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In accordance with the general reasoning of Hilbert, we infer .that
all combinants of three binary forms are integral algebraic functions
of invariants of / , and therefore, a.fortiori, of the coefficients of / .

The results for any number of binary forms are exactly the same.
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The present communication is a continuation of my paper on " An
Addition Theorem for Hyperelliptic Theta-Functions," presented to
the Society in December, 1900 (Proc. Lond. Math. 8oc, Vol. xxxm.,
No. 755).

The method there given of deducing theorems in the theory of
bypei'elliptic integrals from the geometrical properties of confocals
is applied to the investigation of addition theorems for the integrals
of the second and third kinds.*

I must record my obligation to a paper by Herr 0. Staude, on
the " Geometrische Deutung der Additionstheoreme der hyper-
elliptischen Integrale" (Math. Ann., Bd. xxn., 1883). In particular
the fundamental idea of § 4 has been taken from that paper.

References to my first paper are prefixed by the number I.

Integrals of the Second Kind.

1. Taking the equations (11), I., § 2, of the straight lines through
the point ht, which lie in the surf aces S and T, one of them is given by

•Sp — s . p — t . q — r < / q — s . q — t . r — p \ / r — s . r — t . p — q

6 = 0, 6 = 0.
Let 8 be the distance measured along this line from /jt. Then

and therefore
>S _ 6.

v j — r ,r —p .p — q \/p — s ,p — t . q — r
(2)

* A paper on the application of the method' to confocal couicoids in ordinary
space and the deduction of theorems for elliptic integrals has appeared in the
Quarterly Journal, No. 131, 1902.
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Therefore also

2id8 _ 2dSl, _
vq—r.r—p.p — q y/p—s.p — t.q-r

(3)

\/q—

2dS = (p-q)(p-r) &*= (q-r)(q-p) ^L = (r-p)(r-q)

and therefore 2dS = p* -7f • + q* -?- + ra 4 T J • (5>

Integrating, we get

where ,S = ^ 2 (x-KY = . / P 2 : P ? : o * =

2. Since Saf = 2«t+.p + g + r

we get

KJ = 25 a, + 2s + 2t +p +p0+q + q0+r + r0

^Tr .a.+r.at + r;i (7)

Avhere s and < may be given any value we please, and, in fact, the
coeflicients of s + t and st vanish by I. (15).

Putting s = — «4, t = — «5, I get

/S'1 = 2 (a, + Oj + tij,) +2> +p0

( ) (

ao + q . «a + <?n. »j + r . ft;, -f r0

_ 2 ^«s
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since £. = 0, £, = 0;

and therefore

2 ^ a t + p . Ot + g . at + <7n

3. Another expression for 8, which will be used hereafter, is
obtained as follows. We have

8 = ^Po~ft-P°~~ro $ = ^ p o f s.. *f*f. _ l ) , no)

where s and £ are arbitrary constants.

Putting s = — a,, £ = — a2, I get

v/as +po.

the other two terms in the 2 corresponding to a4 and as. Also, inter
changing p and f>01 3 and q0, r and r0, I get

"Then, by subtraction,

—— - ^ — • ^ i " ? 7 " - a i t ? i ! . _ . , - - i - v ^ i
P —po <• -/fljj + p 0 . a4 + ^ 0 . fl5 + p 0 v/a3 +1? • «4 +P - a5

(a3—(O(o8—o8) v/a3+^ . as+p0 {a^—a^^—a^ Ja^+p . at+p0

(12)
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Integrals of the Third Kind.

4. To find corresponding expressions applicable to integrals of the
third kind, let us take the generalized conception of distance as given
by Cay ley in his sixth memoir upon qualities (Ooll. Works, Vol. IL,
pp. 583-592).

Taking for the absolute the continuum

S ' 7 * i n = 1 * (' = 1 .2 ,3 ,4 ,5) ,

the distance 8' between any two points ajt and ht is given by

!

and therefore

sin2 8' —i '

^ aVAt — 1
/.

aL + n )

'(n—p)(u—</)(«—r)(n—s)(u—t)

x + + + +
Ln~2»lt 'u—'h "—'u n—s n—t

5. To find an expression lor dS' at any point, suppose the point hx

to move up to and ultimately coincide with the point a?t, and we get,
writing

N'ln—p n—q n — r u—s n — t)

* Staudo, /««.'. cj^., il/"«//i. ^/««., Bd. xxii., p. 2:J. § 7.
t (JI, {,/, r/»7>, rf,tf, ... luivo exactly this BJIIIIO mouuinj,r hero as in the last KCC-

tion, that is, they represent the same oxpreuuiuus in *•,, or in p, tj, r, s, t.
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Now along the straight lines considered, namely those which lie in
both the surfaces 8 and 5P,

ds = 0, dt = 0,

and, as in the preceding section, we get

( n _ p ) ( n _ 7 ) ( n _ r ) 2d8'
7

vN.q—r.r—p.p—q vp—s.p—t.q—r

- Sp-qjp—r dp _ ^

(JA—?>)(?* — q)(n—r) 4 7,,/ , N /

? = . L^_.. + .__J?2 + Jt—.
/JV (n-p) y/P (n-q) VQ (n-r) Vli

wo get

(19)

+ f o^vn ~~ J (,££)!//* • (20)

U. One expression for S' is given by

/, + ncos &' = —.—

\ " «7,TM

(n—s)(ii — /) Sit —p.n—p0.11—q.n—q0.n—r.n — r0

(21)

where 6- and I may have any value. Putting a = co , t = — «5, I get

CUS O — ——- - —-•--— - — : :-^-—--z- .——.-..z^.: •=.

Vn—p . n—pu . n—q . n — qQ . n—r . n—r^

^ifi + P • "l +Wi • "l + 7 ll'l + .7«! Lf*L+»_" '.I4! +*9 ] (22)
* (o + ?t) (a (/) (a « ) ( « t t j y
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the other three terms of the 2 corresponding to a2, a3, and av Also,
putting a = t = oo , I get another form, viz.,

Ui+Pn-ih + q-Ui + qn- at-|-r.at+r0

co8 5' = . . . _ . ^___î l/(z^ - -. (23)
y/n—p. n—pv. n—q ,n — q0. n—r . n—r0

Another expression for S' follows from (14) and (2). For, putting

4 = J-

v/r0—s . ro-i .po—qo Sqo—rn. r0—p0 .pQ—q0

in (14), we get

sin 2 »S" = —
M—y)(»*—2) (n—«•)(»*—2>0)(n—a0)(»t—r0)'

sin »S = - ; - —— • (24)
V U—p .U—'Po •n — '1 • l>l~(h •n—r ' n—ro

Coufocals of Revolution.

7. It is also interesting from the geometrical point of view to con-
sider the results obtained when two of the parameters a are equal to
one another, and one of the families degenerates into the system of
planes through an axis.

It will be found that in this way a real geometrical construction
is obtained for the sum of integrals of the third kind.

Take 2 •"; = 1 (1 = 1.2 ,8 ,4 ,5 ,6) ,
+ *

where or = if+ 2*',

so that y, z, x.,, a-,, x4,_.r0, a;0 are Cartesian coordinates, as the equation
of a set of confocal 2/£0's of revolution in a space S7, and let g, r, s, t,
u, v be the values of X for the six members of the set through any
point. The degenerate seventh member of the set corresponding to-
the parameter p is given by

y = z tau 6.

VOL. XXXIV.—NO. 7 7 5 . N
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Then, as before,

2 _a'' - 1 = _ (X-f/)(X-r)(\-s)(\-Q(X-tt)(X-t>)
o,+X ~ " n(fl+X) ;

1 " "
writing / (\) = n («t

n n d 4,7«; = S 4 ( 7 |— s iV = ( l - ^ ( 2 ^ K

hut <?«;, is replaced by ar<?03, that is, by

y. In considering the "tangent cone," we may without loss of
generality take the coordinates of the point ht to be 0, /«,, 7/;, 7/3, ht,
//f), 7ia; so that its equation is

which when lvferml to its principal axes takes the form

.. V + . .^ + ^': + S« -f *•'* 4- »̂ 4- . ^ - . = 0.
(/,4-A A — IJ \ — /• X—,s X—t X—« A—c

TIILMI, exactly as buToro (1., § 12), the common points «)f the three
surfaces 7', IT, V and the throe tangent planes T\ U', V ai-e given by

& = 0, ^ = 0, fr = 0,

putting — f/j for p in the equations of 1., § 12.
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Now, writing, for y, xxd9\ for £„, ds,,; &c, we get, as the differential
equations of the eight lines in the surfaces T, U, V,

(q-r) (r-s) (i-qj y/f{^{j (r- «) (a, + r) (a, + «) v â, + q / f (q)

«' • _ dr
\s—q) (a, + s) (a, + q)

Writing Q = (a2 + g) (a3 + g) (a« + g) (o5 + g) (% + g),

these are equivalent to

€£̂ 7 e'dr e"ds
j ( + ) ^ Q ( « + ) w e + (

and the integral of these is

™o a (ai + ^) (a\ + /A) v / a i + 7 • ft< + 7- • "i +'" • "-I + 'i'o • «i 4- s • <h 4- «o
C O S v . . . - - • - • • — — • - - • - —

/(-"'•)

, v («i4- A.)(dt
"T ^ l

(« = 2, 3, 4, 5, C),
which is the same as (21).

9. Also putting S" = 2/2 4- # 4- ̂  4- fif,

Ave get, from (A),

^ =

(«i 4- g0) («i + r0) («, + J»0j («, 4- 0 («, + tt) (a, 4- v) '

and therefore, substituting for ?/,

^ _ j / o , + 7 . a, + r . ^i-f •<?.», 4-g,,. ^i4-ro.rt, + sQ g j n ^

v/^/j—(/,. «3—a, . at—«,. «0 — « t . «o—flj

which is equation (24).
In fact 6 represents the " distance " between two points, when the

absolute is taken to be , „ ,
y- + a- = 0.

N 2
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Paraboloids.

10. The degenerate case of paraboloids may also be briefly noticed.
The particular case here •worked out gives an integral of the two
equations ,..,. r.o

2 ur = 0, 2 n (n,.a) = 0,

where n is ah ordinary elliptic integral of the first kind, and II (n, a)
one of the thii'd kind. Starting with

3 - i r = 4 o ( a + aX) 0=1 ,2 ,3 ,4 ) ,
1 shall get

-3 —.rt —

where / ( \ ) = n(ot

Also ^- --

and so

The results of I., §§ 2, 3 will not be altered, and I shall get an
algebraical integral of the equations

[PJE _ f £O<*PQ . e / f 5!?1 _ f 7o'*7n\ . ' / f rdr^ _ [rodro\ _ 0

where 0 = / {6) = («, + 0) (a, + 0) (a8+ 0) K+0) ,

in the form

= 0 0 = 1, 2, 3, 4),

where X is an arbitrary constant.
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11. I proceed to express the results obtained in the notation
adopted in the former communication (I., §§ 5, 6). Making tho
substitutions

a — x1 l b—a1 i c—a1

and writing G = a—6.b~6.c—6.d-6.e—6.f—6,

I take u = -i— / , — -:v—£'—%.
J(e—/)vA J (e-f)y/Y

v = [ (f—x)dx _ f (f—jf)dy
J Xf—e) VX J ~(/-e) v^Y

from which {x—y) —® == (f—y) du+ (e—y) tfv

(25)

(26)
(x-y) djY~{f-

Then f ^ * - f ^ » becomes

y/b-a.c-a.d—a.e-a.f—a) - ' \ - / 7 ~ /•""'wv '

and

dx f dy _ f a+f-x-y , f « + e—a:—y ,
(a-a)VZ J(o-y)^Y J (o-»)(o-y; Ĵ (o-*)(a-y) '

But

th erefore

n nd so

z=a
2(a—x)(a-y))

f dx (* dy _ n v T aPF^lu , f arE'-dv
J (a-x) VX J a-y </Y ~ a-fa-e) ( / - a ) ?A* J ( c - « ) e'/l''

J VP J VP;and therefore becomes

\/b — a. c—a. d—a ..B — a .f—a

X I a-f^a-e + J (/-a) C^2 J (e-«) eM2 J
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Now h — a, a—/, ... can bo expressed in terms of «, ft, y, ...,* and I
finally get equation (fi) in the form

2S _ x f aF?<ln,. aE^ik^
l " - ' r J ( O C / l a ( ) i ? '

where, as in I., § 9, («£) is written as an abbreviation for

Then, using ZA (n, v) to denote the function

1 (aF-dn nJFdv \

I have (n /3
2

y '^)5 = 7:x («., »',) + %A («,, *'2) + ^ K t',), (28)

where n, + «2 + w, = 0 and r, + r, + r, = 0.

12. Let us now consider the transformation of 8~ as given in
§ 2 (8). We may obviously put

S» = A. + XS § +/*2 Ci +v% ^ +V ^ ' ^ 4V ^ 4 n • +"' T -̂- V 'A,. A, A~ AXA^AS A^A^A^ AyA2A^

where Ao, A, A', ... are coefficients to be determined. Then, firstly,
since there is a linear relation between the squares of A, B, (7, .D, Ao

may bo merged in A, fi, »'; and, secondly, since S'2 must vanish when

?fs, v3 = 0, 0 and w,, r, = — n.2, —r.,,

•we have (3\' + 2\n = 0, ...,

and we may therefore put

\Ay AI + 4 P AAA

• For the vnluen of o, (o/3^), ... in terms of a, /», c, d, r, f, sec Cayloy, Coll.
Works, Vol. x., pp. S02, 503. Noulectinjr ft fourth root of unity which occurs ns a
coefficient, it is easily found that

o-b= (aj8)/a)3, ...,

aud that y / b — a . e — a.d — a.c — a . / — a = (a$ySe(y/a:.



1901.] Addition Theorems for HypeveUiptic Integrals.

B u t t h e coefficient of — 2 --' -2—••*• in <S2 as d e t e r m i n e d from (8 ) i

AlAiAz

d^^ i^b I t ^ , be-

i6

comes on induction - • , , and so we get, finally,

a/? (0e_Os /B; Z§ + J3j _ 2 « P,B8B,\
^ A\ 'A[ ~ft A.A.Aj

, «y(yeQ /tf . 0. . OH 2 a C,a

2 S
''; = ^ (« I') + -̂1 ("2. 1'

whicli is one form of the addition theorem for integrals of the second
kind.

18. The transformation of formula (12), § 3, leads similarly to

e(AEF\ a2 £

' (acC) ( 0 f c

and therefore

The si<?ns of the terms in the bracket are determined by putting

(«» «i) = (e/)i («a» t'j) = — («3> f.) — (e/)>

when S is seen to vanish by the help of the identical relation

= 0.

This gives the result that, with
SrHr = 0, 2,rr = 0 (r = l, 2, 3),

0,0. AA
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14. In exactly the same way \- -J*W (§ 5) is replaced by

f '*** , and f VNd* '.»**-. is equal to
J (n-x) VX1 J (n-x) VX (n-y) VY 4

J (/-») T (n-x) (n-y) J (e-n) e2 (n-x)(n- y)'

Now take B (a, /3) = JB' = iWb—n. 6—a

C (a, />) =5 C — y >/c—n. c-a (32)

no that a, 0 are parameters of double G-functions for -which A (a, ft)
vanishes identically. Then, since

(n—x)(n—y)
(b—n)(c—n)(d—n)

= (h-x)(b-y)
(b-n)(b-c)(b-d)

^ ) . ( a / 8 0 . 1 - (aye) ' (ayO2 ̂  +(aSe)3(a8O8

where the signs are determined from the identity

)'— (aye)* (ayO2+ («8e)2 (aKY = 0,

j , f JN I F*du EHv \
g J (n-x)(n-y) \(f-n) C. (e-n) e1/

= f a/3y8 (acQ F C ^

J (^)(aC)

(a/3e)s ("ajSO1 B'-C'D"-(aye)2 (ay£)s &&&+ (a8e)s(a8O? W C "
(33)

This I shall denote by 211 («, v ; «), or by 211 («, v ; a, /?), and for
shortness I write

M1 = (a/9e)2(a/3

_ (a/3y8eO2 / %/ N / q t l

= w ^ , (n—«)(»-y). (34)

Then foraiula (20) becomes

«S' = n (ft,, r,; n) + n («2, r , ; n) + n («,, r,; n). (35)
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The transformation of (22) gives

cos 8' = -4r9~ ~MrlfTf~

B" <f D'2

and, of (24),

sin 8 =

which may be written
3l l (« r , tv ; a,/3)

? 2 ^ S ^ (n,, v,)

when 27t,. = 0, Stv = 0 ( . = 1,2,3) . (38)

Linear Groups in an Infinite Field. By L. E. DICKSON, Ph.D.
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1. Introduction.

Various branches of analytic group theory may be coordinated and
generalized by the study of groups of transformations in an arbitraiy
field or domain of rationality. Afield (Korper) is a set of elements
within which the rational operations of algebra may be performed.
Thus the totality of rational numbers forms a field R; the totality of
all complex numbers a-\-b\/—1 forms a field C. A finite field is
completely defined by its order, which is necessarily a power of a
prime number jp, the latter being the modulus of the field. Although
certain infinite fields may have a modulus p, so that f*+p=p,
rp = 0, for arbitrary elements ft, r in the field, such fields do not seem
to have been investigated. An example is given by the aggregate of
the Galois fields of orders ^", for n = 1, 2, 3, ... .




