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Abstract1

Quantitative analysis of stable isotopes (SI) and, more recently, fatty2

acid profiles (FAP) are useful and complementary tools for estimating3

the relative contribution of different prey items in the diet of a predator.4

The combination of these two approaches, however, has thus far been5

limited and qualitative. We propose a mixing model for FAP that follows6

the Bayesian machinery employed in state-of-the-art mixing models for7

SI. This framework provides both point estimates and probability8

distributions for individual and population level diet proportions. Where9

fat content and conversion coefficients are available, they can be used to10

improve diet estimates. This model can be explicitly integrated with11

analogous models for SI to increase resolution and clarify predator-prey12

relationships. We apply our model to simulated data and an13

experimental dataset that allows us to illustrate modeling strategies and14

demonstrate model performance. Our methods are provided as an open15

source software package for the statistical computing environment R.16

Keywords Stable isotope analysis, quantitative fatty acid analysis, QFASA,17

lipid profile, diet analysis, Bayesian mixing model, fatty acid signature, dietary18

marker19

1 Introduction20

Quantitative estimates of an animals diet are a critical component of21

predator-prey studies, ecosystem models, and ecosystem-based management.22

Existing methods of estimating diet proportions all have strengths and23
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weaknesses (Bowen & Iverson, 2012). Traditional stomach content and fecal24

matter analysis represent a brief snapshot of diet at a particularly place and25

time and can be invasive, time-consuming, and potentially biased by26

differential rates of digestion of prey or ingestion of identifiable prey parts27

(Bowen & Iverson, 2012). Chemical markers such as stable isotopes (SI) and28

fatty acid profiles (FAP) solve some of these problems. For example, both29

approaches integrate diet composition over an extended time period - typically30

weeks to months, depending on tissue turnover rates (Tucker, Bowen &31

Iverson, 2008). These advantages have led to rapid growth in the use of32

chemical markers in diet studies (Bowen & Iverson, 2012; Elsdon, 2010; Kelly33

& Scheibling, 2011; Williams & Buck, 2010). However, chemical dietary34

markers generally lack the specificity of traditional stomach content analysis.35

In particular, several prey species often have similar isotopic signatures. More36

recent studies have sought greater dietary resolution through the use of SI of37

other elements in addition to carbon and nitrogen(Belicka et al., 2012),38

compound specific SI ratios (Budge et al., 2008; Jack & Wing, 2011), or a39

combination of stomach content analysis and SI or FAP (Pethybridge et al.,40

2012). The use of SI and FAP in combination also holds great promise;41

however the few studies to date that have used both chemical markers have42

been qualitative (Guest et al., 2009) or based on positive correlation of results43

from both methods (Tucker, Bowen & Iverson, 2008).44

Analysis tools for SI data have become very sophisticated in recent years,45

starting with the development of general Bayesian analysis tools for estimating46

diet proportions, and leading to customized (hierarchical) models for47
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individual applications (Hopkins & Ferguson, 2012; Moore & Semmens, 2008;48

Parnell et al., 2013). The latter models can, for instance, estimate dietary49

differences of geographically distinct populations (Semmens et al., 2009),50

accommodate temporal changes in diets or estimate the effect of covariates51

(e.g., age, size, sex) on diet proportions (Parnell et al., 2013).While these52

models provide a considerable step towards ecologically relevant models in diet53

studies, the underlying SI data is limited in the resolution that it can provide.54

Since typically only 2-3 SI are measured, the contrast that is achievable from55

such a low number of variables is necessarily limited, especially when the56

number of potential prey items increases (Phillips & Gregg, 2003; Ward et al.,57

2011). Optimally aggregating prey items into prey groups may circumvent this58

problem (Ward et al., 2011), but may also be less satisfactory in complex food59

webs.60

FAP data can, in theory, provide considerably more resolution compared to SI61

data, due to large number of potential fatty acids that can be measured.62

Furthermore, Blanchard (2011) developed a Bayesian model for diet inference63

from fatty acids (furthering the development of Bayesian mixing models for64

compositional data by Billheimer (2001)), showing that model based inferences65

of predator diets from fatty acids are achievable. Nevertheless, studies66

employing FAP remain either qualitative in their estimates of prey proportions67

in predator diets, or use Quantitative Fatty Acid Signature Analysis (Iverson68

et al., 2004) to obtain quantitative estimates of diet proportions.69

QFASA is the only available (i.e., off the shelf) method thus far for use with70

FAP data, and, in contrast to recent (Bayesian) SI and FAP mixing models,71

3



relies on a distance metric rather than a model based formulation to estimate72

the most likely diet proportions. This framework provided the first73

quantitative approach to estimating diet proportions using fatty acids and it74

has already seen widespread use, particularly in studies of marine mammals75

(Bowen & Iverson, 2012) and seabirds (Williams & Buck, 2010). Nevertheless,76

QFASA has a number of limitations. Since it is not based on a probabilistic77

model, it is difficult to estimate uncertainty associated with estimated diet78

proportions (but see Steward 2005 as cited in Blanchard, 2011). The absence79

of an explicit model also makes it impossible to build ecological mechanisms80

(e.g., covariates of consumed diets) directly into the model. Furthermore,81

uncertainty about conversion coefficients representing enrichment and82

preferential uptake of fatty acids cannot be considered, yet small changes in83

these coefficients can lead to differences in inferred diet proportions (Wang,84

Hollmen & Iverson, 2010).85

Given the discrepancy in methods applied to SI and FAP data, it is perhaps86

not surprising that their joint application has commonly relied on qualitative87

comparisons. Because both markers integrate diet composition over often88

comparable time-scales, however, an explicit integration of these data types89

could provide substantial benefits. While FAP data could mitigate the90

resolution problem in SI data, SI data could provide increased resolution and91

clarify predator-prey relationships, the knowledge of which is usually a92

pre-requisite for FAP data. For example, for many non-modified fatty acids,93

FAP alone cannot discriminate between the case of two species which share a94

common diet and the situation in which one of these species eats the other. In95
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either case, the two species may have similar FAP. The addition of a stable96

isotope with trophic fractionation (e.g., 15N), however, can readily distinguish97

predation from dietary overlap.98

Here, we develop a mixing model for FAP data based on a probabilistic model99

whose parameters are estimated using Bayesian methods. Using both100

simulated and published data, we demonstrate the suitability of this model for101

FAP analysis and highlight the potential benefit of explicit integration with SI102

data to increase the precision of diet estimates.103

2 Methods104

2.1 A Bayesian mixing model for FAP105

Bayesian models for SI data are commonly based on the assumption that SI106

ratios are normally distributed. This assumption cannot be made for FAP107

data, since for most methods of analysis, the concentration of individual fatty108

acids is normalized to the total lipid content of the sample. Thus, the FAP are109

a collection of proportions (referred to as a composition), which lie between 0110

and 1, and are constrained to sum to 1. A common solution to this problem,111

however, is to consider transformations that make the data approximately112

normal (Budge, Iverson & Koopman, 2006). To construct our model, we113

considered the additive log ratio transformation Aitchison & Bacon-Shone114

(1999), also called alr transformation, such that115
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yi,s = alr(ϕi,s) = log

(
ϕi,s,1...p−1

ϕi,s,p

)
(1)

where ϕi,s is the p-variate fatty acid composition of individual i of prey species116

s, with a total of n potential prey species considered. Note that in the117

following we often drop the subscript for fatty acids, e.g., ϕi,s and yi,s are thus118

p and p− 1 dimensional vectors, respectively. We assumed that the119

distribution of y is multivariate normal, with species specific mean µs and120

covariance matrix ΣS , or yi,s ∼ N(µs,Σs). A vaguely informative prior on µs121

and Σs allows for uncertainty in prey distributions (Ward, Semmens &122

Schindler, 2010) to propagate to estimates of diet proportions.123

Each predator j consumes a proportion πj of each prey source, and analogous124

to stable isotope mixing models, predator FAP are then a linear combination125

of prey FAPs, normalised to sum to one. Since predators may selectively126

assimilate or metabolize fatty acids (Budge, Iverson & Koopman, 2006;127

Iverson et al., 2004; Rosen & Tollit, 2012), we specify prey-specific conversion128

coefficients κs = κs,1...κs,p for each of the p fatty acids (Rosen & Tollit, 2012).129

Furthermore, the n prey species likely have different fat content Φ that will130

affect the total amount of fatty acids assimilated from each prey species by the131

predator. The expected FAP of predator τj is then a linear combination of the132

prey FAP, modified by conversion coefficients for each fatty acid p and fat133

content for each prey i:134
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tj ∼ N(alr(τj),Στ ) (2)

τj = C

{
n∑
s

(πj,sΦs) (κs ⊗ ϕj,s)

}
(3)

Here, C is the closure operation which normalizes the FAP to sum to one and135

⊗ is the outer (element wise) product. ϕs,j is the FAP of prey items of species136

s consumed by predator j. Similarly to Parnell et al. (2013), we thus assumed137

that individual predators do not necessarily feed on ’average’ prey items, but138

rather consume prey items with signatures drawn from the estimated prey139

distribution. We again formulate predator signatures t as draws from a normal140

distribution after transformation. We further assumed that Φ and κ are141

log-normally and gamma distributed, respectively, around known mean and142

variance values (estimated or calculated from controlled diet experiments, see143

below). The closure operation in Equation 2 (i.e., the sum-to-one constraint144

on the FAP) leads to κ being determined in terms of relative uptake of fatty145

acids (i.e., up to a multiplicative constant), and implicitly makes the146

multivariate distribution over all κ a Dirichlet distribution. The same logic147

applies to Φ, and in both cases we opted for formulations that can be readily148

parametrised from priors studies or published values (e.g., sample means and149

variances from experiments).150

The diet proportions π of predators are the main focus of investigation in diet151

studies. These may be modeled at the (statistical) population level (thus152

dropping the subscript j in Equation 2) or at the individual level, as suggested153
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in Equation 2. In the latter case individual predator FAP can be modeled as154

draws from a population level distribution of predator diet proportions.155

Recent approaches to stable isotope mixing have focused on transformations of156

the diet proportion vector π to get around the problems associated with the157

compositional nature of the diet proportions in such a hierarchical setup, and158

we follow this approach in our model. The diet proportions are transformed159

using clr transformations (Semmens et al., 2009), such that the support of is160

the real line rather than the interval [0;1], and we then assume that161

clr(πj) ∼ N(Π,ΣΠ), where Π is the vector of mean (population level) diet162

proportions. It is then possible to model diet proportions as function of163

covariates, such as size, sex, or region (i.e., in a regression formulation). While164

this approach is appealing, it adds to computation time employed to estimate165

model parameters, and generally slower convergence. We therefore use a vague166

Dirichlet prior on the proportions when convenient (e.g., when we estimate167

only population level parameters).168

An R (R Core Team, 2014) package (called fastinR) implementing methods169

outlined here, along with simulated examples and the analysis of experimental170

data described further below, is available on the open source repository171

github.com/philipp-neubauer/fastinR. Models implemented in the package172

include the above-mentioned formulations for individual diet estimates,173

population level estimates or both as well as linear model (regression and174

ANOVA) formulations for diet proportions, all available for SI and FAP175

individually or as combined models (see below). Model parameters were176

estimated using Markov Chain Monte Carlo methods implemented in JAGS177
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(Plummer, 2003), called from R through higher level functions in the fastinR178

package that allow for data input, inspection and manipulation.179

Depending on the amount of samples for prey and predators, it may be180

necessary to use informative priors for Σs and Στ . Both were given181

inverse-Wishart priors, and since both are co-variances of transformed data, it182

is not straightforward to formulate default priors for these parameters. We183

have found that in practice manual adjustment of these priors is often needed184

to be able to achieve convergence and mixing (efficient exploration of the185

posterior distribution by the sampling algorithm) of the MCMC algorithms186

employed by JAGS. This is especially true when there are few source and/or187

predator samples. The package allows for high level adjustment of these188

parameters through the specification of the order of magnitude of the diagonal189

of each covariance matrix.190

2.2 Joint diet estimation from FAP and SI191

There are at least three potential benefits of integrating FAP and SI data: i)192

increased information to discriminate among sources, ii) the potential of SI to193

resolve predator prey relationships due to trophic enrichment of SI, and iii)194

the potential reduction in estimation error due to a larger body of research on195

fractionation coefficients for stable isotopes as opposed to conversion196

coefficients in FAP. Integrating the two complimentary types of data in a197

single model to estimate diet proportions may thus considerably improve198

estimates of diet proportions over estimation from wither data-source alone.199
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Our model for FAP is conceptually similar to recent models proposed for SI200

data, and integration of FAP and SI data into a single model is201

straightforward in the present setting. We again assume that the vector of SI202

signatures of prey items q follow a multivariate normal distribution, such that203

ySI
q,s ∼ N(µSI

s ,ΣSI
s ), where the superscript SI denotes that these are stable204

isotope signatures. Predator SI signatures are again a linear combination of205

prey SI, this time modified by additive fractionation coefficients γ.206

Fractionation may, in turn, depend on prey isotope concentrations (Caut,207

Angulo & Courchamp, 2009; Hussey et al., 2014). In our model, we assume208

additive fractionation, and suggest that concentration dependence is taken209

into account when specifying distributions for prey and SI specific210

fractionation coefficients γS (see examples below). The expected SI signature211

for predator r is then212

tSI
r =

n∑
s

πr,s (yq,r + γs) (4)

clr(πr) ∼ N(Π,ΣΠ) (5)

γs,SI ∼ N(νSI , σSI) (6)

Note that the different subscripts to the FAP model imply that there is no213

need to have SI and FAP from the same prey or predator samples, as long as214

we can assume that the prey samples are drawn from the same statistical215

population as those for FAP, and that individual diet proportions of predators216
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are drawn from the same population distribution of diet proportions.217

The exact formulation of the integration of SI and FAP depends on the218

assumptions that one is comfortable with in a given setting: identical dietary219

proportions may be appropriate if diets (and hence SI and FAP) are thought220

to be stable, or if both chemical tracers are thought to integrate over similar221

time-scales. If the time scales of these two elements are thought to be different222

(e.g., for different tissue types), individual diet proportions may be more223

appropriate, and may be drawn from an overall population distribution of diet224

proportions. Any of these options can be implemented in the fastinR package.225

2.3 Simulation studies226

We initially explored the feasibility and performance of our model setup in a227

range of simulations, which are illustrated (including code) in supplemental228

information S1. Simulations were also used to explore sensitivities of inferred229

diet proportions to the source configuration and diet evenness in a series of230

simulation experiments. We hypothesized that estimated diet proportions are231

sensitive to diet source separation in FAP space, co-linearity in FAP space232

(Blanchard, 2011) and diet makeup (e.g., specialist versus generalist diets).233

Further details and simulation results can be found in supplemental234

information S2.235
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2.4 Selecting fatty acids for analysis: an ordination236

approach237

A potentially large number of FAs are available from analysis methods such as238

gas-chromatography. A common practice is to simply set a threshold and keep239

the most abundant FA for analysis. This practice may, however, discard240

potential useful information, and a more judicious approach is to retain FAs241

based on the among diet source variability that they explain. Wang, Hollmen242

& Iverson (2010) used a method by which they tested the QFASA method on243

a series of subsets to determine the subset that gave the best accuracy.244

Although feasible, such a method is prohibitive with fully Bayesian models,245

which can take a long time to run with a realistic dataset.246

Here, we propose a variable selection method based on constrained ordination,247

which considers the contribution of individual fatty acids to axes separating248

diet sources. Based on this contribution relative to the overall separation, the249

user can choose fatty acids that contribute most to source separation. This250

procedure is intended to reduce computation time (and dimensionality) of the251

models, retaining accuracy in diet estimates. Further details about the252

procedure are given in supplemental information S3.253
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2.5 Application: estimating predator diets in a254

controlled experiment255

To illustrate the potential of the models presented above, we analysed data256

from an experimental study by Stowasser et al. (2006), which investigated257

changes in squid FAP and SI as a function of diet treatments. The treatments258

consisted of exclusive fish and crustacean diets, as well as switched and mixed259

diets, with the former switching diets from fish (henceforth SF, n=4) to260

crustacean (SC, n=5) after 15 days of the 30 day experiment.261

In order to apply our model, we first estimated conversion coefficients of FAP262

and fractionation in SI, using squid from the 30 day diet treatments feeding263

exclusively crustacean and fish diets. The model for estimation of SI264

fractionation followed the model in Hussey et al. (2014), thus accounting for265

diet δ15N and δ13C, and used their results as priors for fractionation266

parameters for δ15N , and results from Caut, Angulo & Courchamp (2009) to267

construct priors for δ13C. Estimation of FA conversion coefficients used (2)268

with proportions assumed known from feeding trials. Details on the estimation269

of conversion coefficients and fractionation are given in supplemental270

information S4.271

In our diet analysis, we analyzed samples from the switched diet treatments,272

and used both SI and FAP to investigate if our models allow us to infer diet273

proportions in either treatments. We subset the data to use only switched diet274

squid that were analysed for FAP and SI after at least 10 days under the275

respective treatment. We only had overlapping SI and FAP for the SC276
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treatment squid, and we therefore started by analyzing this treatment in277

isolation to demonstrate that both SI and FAP can resolve diet proportions,278

and to demonstrate the benefit of using the two tracers in a joint model. We279

then analyzed the SF squid, for which we only had 3 specimen with FAP and 1280

specimen with SI. The markers available for this treatment did not overlap for281

any of the sampled squid.282

We lastly estimated individual diet proportions in the SC treatment. To283

demonstrate how the model based approach to diet estimation can be use to284

answer ecologically relevant questions about predator diets, we also analyzed285

SF and SC treatment squid together in a linear model setup that investigated286

treatment differences explicitly. The linear model used treatment dummy287

variables to estimate individual intercepts for each treatment and prey288

combination, and allows us to estimate, conditional on the data and priors,289

whether squid in either one treatment group consumed significantly more of290

any one prey type.291

FAP analyses used data obtained by analyzing digestive glad tissue, which is292

thought to rapidly assimilate dietary fatty acids in relatively unmodified293

proportions relative to the original diet. SI were analyzed from muscle tissue294

since we had more individuals sampled for SI from this tissue, which may be295

more prone to fractionation and slower turnover than digestive glad tissue. In296

the original study, a total of 25 FAs were reported. Here, we selected FAs297

using ordination methods described above. For estimation of model298

parameters, priors for prey and predator specific variances were adjusted299

manually to give reasonable behaviour in the MCMC algorithm. The analyses300
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are detailed in supplemental information S5.301

3 Results302

3.1 Simulation studies303

Simulated test cases suggested that our model can estimate diet proportions304

from both SI and FAP (supplemental information S1), with accuracy305

depending mainly on source separation and diet evenness (supplemental306

information S2). For very uneven diet proportions, such as in the feeding trials307

analyzed in the squid example, we found the choice of posterior means as308

point estimate for diet proportions inevitably introduced error at the margins309

of the 0-1 interval when compared to true simulated diet proportions.310

Models with low accuracy conversion coefficients (with prior mean for all FA311

set to 1 and large prior variance) also performed substantially worse than312

models with accurately specified coefficients when comparing point estimates313

of diet proportions to simulated diet proportions(supplemental information314

S2), showing decreasing accuracy with increasing variance among simulated315

convergence coefficients.316

3.2 Squid diet experiments317

Dimension reduction by NMDS on FAP of squid and their potential prey318

suggested that crustacean diets were readily distinguishable from fish diets319

(Figure 1a). For fish diet items, however, no single fish species could be clearly320
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Figure 1: Non-metric Multi-Dimensional Scaling (NMDS) plots of FAP for squid
and their potential prey a) before and b) after variable selection.

distinguished from any other fish species. Predator signatures of switched diet321

squid aligned with their respective diets after correcting by posterior means of322

estimated conversion coefficients. The latter were different from expected323

(1/p) for many FA in the analysis (supplemental information S4).324

Selection of FAs using constrained ordination lead to four FAs, 22.6n.3,325

20.5n.3, 20.4n.6 and 18.1n.9 being retained for analysis (Figure 2), accounting326
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Figure 2: a) Cumulative proportion of between prey variance along CAP axes
explained by individual fatty acids being added to the datasets, ordered by the
contribution of each fatty acid to the total variance. b) Prey matrix condition
number as a function of individual fatty acids being added as in a).

for a total of 74% of total among source variation on ordination axes while327

maintaining a low prey matrix condition number (κ = 15.67), suggesting328

limited co-linearity. The matrix condition number nearly doubled for the next329

most important fatty acid (κ = 29.17) and increased exponentially thereafter330

with addition of other fatty acids. The resulting NMDS plot suggested that331

the reduction from 22 to four FA did not significantly alter the configuration332

of predators and prey items in FAP space, despite the drastically lowered333

number of input dimensions (Figure 1b). Retaining a larger subset of FAs (8334

FAs) did not qualitatively alter the results, but did lead to lower uncertainty335

in diet proportion estimates, suggesting that we lost some relevant information336

by retaining four of337
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Figure 3: Stable isotope signatures of squid and their potential prey.

SI also showed clear separation between crustacean and fish prey (Figure 3),338

but showed two groups for fish prey items, both consisting of specimen from339

more than one fish species. Squid δ15N was also substantially lower than any340

of the prey species analysed even after correcting for estimated fractionation341

coefficients.342

FAP were able to resolve population level SC treatment squid diets, suggesting343

a diet predominantly based on crustaceans (Figure 4). While uncertainty344

about the exact diet proportions remained for both crustaceans and fish, most345

of the posterior density for crustacean diet proportions was clearly346

concentrated towards high proportions of squid. For fish, posteriors were347

peaked near zero, however, all fish species posteriors had long tails that348

spanned nearly the whole interval of possible diet contributions. An analyses349

based on SI alone gave very similar results, despite different tissue types350

examined (Figure 4).351
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Figure 4: Posterior densities for diet proportion estimates of SC (crustacean only
diet) treatment squid based on FAP, SI and a combined (FAP & SI) analysis.

Combining the two markers lead to a substantial reduction in the uncertainty352

of estimated diet proportions (Figure 4), and suggested a clear dominance of353

crustaceans in the diet. For the combined analysis the spread of the posterior354

distribution for crustaceans in the squid diet was reduced by approximately355

30%, and most of the probability density was shifted closer to one, and the356

reductions in the spread of posterior distributions for fish diet items were as357

high as 70%. Lastly, estimates of individual diet proportions closely mirrored358

population level estimates (Figure 5).359

Due to overlap of fish species in FAP and SI space, similar models for SF360

treatment fish were unclear about the contribution of individual fish species361

(Figure 6), but suggested that crustaceans were a small part in the diet of362

these squid. SI and FAP combined (i.e., adding one squid with SI but no FAP363

data) did not provide much improvement for individual fish species, however,364

combining fish species post-hoc as the sum of individual posterior distributions365

clearly shows a fish based diet (Figure 7).366
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Figure 5: Posterior densities for individual diet proportion estimates of SC squid
based on a hierarchical model for diet proportions using both FAP and SI.
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Figure 6: Posterior densities for diet proportion estimates of SF (fish only diet)
treatment squid based on FAP and a combined (FAP & SI) analysis. Note that
no separate analysis using SI only was run.
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Figure 7: Posterior densities for diet proportion estimates of SF (fish only diet)
treatment squid using both SI and FAP, combining all fish species into a fish
prey group.

4 Discussion367

We presented here a general way to analyse FAP in a Bayesian mixing model,368

and demonstrated that the method can estimate diet proportions in feeding369

trials while accounting for fatty acid conversion and diet fat content. The370

Bayesian framework allows explicit representation of uncertainty about mixing371

proportions as a function of uncertainty about prey distributions, conversion372

coefficients and fat content, which represents a substantial improvement over373

QFASA, the only other currently available method to analyse diet proportions374

from fatty acids.375

The general mixing model framework also allowed us to integrate SI and FAP376

into a joint model for diet estimation. Both approaches have their own limits,377

and the application to squid feeding trials suggests that their combination can378

help to overcome each tracers shortcomings to substantially reduce uncertainty379
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in diet estimates. As an increasing number of studies combine these two tracers380

(Bank et al., 2011; Guest et al., 2008; Guest et al., 2009; Jaschinski, Brepohl381

& Sommer, 2008; Stowasser et al., 2006; Tucker, Bowen & Iverson, 2008), we382

expect that a quantitative method to explicitly compare and combine markers383

will allow practitioners to make more robust inference and explicitly highlight384

discrepancies among methods that may warrant future research.385

Simulation experiments and sensitivity tests suggested that the mixing model386

for FAP can achieve high accuracy of estimated diet proportions in idealised387

settings, and the application to squid feeding trials demonstrated the388

applicability of the model in a practical setting. Our results in the squid study389

further confirm many of the points made by Stowasser et al. (2006), thereby390

giving further credibility to our results. In particular, our analysis of391

discrimination coefficients showed that FA in the digestive glad may undergo392

significant modification and our analysis of switched diet treatments suggested393

that despite the short acclimation time (10-15 days) we can detect dominant394

proportions of the switched diet treatments from both SI and FA. While a395

complete discussion of these findings is beyond the scope of this manuscript,396

these results suggest that the time frame over which FAP and SI integrate diet397

proportions in squid is on the order of weeks rather than month.398

Our results from the squid experimental data also showcased the model399

sensitivities found using simulated data. Fish species within treatments could400

not be discriminated using FAP (and/or SI), and estimated diet proportions401

corresponding to fish species in the SF treatment remained very uncertain.402

These correlations suggest insufficient prey separation at the species level,403
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which is a major determinant of accuracy as shown by simulation experiments.404

Despite the uncertainty in estimated diet proportions for individual fish405

species, the estimate for the group of all fish species as opposed to crustacean406

diets reveals a clear dominance of fish in the diets Figure 7. This example thus407

illustrates another important benefit of a fully Bayesian treatment: rather408

than giving potentially erroneous point estimates in such situations, the wide409

95% intervals suggest that there is insufficient signal in the data to410

discriminate among diets at the species level.411

The decrease in accuracy with decreasing source separation and increasing412

co-linearity reported from simulations and shown in the squid experiments is413

thus due to choosing a point estimate within a large interval rather than the414

model suggesting erroneous point estimates of diet proportions. Similarly, for415

unknown conversion coefficients, posterior distributions of diet estimates are416

generally wide, provided that the prior for conversion coefficients reflects417

uncertainty. Even when uncertainty about diet proportions is relatively low,418

posterior distributions of diet proportions close to 0 or 1 were generally skewed419

rather than symmetric due to the constrained nature of the diet proportions,420

meaning the posterior mode (the highest posterior probability) is often not421

located at the mean of the posterior distribution. In this case, as for very wide422

and/or flat posterior distributions, any point estimate chosen for diet423

proportions is somewhat arbitrary. Overall estimation error from (posterior424

mean) point estimates thus scales with the evenness of the diet proportions as425

well as overall uncertainty in diet proportions, and, rather than relying on426

point estimates of diet proportions in that case, it becomes increasingly427
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important to acknowledge uncertainty in the posterior distributions.428

We opted for a fully Bayesian analysis that estimates prey and predator429

distributions, as well as individual proportions. However, the Bayesian430

approach for FAP comes at a relatively high computational cost: we found431

that there are limits to the dimensionality that the estimation procedure (as432

we formulated it) can deal with. When working with fully Bayesian methods433

in high dimensional applications such as FAP, where the number of measured434

variables can be large (>20 FAs is common), there is an inevitable trade-off435

between computational feasibility and model dimensionality. Since the model436

dimensionality depends at once on the number of prey items, predators and437

fatty acids in the analysis, we have found it to be useful to initially use438

predator FAP (geometric) means or relatively few predator signatures to439

estimate a single population distribution. Once one has determined that the440

model can effectively estimate diet proportions given the data at hand and441

knowledge of conversion coefficients, the model can be re-run with a larger442

number of predators and/or FAs and, although time consuming, may provide443

additional insights. The squid diet example illustrates this strategy: we first444

estimated population level parameters for predators (although we used all445

predator signatures rather than their geometric mean), and then proceeded to446

more complex analyses of individual diet proportions.447

To further address the issue of computational complexity, we presented an448

approach to variable selection for FAPs. An optimal subset of variables is449

usually one that explains the bulk of among prey variance (represented by450

CAP axes), but eliminates FAs that only contribute minimally to separation451
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among sources, and thus only add noise. In our squid application, we found452

that retaining only 4 FA was enough to explain over 95% of among source453

variance, and adding additional FA only added a small amount of signal for454

rapidly increasing co-linearity in prey signatures. While a limited number of455

FA may often be diagnostic of a particular prey type, it may not generally be456

the case that a small number of FA account for the bulk of the signal. The457

computational cost of high dimensional models in the Bayesian framework can458

be limiting in such instances, and the practical trade-off between model459

run-time and accuracy of estimated diet proportions will have to be460

considered. Our aim is to further develop the fastinR package to include461

empirical Bayes options (as described in (Parnell et al., 2013) that would likely462

speed up the models considerably. However, the empirical Bayes approach463

comes at the cost of considering prey distribution parameters as known464

quantities, which may not be desirable with a small number of prey samples.465

Recent developments in SI mixing models have led to increasingly realistic466

models in terms of their error structure (Hopkins & Ferguson, 2012) and467

incorporation of relevant biology, such as time dependent diet proportions and468

SI signatures (Parnell et al., 2013). Given that our FAP and combined FAP469

and SI models employ the same general structure as these models, such470

developments are readily achievable within this framework. It should be noted471

that they present the practitioner with requirements for substantial amounts472

of data of various kinds (i.e., measurement error estimates, collection of SI and473

FAP through time, respectively), and may substantially increase474

computational requirements. Nevertheless, we suggest that the methods475
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presented here provides a basis to use and combine the two most powerful476

markers for diet estimation available in a single framework to produce more477

robust and comparable.478
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