y)

This is the general extension of Holder's theorem to double series; the
method can be easily modified so as to include the possibility that sfj may
oscillate; the result is then

lim 4 j < lim f(x, y) < lim f{x, y) < lim sf].

12. The General Theorem.

We proceed now to the proof of the general theorem stated in § 2. It
has been already pointed out that the argument of § 8 applies to the

* This appears to be the only case of practical importance, but the introduction of this
specialization earlier does not materially simplify the work.
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general case when it is the convergence of the multiple series proper

2 a
(1, 2, ..., n)

which is given. To prove the theorem in its most general form it is con-
venient to proceed by induction. We shall adopt the following contracted
notation. We denote the groups of suffixes (iv i2, ..., iP), (ip+i, ..., i,), ...,
(ir+i, ..., in) by (a), (6), ..., (/*); so that the series summed in the manner
explained at the top of p. 162 will be written as

(29) 2 a.
(a)03)...(M)

I

Further, by 2 a, we denote the sum in which % ranges from 0 to Ilf i2
a=0

from 0 to 72» •••> h from 0 *° -^ a nd by x{a) we denote x?x!2
2 ... x£.

Let us then assume (i.) that the condition of finitude is satisfied, (ii.) that
the series (29) is convergent, and (iii.) that the theorem holds in its most
general form for any number of indices less than n. Let

(30)

Then, since

it follows, from

(81)

and that
(32)

m

2 a

the condition

=

of

|

= 2
O)...G0

(a)

finitude,

2 s z(a)

a.

that

C

(a)

is absolutely convergent. And, since

| a i l > i 2 i . . . , J = I A s i l _ 1 ) . . . , i ( i _ 1 | < 2 " C ;
0,2, .... n)

the series

(33) 2 ax™

is also absolutely convergent. We shall prove further that

(34) 2 2 axM

O)...(M) (»)

is convergent and equal to (32).
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13.

Our first step will be to prove that

(85)

is convergent

(36)

and equal to

2

2

2
(*)

(<0 GO

which is convergent for the same reasons as (32) and (33).
Let

and

2 a = ba>m
M=0

2 a = l im ba> M = ba *

(m of course being a group of suffixes). We have to prove that

lim2(6a,TO-60)x(o) = 0.
(m) (a)

Now
/ 00 /-I

( 2 - 2
\a=0 o=0

<2 r + 1 C

since \baim-ba\<2,r+1C.

We can choose I so that this is < <r. Then, I being fixed, we can choose
M so that | &a,m—K | < t r / I ^a . . . Jj, for all values of (wt) ^ ilf, and all
values of (a) ^ I; thus

(a)
< <r and

(a)
< 2<r.

Hence (85) is convergent and equal to (36).

14.

This argument can now be repeated. Suppose that (X) is the group
of suffixes immediately preceding (/A). We have to show that

(87) 2 2 axM

(a)

The existence of this limit is, of course, implied in cur data.
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is convergent and equal to

(38) 2 ajM 2 a,
(a)

which is convergent for the same reasons as the series (30), (33), and (36).
To prove this we have only to observe that (37) may (after § 13) be
written in the form v ~ u, ~

2 2 ra) 2 a
(A) («) 0*)

and that a repetition of the preceding argument with 2 a in place of a

proves that this is convergent and equal to (38).
By repeating this line of argument as often as may be necessary we

conclude finally that (34) is convergent and equal to (32).

15.

We are now in a position to prove the theorem. For

lim / = 2 2 ax<a)

(/?)... (M) (/3)...0O (a)

(since the theorem holds for any number of indices less than n) and
therefore is equal to 2 #(o) 2 a (by §§ 13, 14). Hence, by a further

(a) (0)...(n)

application of the theorem for p indices,

lim / = lim 2 z<°> 2 a - 2 a.
(a)(fl...(M) (a) (a) (|3)...(fi) (a)tf)...(ft)

The theorem is therefore true for n indices if it is true for any number
less than n ; and therefore it is true generally.

16. Multiplication of Series.

It is well known that from Abel's theorem we can at once deduce
that, if the three series

2 ai, 2 bit 2 d,

where Ci = 2 a^bu
(k+j=i)

are convergent, the third series is the product of the other two. We have
in fact only to make the first two series absolutely convergent by intro-
ducing a factor xl in each term, to multiply the resulting power series,
and to proceed to the limit.

By an exactly similar process we deduce from the theorem proved in
§ 15 that, if the three series

2«t) i l : i . . .> in , 2 6,liia i(i, and 2 ciu ,•,,...,,„,
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where ««,. *» , . . . . iM = 2 ah,..,K bh, ...,{„,
(fct+li = ii, ...,kn+ln = ij

satisfy the condition of finitude and are convergent when summed in the
same way (e.g., in the way specified by 2 ), then the

(1, 2, . . . , I>)(p+l , ...,<})... ( r + l , .... n)

third series is the product of the first two.
Of course similar theorems can be proved for the product of any

number of series.

17. Mean Value Theorems for the General Series.

It is easy to prove by the method of § 11 that, if «!**..., 4 is the k-th.

arithmetic mean of s ,̂ ...,<„, and | s(fc) | < C for all suffixes, and

lim sw = s,
(1, 2, .... n)

then lim / = s.
(1, 2 n)

The form of the arithmetic mean theorem corresponding to the general
theorem of §§ 11-15 is as follows:—

Let 2 ' denote that a series is " summed " by taking any finite number
of arithmetic means. Suppose that

2' 2 ' ... 2 ' a
(«) (« GO

is determinate and equal to s, and that a number C can be assigned such
that the various quantities which we pass through before we arrive at s
are all less than C; then ,. £

lim / = 5.
(«)(/»)...0*) ,


