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Abstract1

Quantitative analysis of stable isotopes (SI) and, more recently, fatty2

acid (FA) profiles are useful and complementary tools for estimating the3

relative contribution of different prey items in the diet of a predator.4

The combination of these two approaches, however, has thus far been5

limited and qualitative. We propose a mixing model for FA profiles that6

follows the Bayesian machinery employed in state-of-the-art mixing7

models for SI. This framework provides both point estimates and8

probability distributions for individual and population level diet9

proportions. Where fat content and conversion coefficients are available,10

they can be used to improve diet estimates. This model can be explicitly11

integrated with analogous models for SI to increase resolution and clarify12

predator-prey relationships. We apply our model to simulated data,13

demonstrating feasibility and model performance, and re-analyse an14

experimental dataset to illustrate modeling strategies and applications15

to real fatty acid profiles. Our methods are provided as an open source16

software package for the statistical computing environment R.17

Keywords Stable isotope analysis, quantitative fatty acid analysis, QFASA,18

lipid profile, diet analysis, Bayesian mixing model, fatty acid signature, dietary19

marker20

1 Introduction21

Quantitative estimates of an animals diet are a critical component of22

predator-prey studies, ecosystem models, and ecosystem-based management.23
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Existing methods of estimating diet proportions all have strengths and24

weaknesses (bowen˙methods˙2012 ). Traditional stomach content and fecal25

matter analysis represent a brief snapshot of diet at a particularly place and26

time and can be invasive, time-consuming, and potentially biased by27

differential rates of digestion of prey or ingestion of identifiable prey parts28

(bowen˙methods˙2012 ). Chemical markers such as stable isotopes (SI) and29

fatty acids (FA; often called fatty acid signatures or profiles) solve some of30

these problems. For example, both approaches integrate diet composition over31

an extended time period - typically weeks to months, depending on tissue32

turnover rates (tucker˙convergence˙2008 ). These advantages have led to33

rapid growth in the use of chemical markers in diet studies34

(elsdon˙unraveling˙2010; williams˙using˙2010; kelly˙fatty˙2011;35

bowen˙methods˙2012 ). However, chemical dietary markers generally lack36

the specificity of traditional stomach content analysis. In particular, several37

prey species often have similar isotopic signatures. More recent studies have38

sought greater dietary resolution through the use of SI of other elements in39

addition to carbon and nitrogen (belicka˙stable˙2012 ), compound specific SI40

ratios (budge˙tracing˙2008; jack˙individual˙2011 ), or a combination of41

stomach content analysis and SI or FA (pethybridge˙seasonal˙2012 ). The42

use of SI and FA in combination also holds great promise; however, studies43

that have used both chemical markers have been qualitative ([e.g.;44

][]guest˙trophic˙2009 ) or based on positive correlation of results from both45

methods (tucker˙convergence˙2008 ).46

Analysis tools for SI data have become very sophisticated in recent years,47
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starting with the development of general Bayesian analysis tools for estimating48

diet proportions, and leading to customized (hierarchical) models for49

individual applications (moore˙incorporating˙2008;50

hopkins˙estimating˙2012; parnell˙bayesian˙2012 ). The latter models51

can, for instance, estimate dietary differences of geographically distinct52

populations (semmens˙quantifying˙2009 ), accommodate temporal changes53

in diets or estimate the effect of covariates (e.g., age, size, sex) on diet54

proportions (parnell˙bayesian˙2012 ).While these models provide a55

considerable step towards ecologically relevant models in diet studies, the56

underlying SI data is limited in the resolution that it can provide. Since57

typically only 2-3 SI are measured, the contrast that is achievable from such a58

low number of variables is necessarily limited, especially when the number of59

potential prey items increases (phillips˙source˙2003;60

ward˙quantitative˙2011 ). Optimally aggregating prey items into prey61

groups may circumvent this problem (ward˙quantitative˙2011 ), but may62

also be less satisfactory in complex food webs.63

FA data can, in theory, provide considerably more resolution compared to SI64

data, due to large number of potential FA that can be measured. Furthermore,65

blanchard˙inference˙2011 developed a Bayesian model for diet inference66

from FA (furthering the development of Bayesian mixing models for67

compositional data by billheimer˙compositional˙2001 ), showing that68

model based inferences of predator diets from FA are achievable. Nevertheless,69

studies employing FA remain either qualitative in their estimates of prey70

proportions in predator diets, or use Quantitative Fatty Acid Signature71
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Analysis (iverson˙quantitative˙2004 ) to obtain quantitative estimates of72

diet proportions.73

QFASA is the only available (i.e., off the shelf) method thus far for use with74

FA data, and, in contrast to recent (Bayesian) SI and FA mixing models, relies75

on a distance metric rather than a model based formulation to estimate the76

most likely diet proportions. This framework provided the first quantitative77

approach to estimating diet proportions using FA and it has already seen78

widespread use, particularly in studies of marine mammals79

(bowen˙methods˙2012 ) and seabirds (williams˙using˙2010 ).80

Nevertheless, QFASA has a number of limitations. Since it is not based on a81

probabilistic model, it is difficult to estimate uncertainty associated with82

estimated diet proportions (blanchard˙inference˙2011 ). The absence of an83

explicit model also makes it impossible to build ecological mechanisms (e.g.,84

covariates of consumed diets) directly into the model. Furthermore,85

uncertainty about conversion coefficients representing enrichment and86

preferential uptake of FA cannot be considered, yet small changes in these87

coefficients can lead to differences in inferred diet proportions88

(wang˙validating˙2010 ).89

Given the discrepancy in methods applied to SI and FA data, it is perhaps not90

surprising that their joint application has commonly relied on qualitative91

comparisons. Because both markers integrate diet composition over often92

comparable time-scales, however, an explicit integration of these data types93

could provide substantial benefits. While FA data could mitigate the94

resolution problem in SI data, SI data could provide increased resolution and95
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clarify predator-prey relationships, the knowledge of which is usually a96

pre-requisite for FA data. For example, for many non-modified fatty acids, FA97

alone cannot discriminate between the case of two species which share a98

common diet and the situation in which one of these species eats the other. In99

either case, the two species may have similar FA. The addition of a stable100

isotope with trophic fractionation (e.g., 15N), however, can readily distinguish101

predation from dietary overlap.102

Here, we develop a mixing model for FA data based on a probabilistic model103

whose parameters are estimated using Bayesian methods, and explicitly104

integrate SI in the estimation of diet proportions. Using both simulated and105

published data, we demonstrate the suitability of this model for FA analysis106

and highlight the potential benefit of explicit integration with SI data to107

increase the precision of diet estimates.108

2 Methods109

2.1 A Bayesian mixing model for fatty acid profiles110

Bayesian models for SI data are commonly based on the assumption that SI111

ratios are normally distributed. This assumption cannot be made for FA data,112

since for most methods of analysis, the concentration of individual FA is113

normalized to the total lipid content of the sample. Thus, the FA are a114

collection of proportions (referred to as a composition), which lie between 0115

and 1, and are constrained to sum to 1. A common solution to this problem,116
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however, is to consider transformations that make the data approximately117

normal (budge˙studying˙2006 ). To construct our model, we considered the118

additive log ratio transformation (aitchison˙convex˙1999 ), also called alr119

transformation, such that120

yi,s = alr(ϕi,s) = log

(
ϕi,s,1...p−1

ϕi,s,p

)
(1)

where ϕi,s is the p-variate fatty acid composition of individual i of prey species121

s, with a total of n potential prey species considered. Note that in the122

following we often drop the subscript for FA, e.g., ϕi,s and yi,s are thus p and123

p− 1 dimensional vectors, respectively. We assumed that the distribution of y124

is multivariate normal, with species specific mean µs and covariance matrix125

Σs, or yi,s ∼ N(µs,Σs). A vaguely informative prior on µs and Σs allows for126

uncertainty in prey distributions to propagate to estimates of diet proportions127

(ward˙including˙2010 ).128

Each predator j consumes a proportion πj of each prey source, and analogous129

to stable isotope mixing models, predator FA are then a linear combination of130

prey FA, normalized to sum to one. Since predators may selectively assimilate131

or metabolize FA (iverson˙quantitative˙2004; budge˙studying˙2006;132

rosen˙effects˙2012 ), we specify prey-specific conversion coefficients133

κs = κs,1...κs,p for each of the p FA (rosen˙effects˙2012 ). Furthermore, the134

n prey species likely have different fat content Φ that will affect the total135

amount of FA assimilated from each prey species by the predator. The136
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expected FA of predator τj is then a linear combination of the prey FA,137

modified by conversion coefficients for each fatty acid p and fat content for138

each prey i:139

tj ∼ N(alr(τj),Στ ) (2)

τj = C

{
n∑
s

(πj,sΦs) (κs ⊗ ϕj,s)

}
(3)

Here, C is the closure operation which normalizes the FA to sum to one and ⊗140

is the outer (element wise) product. ϕs,j is the FA of prey items of species s141

consumed by predator j. Similarly to parnell˙bayesian˙2012, we thus142

assumed that individual predators do not necessarily feed on ’average’ prey143

items, but rather consume prey items with signatures drawn from the144

estimated prey distribution. We formulate predator signatures t as draws from145

a normal distribution after transformation. We further assumed that Φ and κ146

are log-normally and gamma distributed, respectively, around known mean147

and variance values (estimated or calculated from controlled diet experiments,148

see below). The closure operation in Equation 2 (i.e., the sum-to-one149

constraint on the FA) leads to κ being determined in terms of relative uptake150

of FA (i.e., up to a multiplicative constant), and implicitly makes the151

multivariate prior distribution over all κ a Dirichlet distribution. The same152

logic applies to Φ, and in both cases we opted for formulations that can be153

readily parametrized from priors studies or published values (e.g., sample154

means and variances from experiments).155
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The diet proportions π of predators are the main focus of investigation in diet156

studies. These may be modeled at the (statistical) population level (thus157

dropping the subscript j in Equation 2) or at the individual level, as suggested158

in Equation 2. In the latter case, individual predator FA can be modeled as159

draws from a population level distribution of predator diet proportions.160

Recent approaches to stable isotope mixing have focused on transformations of161

the diet proportion vector π to get around the problems associated with the162

compositional nature of the diet proportions in such a hierarchical setup, and163

we follow this approach in our model. The diet proportions are transformed164

using clr transformations (semmens˙quantifying˙2009 ), such that the165

support of is the real line rather than the interval [0;1], and we then assume166

that clr(πj) ∼ N(Π,ΣΠ), where Π is the vector of mean (population level) diet167

proportions. It is then possible to model diet proportions as function of168

covariates, such as size, sex, or region (parnell˙bayesian˙2012 ). While this169

approach is appealing, it adds to computation time needed to estimate model170

parameters, and correlates with generally slower convergence. We therefore171

use a vague Dirichlet prior on the proportions when convenient (i.e., when we172

estimate only population level parameters).173

Depending on the amount of samples for prey and predators, it may be174

necessary to use informative priors for Σs and Στ . Both were given175

inverse-Wishart priors, and since both are co-variances of transformed data, it176

is not straightforward to formulate default priors for these parameters. We177

have found that in practice manual adjustment of these priors is often needed178

to be able to achieve convergence and mixing (efficient exploration of the179
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posterior distribution by the sampling algorithm) of the Markov Chain Monte180

Carlo (MCMC) employed to estimate model parameters. This is especially181

true when there are few source and/or predator samples. The package allows182

for high level adjustment of these parameters through the specification of the183

order of magnitude of the diagonal of each covariance matrix.184

2.2 Joint diet estimation from FA and SI185

There are at least three potential benefits of integrating FA and SI data: i)186

increased information to discriminate among sources, ii) the potential of SI to187

resolve predator prey relationships due to trophic enrichment of SI, and iii)188

the potential reduction in estimation error due to a larger body of research on189

fractionation coefficients for stable isotopes as opposed to conversion190

coefficients in FA. Integrating the two complimentary types of data in a single191

model to estimate diet proportions may thus considerably improve estimates192

of diet proportions over estimation from either data-source alone.193

Our model for FA is conceptually similar to recent models proposed for SI194

data, and integration of FA and SI data into a single model is straightforward195

in the present setting. We assume that the vector of SI signatures of sampled196

prey items q follow a multivariate normal distribution, such that197

ySI
q,s ∼ N(µSI

s ,ΣSI
s ), where the superscript SI denotes that these are stable198

isotope signatures. Predator SI signatures are again a linear combination of199

prey SI, this time modified by additive fractionation coefficients γ.200

Fractionation may, in turn, depend on prey isotope concentrations201
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(hussey˙rescaling˙2014; caut˙variation˙2009 ). In our model, we assume202

additive fractionation, and suggest that concentration dependence is taken203

into account when specifying distributions for prey and SI specific204

fractionation coefficients γs (see examples below). The expected SI signature205

for predator r is then206

tSI
r =

n∑
s

πr,s (yq,r + γs) (4)

clr(πr) ∼ N(Π,ΣΠ) (5)

γs,SI ∼ N(νSI , σSI) (6)

Note that the different subscripts to the FA model imply that there is no need207

to have SI and FA from the same prey or predator samples, as long as we can208

assume that the prey samples are drawn from the same statistical population209

as those for FA, and that individual diet proportions of predators are drawn210

from the same population distribution of diet proportions.211

The exact formulation of the integration of SI and FA depends on the212

assumptions that one is comfortable with in a given setting: identical dietary213

proportions may be appropriate if diets (and hence SI and FA) are thought to214

be stable, or if both chemical tracers are thought to integrate over similar215

time-scales. If the time scales of these two elements are thought to be different216

(e.g., for different tissue types), individual diet proportions may be more217

appropriate, and may be drawn from an overall population distribution of diet218
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proportions.219

An R (R˙core˙2014 ) package (called fastinR) implementing methods220

outlined here, along with simulated examples and the analysis of experimental221

data described further below, is available on the open source repository222

github.com/philipp-neubauer/fastinR. Models implemented in the package223

include the above-mentioned formulations for population level diet estimates,224

individual diet estimates as well as linear model (regression and ANOVA)225

formulations for diet proportions, all available for SI and FA individually or as226

combined models (see below). Model parameters were estimated using MCMC227

methods implemented in JAGS (plummer˙jags˙2003 ), called from R228

through higher level functions in the fastinR package that allow for data input,229

inspection and manipulation.230

2.3 Simulation studies231

We initially explored the feasibility and performance of our model setup in a232

range of simulations, which are illustrated (including code) in supplemental233

information S1. Simulations were also used to explore sensitivities of inferred234

diet proportions to the source configuration and diet evenness in a series of235

simulation experiments. We hypothesized that estimated diet proportions are236

sensitive to diet source separation in FA space, co-linearity in FA space237

(blanchard˙inference˙2011 ) and diet makeup (e.g., specialist versus238

generalist diets). Further details and simulation results can be found in239

supplemental information S2.240
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2.4 Selecting fatty acids for analysis: an ordination241

approach242

A potentially large number of FA are available from analysis methods such as243

gas-chromatography. A common practice is to simply set a threshold and keep244

the most abundant FA for analysis. This practice may, however, discard245

potential useful information, and a more judicious approach is to retain FA246

based on the among diet source variability that they explain.247

wang˙validating˙2010 used a method by which they tested the QFASA248

method on a series of subsets to determine the subset that gave the best249

accuracy. Although feasible, such a method is prohibitive with fully Bayesian250

models, which can take a long time to run with a realistic dataset.251

Here, we propose a variable selection method based on constrained ordination,252

which considers the contribution of individual fatty acids to axes separating253

diet sources. Based on this contribution relative to the overall separation, the254

user can choose FA that contribute most to source separation. This procedure255

is intended to reduce computation time (and dimensionality) of the models,256

while retaining as much accuracy in diet estimates as possible. Further details257

about the procedure are given in supplemental information S3.258
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2.5 Application: estimating predator diets in a259

controlled experiment260

To illustrate the potential of the models presented above, we analysed data261

from an experimental study by stowasser˙experimental˙2006, which262

investigated changes in squid FA and SI as a function of diet treatments. The263

treatments consisted of exclusive fish and crustacean diets, as well as switched264

and mixed diets, with the former switching diets from fish (henceforth SF,265

n=4) to crustacean (SC, n=5) after 15 days of the 30 day experiment.266

In order to apply our model, we first estimated conversion coefficients of FA267

and fractionation in SI, using squid from the 30 day diet treatments feeding268

exclusively crustacean and fish diets. The model for estimation of SI269

fractionation followed the model in hussey˙rescaling˙2014, thus accounting270

for diet δ15N and δ13C, and used their results as priors for fractionation271

parameters for δ15N , and results from caut˙variation˙2009 to construct272

priors for δ13C. Estimation of FA conversion coefficients used (2) with273

proportions assumed known from feeding trials. Computational details on the274

estimation of conversion coefficients and fractionation are given in275

supplemental information S4.276

In our diet analysis, we analyzed samples from the switched diet treatments,277

and used both SI and FA to investigate if our models allow us to infer diet278

proportions in either treatments. We subset the data to use only switched diet279

squid that were analysed for FA and SI after at least 10 days under the280

respective treatment. We only had overlapping SI and FA for the SC281
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treatment squid, and we therefore started by analyzing this treatment in282

isolation to demonstrate that both SI and FA can resolve diet proportions, and283

to demonstrate the benefit of using the two tracers in a joint model. We then284

analyzed the SF treatment squid, for which we only had 3 specimen with FA285

and 1 specimen with SI. The markers available for this treatment did not286

overlap for any of the sampled squid.287

We lastly estimated individual diet proportions in the SC treatment. To288

demonstrate how the model based approach to diet estimation can be use to289

answer ecologically relevant questions about predator diets, we also analyzed290

SF and SC treatment squid together in a linear model setup that investigated291

treatment differences explicitly. The linear model used treatment dummy292

variables to estimate individual intercepts for each treatment and prey293

combination, and allows us to estimate, conditional on the data and priors,294

whether squid in either one treatment group consumed significantly more of295

any one prey type.296

FA analyses used data obtained by analyzing digestive glad tissue, which is297

thought to rapidly assimilate dietary FA in relatively unmodified proportions298

relative to the original diet. SI were analyzed from muscle tissue since we had299

more individuals sampled for SI from this tissue, which may be more prone to300

fractionation and slower turnover than digestive glad tissue. In the original301

study, a total of 25 FA were reported. Here, we selected FA using ordination302

methods described above. For estimation of model parameters, priors for prey303

and predator specific variances were adjusted manually to give reasonable304

behaviour in the MCMC algorithm. The analyses are detailed in supplemental305
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information S5.306

3 Results307

3.1 Simulation studies308

Simulated test cases suggested that our model can estimate diet proportions309

from both SI and FA (supplemental information S1), with accuracy depending310

mainly on source separation and diet evenness (supplemental information S2).311

For very uneven diet proportions, such as in the feeding trials analyzed in the312

squid example, we found the choice of posterior means as point estimate for313

diet proportions inevitably introduced error at the margins of the 0-1 interval314

when compared to true simulated diet proportions.315

Models with low accuracy conversion coefficients (with prior mean for all FA316

set to 1 and large prior variance) also performed substantially worse than317

models with accurately specified coefficients when comparing point estimates318

of diet proportions to simulated diet proportions (supplemental information319

S2), showing decreasing accuracy with increasing variance among simulated320

convergence coefficients.321

3.2 Squid diet experiments322

Dimension reduction by NMDS on FA of squid and their potential prey323

suggested that crustacean diets were readily distinguishable from fish diets324

(??a). For fish diet items, however, no single fish species could be clearly325
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