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In accordance with the general reasoning of Hilbert, we infer that
all combinants of three binary forms are integral algebraic functions
of invariants of J, and therefore, a fortiori, of the coefficients of J.

The results for any number of binary forms are exactly the same.

Addition Theorems for Hyperelliptic Integrals. By A. L. Drxon.
Received and read November 14th, 1901,

The present communication is a continuation of my paper on “ An
Addition Theorem for Hyperelliptic Theta-Functions,” presented to
the Society in December, 1900 (Proc. Lond. Math. Soc., Vol. xxxrr.,
No. 755). '

The method there given of deducing theorems in the theory' of
byperelliptic integrals from the geometrical properties of confocals
is applied to the investigation of addition theorems for the integrals
of the second and third kinds.*

I must record my obligation to a paper by Heirr O. Staude, on
the * Geometrische Deutung der Additionstheoreme der hyper-
elliptischen Integrale” (Math. Ann., Bd. xxi1., 1883). In particnlar
the fundamental idea of § 4 has been taken from that paper.

References to my first paper are prefixed by the number I.

Integrals of the Second Kind.
1. Taking the equations (11), I, § 2, of the straight lines through
the point &, which lie in the surfaces S and T, one of them is given by

- .__‘g" = = . ,.__fq— = - . ér S.omrns
\/p—-s.p—t.q—r \/q—s.q-—t.'r—p s/o'—s.'r—t.p——g’
&£&=0, §=0.

Let S be the distance measured along this line from . Then
8 =v3 (m—h) =vVEFTEFE; @

and therefore

1 U /S @)
Vog—r.r—p.p—q Vp—s.p—t.q—7r

* A paper on the application of the method" to confocal conicoids in ordinary
space and the deduction of theorcms for clliptic integrals has appeared in the
Quarterly Journal, No, 131, 1902.
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Therefore also

2:d8 2ds, (3)
\/q;r.a'—p.p.—q \/p—a p—t q—o

fooepsr ..,
28 = (p=9)(p=7) T, = (1= a—P) T = =)~ L;

+o Wpn L )

ofor 218
and therefore 248 = Nz ik

dp
=P
Integrating, we get

5 @) , Tt i ,d o dr. .
98 = [ o, _ [ 2 W0 [ 2_1_._J I J _I 2 _dry_
g IP Vb j”‘* V7 vy i R Cov2 Nl Kl RCV7

where 8= 3 (a—~h) = \/7)" Qo PyTTo ¢ &=
Py—§ . Pyt
2. Since 22} = Za.+p+q +7r +s+¢,
Ehf = 2(l|+_po+q°+'ro'f's"'tr

we get

S8 =28 a, 425420+ p+pot+q+gtr+y

—253, (m;—.z)(a.-)l-t) Va+p.atp,. ttq. @ty atr. 1, (7)

where s and ¢ may be given any value we please, and, in fact, the
coeflicients of s+ ¢ and st vanish by I. (15).
Putting s = —aq,, ¢t = —u;, I get

S =2 (q+aytay) +p+pta+atr+r

\/a, +p. . +py. i tq.a+q, . a+r. u,+)
(4 —ay)(a,—ay)

\/(l.,+p Ayt Po- 0t q. Gyt gy - G T . Gy F15
(“z aa)(al—al)

\/ag+p A3+ Po.+q.a5+q,. A+ .03+7 (8)
(as—a,))(ay—a,) )
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ha h.z
\ LT | . - t— (Red)
Al _ % a.+p, - (3 pO)( pO) 2 (at+Po) (a,.+s) (a.+1¢)
80 §, = A 1 s 0 | ,
(2 (a.+po)’) ( (al+p.,)’)

since £=0, £=0;
and therefore '

S=vP, {2‘ va+p. a.+q.a‘;g£@+r.a.+¢o} . )
f(—=a)Va+p,

3. Another expression for S, which will be used hereafter, is
obtained as follows. We have

Vo= Go - De—T, VP, ho
S=YPo T0-Po— e . vY2a (35.M% _1) (10
‘/Po—S-Po'—t‘ b (2e—5)(Po—1) ( @+ Py ) (10)

where s and ¢ are arbitrary constants.
Putting s = —a,, t = —a,, I get

s/a, +Py- Q3+ Py S
‘/as +Po- A+ Py a5+ Py

Ry e S N B e LR S RO TN
(a,—ay) (as—a5)(as+p,)

the other two terms in the 3 corresponding to a, and a,. Also, inter-
changing p and p,, ¢ and g,, » and =, I get

s/a,+p.a,+p
- st e (—S)
Vagt+p.otp.astp

g Y0t P Gt Py Gt q Qo G T Ak,
(as—u)(ay—as)(as+p)
‘Then, by subtraction,

PP t Vas+p,- a;+p, - as+p, \/as-i-p ca,tp.ast+p

s_(_ ,‘/“!Tf‘l‘.’o'“{’z_‘[‘r’;. et V/‘;gfl’;;fﬁgfp }

= VaFg ak gy ehr ety Vg ok GE T ek

(ay—a,)(ay—ag) ‘/“‘a +p.as+p,  (a—as)(a—as) ~/a4 +p.at+p,

Vgt g gt g Ot 0ty
(a5—as)(as—ay) Va, +p.as+p,
12)
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Integrals of the I'hivd Kind.

4. To find corresponding expressions applicable to integrals of the
third kind, lét us take the generalized conception of distance as given
by Cayley in his sixth memoir upon quantics (Ooll. Works, Vol. 11.,
pp. 583-592).

Taking for the absolute the continuum

5 L= 1% —
zu‘ﬂ 1* (c=1,2 38 4,5),

the distance 8’ between any two points 2, and %, is given by

s ah, _
a +n

(32 1) (5= —1)"

(25 )(2;;,5i,;“1)—(2;3*ﬁ;‘1)2
( 125?—?1.—1) (zu‘+w-. l)

=TI (a,+n)
(n—P) (n—q) (n—r) (n—5) (n—1)

& o &, & & é: .
X{T—}f e PRSI I

Nty Nty  W—§

cos 8’ =

(13)

and therefore

sm? S =

5. To find an expression for dS”at uny point, suppose the point I,
to move up to and ultimately coincide with the point 2, and wé get,
writing

N=1I(a+u), N'=U@m=X) A=p,qnst),

N ( ds ds? dst ds ds?
_— 1.5 [ead] PGS T oL IS T 5
a8’ N’{n-—p +n—q +u—r+n—s+u—t}1’ (15)
W N N 17—(/)(2;—:)(12—.5)(;)—0
AN (n—p) I’ (16)

* Staude, loe. cit., Muth, Ann., Bd. xx11., p. 23, § 7. )
T &y Egs iy tay, ... have exuctly the same mcaning here as in the last sec-
tion, that is, they ropresent the same expressious iu 2,, or in p, ¢, 1, s, ¢.
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Now along the straight lines considered, namely those which lie in
both the surfaces S and T,
ds=0, dt=0,

and, as in the preceding section, we get

(71—;7)_(1{fq)(1z—1) 2(ZS' s, 17)
VN g=r.r—p.p—q  Vp—s. p—t.q—r
Vp—q.p—r d
= PP 4P — | 18
S B ay
('—":2'—)&;&’)—@‘:—&2“16" = (p-9)(p-7) :—i = (g-1)(a—P) dq
= (r—p)(r—q) L
= r—p)r—p) I,
2edN' _ dp_ dq I 19
VN T (n—p) vpt (n—q)vVQ + (n—r) VIR’ (19
Integrating, we get
3N = A /Ndp __j VN dp, j VN dy ‘V;/{\_f:lrll, )
T VN u=pyvr (n=p,) VP, (n—1q) v (n—c‘!0 V(Y
N[ VN 20
J(e—r)~ 12 j (n—ry) «/ln ) (20)

G. One expression for S’ is given by

N Ak h. -1
4

)
t, +n ({.+11.

N{\' (5‘l+—:‘3)}((l(f:)) Va, +‘u u‘-{-‘n u +:1 ™ +‘]u a+r. u‘+:°—1}

(n—s)(n—t) \/'u—p n—pu n-—q n—qo n—r. n—70

cos 8 =

(1
where s amd ¢ may have any value. Putting s =, t = —aq;, I get
cos ' = —._ (tmatn) (et (a4

NP N—Py W= N— . N— 7V n—~:

% { s/a-i-p u,+pl, a +q u +q(, a,+) a4+, } - (22)
(ay+2) (g — ) (a0 — at3) (al—uq) ! -



1901.] Addition Theorems for Hyperelliptic Integrals. 177

the other three terms of the 3 corvesponding to ay, ag, and a,.  Also,
putting s = ¢{ = w, I get another form, viz.,

N3, YOutp atp,. atg. ot et ot
' __(a+n)f(—a) —. (23)

Vau—p.u—p,. n—q.n—q,. n—1 . n—1,

cos S’ = —-

Another expression for S’ follows from (14) and (2). For, putting

¢ o b .
Vp—s.Po—t. ge—1y V=S Qo=t. 17—,
S'_ _ oS

Vr—s.ry—t.p—q V=70 To—P0 - Po—1o

in (14), we get

gin® §' = — .- N ,
(u=p) (e—q) (n—7r) (n—1p,) (""Qo) (n—1y)
or s S = — ¢ \/%\ b- R e (24)

Vu—p Py =g U=y —T  N—T,

Cuoufocals of Revolutiv.

7. 1t is also interesting from the geometrical point of view to con-
sider the results obtained when two of the parameters « are equal to
one another, and one of the families degenerates into the system of
planes through an axis. ‘

It will be found that in this way a real geometrical coustruction
is obtained for the sum of integials of the third kind.

LAl
Take Lo =1 =12 3,45, 6),
Tuke . Zu‘-{—}\ (=1 5, 6)
wliere 2= y'+2’,

50 that y, z, @, @y, ¥, 5, @y wre Cartesiun coordinates, as the equution
of a set of confocul ,Ii)s of revolution in a space S;, und let g, =, s, ¢,
, v be the values of A for the six members of the set through any
point. The degenerate seventh member of the set corresponding to
the parameter p is given by
y = ztand.
VOL. XXXIV.—NO. 775. N
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Then, as before,

5.8 _1=_ Q= q)(k—a)(A—s)(x—t)(x-u)(x_,,)
a+A TI (a,+A)

(““""L)(“t"r’)(ari'S)(a.+t)(a‘+u)(al+g)

a I (—a)
writing FAY=T (a.+A);
and 4ds} = 3, de* = (1= (9=8)(q=0)(q=u)(q—v) dg, ...,

Y + )s f@
but dsj is replaced by 2{d6", that is, by

_ (0 + ) (@ )y +5) (a4 ) (a, + u) (a, 4 1) 16,
f(—al)

8. In considering the ¢ tangent cone,” we may without loss of
aenerality take the coordinates of the pomt h, to be O, hy, Iy, R, by,
by g so that its equation is

gy i 1) B __h_f__)
<u,+)\ +~‘u‘ x (u,+)\+~‘u‘+/\

: zhy < @k '1)"' 9 2 .
= 43, L =2, 3, L 9, 0),
(u,-’r)\ * N S 4 9, 6)

which when referred to its principal axes takes the form

L & & g, 08 & &
0+ . S P = (),
4l,+)\+4\-—q )\—r-+)\—s+)\—t+)\—u+/\—a=
Then, exactly as hetfore (1, §12), the common points of the three
surfaces 1, 17, 17 and the three tangent planes T, U, ¥ are given by

=0, &=0,

ree

. .
& =0,

v
(+8) (1) + 0) (g= 1) (= 5) (s—q)

—_
Y

1—()(:1—11)(1-—1)(1—~)(rl +8) (4, +7)

&

= (r—i)(r—-u)(r-—v)(u, -f—.s')(u, +q)(41—::)

(=) =) =) (D (g=D) (b))

putting —a; for pin the equations of 1., §12.
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Now, writing, for , ,d6; for ¢, ds,; &c., we get, as the differential
equations of the eight lines in the surfaces 7, U, V,

1 2d8

_ L _— € Mg
@D G0 Y (ma) T @+ (@+9) Vay+qv (o)
-
T (=) (at+s)(a+q) Va,+r Vi)
¢’ ds

T @@+ D@+ Vats JiE)
Writing Q= (a,+9)(as+9)(a+9)(as+9) (% +9), ..,
these are equivalent to

Ay Lodr o wds _
Vot Vet vs=Y

qdq rdr n sds
vt Rt v

2d6 edq e dr e’ ds

€

=0,

AL , - —5=0
Vi (—a) + (t,+q)VQ  (w+2)V I~ (a,+s) VS
and the integral of these is
cos g (M) (et p) V4.0 G T T G 8
S (=m)
43 (@t (et WVt actq kot acks acks g 0
=, F—a) =
(«=2,3,4,5,0),
which is the same as (21).
9. Also putting S =y + &+ E4+E,
we get, from (A),
‘SY 2

e N
(a4 g0) (@, +70) (4 +5)) (@ +¢)(a +A“) (a,+v) ’

and therefore, substituting for y,

S = _\_(‘ql:-tq Ly +9 -t +s.a4q,. 0. n,,.j- S sin 6,

Vitgmty  ty— A=y U=y Ug—ay

which is equation (24).
In fact @ represents the * distance ”’ between two points, when the
lute is taken t 0, o
absolute is taken to be s =0,
' N 2
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Paraboloids.

10. The degenerate case of parnboloids may also be briefly noticed.
The particnlar case here worked out gives an integral of the two

equations et

2 u, =0, EH(na)

where # is ah ordinary elliptic integral of the first kind, and II (, @)
one of the third kind. Stavting with

3 - ——40,(T+n>\) (t=1,23,4),

a+A
1 shall get
z _ 4l A=p)A=g) A=) (A=) (A—t)
- p4-a) =
2oy e (eral) = I (0,1
Then e 4<n, (n +P)("t+ﬂ)(a;+ 1)(ﬂ¢+3)((l;+l)
f (—a.
where fO) =T (a4+2).
Also — L =phgtrtett,
and so
1 _ o 4o’ (p—9)(p—=7)(p—s)(p—1)
g = dp" (3Bl i) = ) "

The resnlts of I., §§2, 3 will not be altered, and I shall get an
algebraical integral of the equations

[T (a1 )< ([ Jam [ ) o
0 0

pdp _ (Poipy [gdz_jzn'%'z«_ rdr Iv 0\ _

j«p [¢1’0+€( G mu)“( Vi JR") 0,

where 0 =f(0)= (n,+0)(a;+0)(a;+ 0)(a,+0),

in the form

(g.+)\)s/a.-tp (l.-r})o "___l Aty @+ ra
f(_ ;)
+p+ptgtgtr+n+20=0 (1=1,2,3, 4),

where A is an arbitrary constant.
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11. T proceed to express the results obtained in the notation
adopted in the former communication (L, §§ 5, 6). Muaking the
substitutions
1 1 1
Sy @ S, Q= ——, ...,

P= b—a c—a

a—x

and writing ©=a—0.b—0.c—0.d—0.¢—0.f—0,

_ (Le=orda _( =)y
feke =[G @)

v = !'_(f"-a:)t_l:l_: _(_(f:y)‘lly‘
(f—e)vX I(f-e)vVY

from which (z—y) %‘3{ = (f—y) du+ (e—y) dv |

(26)
(z—7v) f/yy = (f—a) dut(e—a) de
Pdp_ (pidp,
Then j P I VD, becomes
el O IS . /2N }
Vb—a.c—a.d—a.e—a.f “{j(a—m) X j(a—y) adk
and
o de _5 dy =§ atf—a--y du_{_s_l!_fe-——a:—y .
(@=2) VX )@= VT~ ) a=ate-n ") (d—2)(a—p)
But F= & (f—a)(f—y)
A= @ (a—w)(a—p);
therefore FYl—Ae* = (f—a)(a+f—a—y),
and so
da _ dy I __‘i[_'jﬂ_‘lli__,_{_[,__“ﬂ"}s‘l?_
(@a—2)vX Ja—yvY a—f a—e ) (f-a)ll4' ) (c—a) AP

efore | 2P _ [ Podpy 8
and therefore jdl—’ ja/l’o becomes

s/.b;a.c—-u..li:c_t..e—a,.f—a

% v a’ I%du. n"'EE(h-
% {Ei—‘fJ' aet j.(f—u.) eart j-(e—u) 62/12}
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Now b—a, a—f, ... can be expressed in terms of a, f3, 7, ...,* and I
finally get equation (B) in the form

28 _ s JnF,'."dn.r + alide,
Byl ~ ) (@) ey (we)ed?’

where, as in L., §9, (af) is written as an abbreviation for

(aBE) (ay8) («dE) (ael).
Then, using Z, (1, v) to denote the function
I 1 (aP du nrth')

A (ae)

(@) ¢ (ae)e
= 74 (1, v)+ 24 (g, o) + Z 4 (13, 1), (28)

(27)

28
(aﬂ 35{)
where A4+, =0 and v, 4v,+v;,=0.

I have

12. Tict ns wow cousider the transformation of §* as given in
§2 (8). We may obviously pub
C: B,B,B, , ,C0C,C D, D, D,

” ’ A’ ’3 . yolh Bl Sl |
g ,.+ A d, TE s T Ay,
where Ay, A, A, ... are cocflicients to be determined. Then, firstly,

sinee there is a linear relation between the squares of .1, B, €, D, A,
may be merged in A, g, v; and, secondly, since S* must vanish when

S = /\“+A2——~ +us

ey 3= 0,0 and 1, v, = — 1y —1,,
we have BN +2ha =0, ...,

and we may therefore put

o _ B, B, B 9.0 BiB.B,
= A(’A;“”]”'A- BA,AA)

¢ L0 a 0,0,C

+ + O i B4 ]
A4 A, y Ay
+r (1’" ]_Q Dy _gn _DJ?eI’u)

£ + P N .
Ay A.z A; o Ay dyd,

+r (4

* Tor the values of a, (aB(), ... in termr of a, b, ¢, d, ¢, /, sec Cayley, Coll.
Works, Vol, X., pp. 02, 503, ~ Neglecting a fourth root of unity which ocenrs as a.
nnefﬁcient, it is e:tsily found that

0—=b = (aﬁj)/aﬁ, ooy
aud that Vi—a.c=a.d—a.c—a.f—a = (aByde()}/a’.
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But the coellicient of —2 B B,B, in S as determined from (8) is
: A A, 4,
(=)=t _ &
(h—a)(b—e)(b—d) B’
comes on reduction -, ¢ mﬁ, and so we get, finally,

(aed)? ((.;3)

which, on substituting ¢—a« = (ay)/ay, be-

o B (@f{f_( B, By o« B:13)

(a3)(aed)? \ 4 Ai 4, B A 24,

: 0t n? C

4+ 4 (rel)” —3,+9.1, f g

(0y)(aed)? (A' 4, A v 4 A )

ad (3e)* D,, Dy _ya DD,
+Z;o)(aer) (A +A A ~2F 44, A) (29)

29

where

W = Z (uy, v)+ 2,y (1, o) + Z,} (1, v4),

which is one form of the addition theorem for integrals of the second
kind.

13. The transformation of formula (12), § 3, leads similarly to
(AEBF), o A} By _s_ B B B__{l_
(ael) (aBydel) o« B,C,D, (37)(B3) /311 4,B
and therefore ‘
S = ____("';'stz)h. - _“('_‘fC) B,C, D,
(By)(B8)(8) (ABI), 4l

{(”S)B*"‘H/JS)C*‘“‘ @ )Dll’}. (30)

The signs of the terms in the bracket arve determined by putting
(s 1) = (ef)  (oar ) = — (19, 1) —(ef),
when S is seen to vanish by the help of the identical relation
(v8¢) (y81) (BEF) B+ (53%¢) (38¢) (CEF) C— (Bye) (By¢) (DEF) D = 0.
This gives the result that, with |
Su,=0 Zv=0 (r=1,23),

2a (aef) B, C\ D,
(AEF), A, 4,4,

x{ Bty GG DD, )y

2.7, (0,0,) =

BN@) B, BNEHC ()G D)
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14. In exactly the same way j(—% (§ 5) is replaced by
VNdz VNdx VN dy
e 1t
j(n—-m) vX and j(n—-’v) VX  (n—v) x/Y is equal to
J VN Fdu j v N Etdv .
(f—n) & (n—2)(n—y) ~ J(e—n) & (n—2)(n—Yy)
Now take B(a,3) =B = pvVb—n.b—a

C(a,p)=C =yve—n.c—a|’ (32)

so that a, B are parameters of double 8-functions for which 4 (a, f3)
vanishes identically. Then, since

(n—2)(n—y)
(b—n)(c—n)(d—n)
= -a)b—y)
(b-n)(b—c)(b—d)
=By | 2(ad)? 2
v Tt s @B Z, —(arey e & + @ a0 21
where the signs are determined from the identity
(afie)? (L) — (uye)? (ayl)®+ (ade)? (a8l)* = O,
VN ( F'du Eidv
Lot j 0= (T & o=m) )
I a3y (ael) B'C'D
(ae) (al) (AEFY
(u() E*Fdu+ (ns) ¢FPEde '
(ape)’ (afig)? B*C*D* — (aye)? (ayl)? C?D" B + (ade)* (adl)* D*I’ ign
(33)
This I shall denote by 2II (u, v; =), or by 2II (u, v; a, 8), and for
shortness I write

M= (afe)? (afi) BC D" — (aye)*(ayl)? C* D B + (ade)? (adl)* DB ("
E—(‘—'@a (n—2)(n—1y). (34

Then formula (20) becomes
' =1 (uy, vy5 2)+H (g, vy ; 1) +IT (2, 145 7). (35)
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The transformation of (22) gives

cos §' = (@0 B°C"D'E"

afySel M, MM,

x{ (aBY (BY) BB:Py | (7' (70 GGG, , (<) () DDID,
Bﬂ C,'z D,z

(;)’ (TC) ElErEs :
- (D BRI, 36)

and, of (24),

Sa'Bydel (act) 4, A A, BO'D'EF”

Y0el , 37)
(@) (ad) B, M, M, (AB )’

sin §' =

which may be written
211 (2, v, a, B)
<a(aBydel) (ael) 4, 4,4, BCD'E"F* 37, (v, v,)
2 (ae) (ad) M, M, My (AEFY

when Su, =0, 3v,=0 (r=1, 2,3). (38)

= sinh

)

Linear Groups in an Infinite Field. By L. E. Dickson, Ph.D.
Received June 20th, 1901. Read November 14th, 1901.

1. Introduction.

Various branches of analytic group theory may be coordinated and
generalized by the study of groups of transformations in an arbitrary
field or domain of rationality. A field (Korper) is o set of elements
within which the rational operations of algebra may be performed.
Thus the totality of rational numbers forms a field R; the totality of
all complex numbers a+bv —1 forms a field C. A finite field is
completely defined by its order, which is necessarily a power of a
prime number p, the latter being the modulus of the field. Although
certain infinite fields may have a modulus p, so that u+p=p,
rp =0, for arbitrary elements p, 7 in the field, such fields do not seem
to have been investigated. An example is given by the aggregate of
the Galois fields of orders p", forn =1, 2, 3, ....





