In accordance with the general reasoning of Hilbert, we infer that all combinants of three binary forms are integral algebraic functions of invariants of J, and therefore, a fortiori, of the coefficients of J.

The results for any number of binary forms are exactly the same.

Addition Theorems for Hyperelliptic Integrals. By A. L. Drxon. Received and read November 14th, 1901.

The present communication is a continuation of my paper on "An Addition Theorem for Hyperelliptic Theta-Functions," presented to the Society in December, 1900 (Proc. Lond. Math. Soc., Vol. xxxiri., No. 755).

The method there given of deducing theorems in the theory of byperelliptic integrals from the geometrical properties of confocals is applied to the investigation of addition theorems for the integrals of the second and third kinds.*

I must record my obligation to a paper by Herr O. Staude, on the "Geometrische Deutung der Additionstheoreme der hyperelliptischen Integrale" (Math. Ann., Bd. xxin., 1883). In particnlar the fundamental idea of $\S 4$ has been taken from that paper.

References to my first paper are prefixed by the number I.

Integrals of the S'econd Kind.

1. Taking the equations (11), I., § 2, of the straight lines through the point h_{t}, which lie in the surfaces S and T, one of then is given by

$$
\begin{gathered}
\sqrt{2-s \cdot p-t \cdot q-r}=\frac{\xi_{p}}{\sqrt{ } q-s \cdot q-t \cdot r-p}=\frac{\xi_{q}}{\sqrt{ } r-s \cdot r-t \cdot p-q}, \\
\xi_{s}=0, \quad \xi_{t}=0 .
\end{gathered}
$$

Let S be the distance measured along this line from h_{4}. Then

$$
\begin{equation*}
S=\sqrt{\sum\left(x_{\mathrm{t}}-\ddot{h}_{\mathrm{t}}\right)^{\overline{2}}}=\sqrt{\xi_{r}^{2}+\xi_{q}^{2}+\xi_{r}^{2}} \tag{1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{S}{\sqrt{q-r \cdot r-p \cdot p-q}}=-\frac{\xi_{n}}{\sqrt{ } p-s \cdot p-t \cdot q-r}=\ldots \tag{2}
\end{equation*}
$$

[^0]Therefore also

$$
\begin{align*}
\frac{2 c d S}{\sqrt{ } q-r \cdot r-p \cdot p-q} & =\cdots \frac{2 d s_{n}}{\sqrt{p-s \cdot p-t \cdot q-r}}=\ldots \tag{3}\\
& =\frac{\sqrt{p-q \cdot p-r}}{\sqrt{ } q-r} \frac{d p}{\sqrt{P}}=\ldots \tag{4}
\end{align*}
$$

$2 d S=(p-q)(p-r) \frac{d p}{\sqrt{ } P}=(q-r)(q-p) \frac{d q}{\sqrt{ } Q}=(r-p)(r-q) \cdot \frac{d r}{\sqrt{ } R} ;$
and therefore $\quad 2 d S=p^{2}-\frac{d p}{\sqrt{ } P}+q^{2} \frac{d q}{\sqrt{Q}}+\gamma^{8} \frac{d r}{\sqrt{l}}$.
Integrating, we get

$$
\begin{aligned}
& 2 S=\int p^{3} \frac{d p}{\sqrt{P}}-\int p_{0}^{2} \frac{d p_{0}}{\sqrt{P_{0}}}+\int q^{3} \frac{d q}{\sqrt{Q}}-\int q_{0}^{2} \frac{d q_{0}}{\sqrt{Q} Q_{0}}+\int r^{2} \frac{d r}{\sqrt{ } l}-\int r_{0}^{2}-\frac{d r_{0}}{\sqrt{R_{0}}} \\
& \text { where } \\
& S=\sqrt{ } \Sigma\left(x_{i}-h_{t}\right)^{3}=\sqrt{p_{0}-q_{0} \cdot p_{0}-r_{0}}{ }_{p_{0}-s \cdot p_{0}-t}^{\xi_{l}}=\ldots .
\end{aligned}
$$

2. Since

$$
\begin{aligned}
& \Sigma x_{t}^{2}=\Sigma a_{\iota}+p+q+r+s+t, \\
& \Sigma l_{t}^{2}=\Sigma a_{1}+p_{0}+q_{0}+\gamma_{0}+s+t,
\end{aligned}
$$

we get

$$
\begin{aligned}
& S^{1}=2 \Sigma a_{\iota}+2 s+2 t+p+p_{0}+\downarrow+q_{0}+v+v_{0} \\
& -2 \mathrm{\Sigma}_{\mathrm{l}} \frac{\left(a_{\mathrm{l}}+s\right)\left(\dot{a}_{\mathrm{l}}+t\right)}{f^{\prime}\left(-a_{\mathrm{l}}\right)} \sqrt{a_{\mathrm{l}}+p \cdot a_{\mathrm{l}}+p_{0} \cdot a_{\mathrm{l}}+q \cdot a_{\mathrm{l}}+q_{0} \cdot a_{\mathrm{l}}+r \cdot a_{\mathrm{l}}+r_{0}} \text {, (7) }
\end{aligned}
$$

where s and t may be given any value we please, and, in fact, the coefficients of $s+t$ and st vanish by I. (15).

Putting $s=-a_{5}, t=-u_{5}$, I get
$内^{3}=2\left(a_{1}+a_{2}+a_{s}\right)+p+p_{0}+q+q_{0}+r+r_{0}$

$$
\begin{align*}
& -2 \frac{\sqrt{a_{1}+p \cdot a_{1}+p_{0} \cdot a_{1}+q \cdot a_{1}+q_{0} \cdot a_{1}+r \cdot a_{1}+r_{0}}}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)} \\
& -2 \frac{\sqrt{a_{2}+p \cdot a_{3}+p_{0} \cdot a_{2}+q \cdot a_{3}+q_{0} \cdot a_{2}+r \cdot a_{3}+r_{0}}}{\left(a_{2}-a_{3}\right)\left(a_{2}-a_{1}\right)} \\
& -2 \frac{\sqrt{a_{3}}+p \cdot a_{3}+p_{0} \cdot a_{3}+q \cdot a_{3}+q_{n} \cdot a_{3}+r \cdot a_{3}+r_{0}}{\left(a_{3}-a_{1}\right)\left(a_{3}-a_{3}\right)} \tag{8}
\end{align*}
$$

since

$$
\xi_{r}=0, \quad \xi_{r}=0 ;
$$

and therefore

$$
\begin{equation*}
S=\sqrt{ } P_{0}\left\{\Sigma_{\mathrm{k}} \frac{\sqrt{a_{\mathrm{a}}+p \cdot a_{\mathrm{t}}+q \cdot a_{\mathrm{t}}+q_{\mathrm{a}} \cdot a_{\mathrm{a}}+r \cdot a_{\mathrm{t}}+r_{0}}}{f^{\prime}\left(-a_{\mathrm{k}}\right) \sqrt{a_{\mathrm{l}}+p_{0}}}\right\} . \tag{9}
\end{equation*}
$$

3. Another expression for S, which will be used hereafter, is obtained as follows. We have

$$
\begin{equation*}
S=\frac{\sqrt{p_{0}-q_{0} \cdot p_{0}-r_{0}}}{\sqrt{p_{0}-s \cdot p_{0}-t}} \xi_{p}=\frac{\sqrt{ } P_{0}}{\left(p_{0}-s\right)\left(p_{0}-t\right)}\left(\Sigma_{a_{t}+p_{0}}^{\left.h_{4} x_{4}-1\right), ~, ~, ~}\right. \tag{10}
\end{equation*}
$$

where s and t are arbitrary constants.
Putting $s=-a_{1}, t=-a_{2}$, I get

$$
\begin{align*}
& \frac{\sqrt{a_{1}+p_{0} \cdot a_{2}+p_{0}}}{\sqrt{a_{3}+p_{0} \cdot a_{4}+p_{0} \cdot a_{5}+p_{0}}} S \\
& \quad=\Sigma \frac{\sqrt{w_{3}+p \cdot a_{3}+p_{0}} \cdot a_{5}+q \cdot a_{3}+\bar{q}_{0} \cdot a_{5}+r \cdot a_{3}+r_{0}}{\left(a_{3}-a_{4}\right)\left(a_{3}-a_{5}\right)\left(a_{3}+p_{0}\right)}-1 \tag{11}
\end{align*}
$$

the other two terms in the Σ correspònding to a_{6} and a_{8}. Also, interchanging p and p_{0}, q and q_{0}, r and r_{0}, I get

$$
\begin{aligned}
& \frac{\sqrt{a_{1}+p \cdot a_{3}+p}}{\sqrt{a_{3}+p \cdot a_{4}+p \cdot a_{3}+p}}(-S) \\
& \quad=\Sigma \frac{\sqrt{a_{3}}+\frac{p \cdot a_{3}+p_{0} \cdot a_{3}+q \cdot a_{3}+q_{0} \cdot a_{3}+r \cdot a_{3}+x_{0}}{\left(a_{3}-u_{4}\right)\left(a_{3}-a_{5}\right)\left(a_{3}+p\right)}}{}=1 .
\end{aligned}
$$

Then, by subtraction,

$$
\begin{align*}
& \frac{-S}{p-p_{0}}\left\{\frac{\sqrt{a_{1}+p_{0} \cdot a_{2}+p_{0}}}{\sqrt{a_{3}+p_{0} \cdot a_{4}+p_{0} \cdot a_{5}+p_{0}}}+\frac{\sqrt{a_{1}+\underline{p} \cdot a_{5}+p}}{\sqrt{a_{3}+p \cdot a_{4}+p \cdot a_{5}+p}}\right\} \\
&=\frac{\sqrt{a_{3}+q \cdot a_{5}+q_{0} \cdot a_{3}+r \cdot a_{3}+r_{0}}}{\left(a_{3}-a_{4}\right)\left(a_{5}-a_{5}\right) \sqrt{a_{3}+p \cdot a_{3}+p_{0}}}+\frac{\sqrt{a_{5}+q \cdot a_{4}+q_{0} \cdot a_{4}+r \cdot a_{4}+r_{0}}}{\left(a_{4}-a_{5}\right)\left(a_{4}-a_{3}\right) \sqrt{a_{4}+p \cdot a_{4}+p_{0}}} \\
&+\frac{\sqrt{a_{5}+q \cdot a_{5}+q_{0} \cdot a_{5}+r} \cdot a_{5}+r_{0}}{\left(a_{5}-a_{3}\right)\left(a_{5}-a_{4}\right) \sqrt{a_{5}+p \cdot a_{5}+p_{0}}} . \tag{12}
\end{align*}
$$

Integrals of the !l'livid Kinul.

4. To find corresponding expressions applicable to integrals of the thirl kind, let us take the generalized conception of distance as given by Cayley in his sixth memoir upon quantics (Ooll. Works, Vol. II., pp. 583-592).

Taking for the absolute the continuum

$$
\Sigma_{a_{1}}-\frac{x_{i}^{2}}{a_{\imath}+n}=1^{*} \quad(\imath=1,2,3,4,5),
$$

the distance $S^{\prime \prime}$ between any two points x_{t} and h_{t} is given by
and therefore

$$
\begin{aligned}
& =\begin{array}{c}
-\mathrm{II}\left(a_{1}+u\right) \\
(n-p)(n-q)(n-r)(n-s)(n-t)
\end{array}
\end{aligned}
$$

 to move up to and ultimately coincide with the point x_{1}, and we get, writing

$$
\begin{align*}
& N \equiv \Pi\left(u_{1}+u\right), \quad N^{\prime} \equiv \|(u-\lambda) \quad(\lambda=p, 4, r, s, t), \\
& d S^{2}=-\frac{N}{N^{\prime}}\left\{\frac{d s s_{v}^{u}}{u-p}+\frac{d s_{v}^{2}}{u-q}+\frac{d s_{s}^{2}}{u-r}+\frac{d s s_{m}^{2}}{u-s}+\frac{d s_{t}^{2}}{n-t}\right\}+ \tag{15}\\
& =-\frac{1}{4} \frac{N}{N^{\prime}} \dot{\Sigma}-(p-q)(p-q)(p-s)(p-t), p_{1} . \tag{16}
\end{align*}
$$

[^1]Now along the straight lines considered, namely those which lie in both the surfaces S and I ',

$$
d s=0, \quad d t=0
$$

and, as in the preceding section, we get

$$
\begin{align*}
& \frac{(n-p)(n-q)(n-r) 2 d S^{\prime}}{\sqrt{N \cdot q-r \cdot v-p \cdot p-q}}=\frac{2 d s_{p}}{\sqrt{p-s \cdot p-t \cdot q-r}}=\ldots \tag{17}\\
& =\frac{\sqrt{p-q \cdot p-r}}{\sqrt{q-r}} \frac{d p}{\sqrt{P}}=\ldots, \tag{18}\\
& \frac{(u-p)(u-q)(u-r)}{\sqrt{N}} 2 u d S^{\prime}=(p-q)(p-r) \frac{d p}{\sqrt{P}}=(q-r)(q-p) \frac{d q}{\sqrt{ } \bar{Q}} \\
& =(r-p)(r-q) \frac{d \cdot}{\sqrt{l l}}, \\
& \stackrel{v_{0}}{=} / d s^{\prime \prime}=\frac{d p}{(n-p) \sqrt{ } P}+\frac{d q}{(n-q) \sqrt{Q}}+\frac{d r}{(n-r) \sqrt{l}} . \tag{19}
\end{align*}
$$

Integrating, we get

$$
\begin{align*}
& +\int \frac{\sqrt{N} d r}{(n-r) \sqrt{R}}-\int \frac{\sqrt{N} N d r_{0}}{\left(n-r_{0}\right) \sqrt{\prime} l_{0}} . \tag{20}
\end{align*}
$$

(6. One expression for S^{\prime} is given by

$$
\begin{align*}
& \cos S^{\prime \prime}=\frac{\sum \frac{x_{i} h_{t}}{u_{c}+n}-1}{\left(\sum_{u_{1}+n}^{u_{i}^{2}+n}-1\right)^{1}\left(\sum_{u_{1}+n}^{u_{i}^{2}+\ldots}-1\right)^{1}} \\
& =\frac{\left.N\left\{\Sigma_{1}\left(u_{1}+s\right)\left(u_{1}+t\right) \quad u_{1}+u\right) f^{\prime}\left(-u_{1}\right) \sqrt{\prime}+p \cdot u_{1}+p_{0} \cdot u_{1}+q \cdot u_{1}+y_{0} \cdot u_{1}+r \cdot u_{1}+\mu_{0}-1\right\}}{(u-s)(u-t) \sqrt{n-p \cdot u-p_{0} \cdot u-q \cdot u-q_{0} \cdot u-r \cdot n-r_{0}}} \tag{21}
\end{align*}
$$

wheres and t maty have any value. Putting $s=\infty, t=-a_{5}$ I get $\cos s^{\prime \prime}=\frac{\left(u_{1}+n\right)\left(n_{0}+n\right)\left(u_{3}+n\right)\left(a_{4}+n\right)}{\sqrt{n-p} \cdot n-p_{0} \cdot n-q \cdot n-q_{0} \cdot n-r \cdot n-r_{0}}=$

$$
\begin{equation*}
\times\left\{\Sigma \frac{\sqrt{ } a_{1}+p \cdot a_{1}+p_{1} \cdot a_{1}+q \cdot u_{1}+q_{4} \cdot a_{1}+r \cdot\left(u_{1}+x_{9}\right.}{\left(a_{1}+u\right)\left(a_{1}-u_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-u_{4}\right)}\right\} \tag{22}
\end{equation*}
$$

the other three terms of the Σ corresponding to a_{5}, a_{3}, and a_{4}. Also, putting $s=t=\infty$, I get another form, viz.,

Another expression for S^{\prime} follows from (14) and (2). For, putting

$$
\begin{aligned}
& \frac{\xi_{n}}{\sqrt{p_{0}-s \cdot p_{0}-t \cdot q_{0}-r_{0}}}=\frac{\xi_{n}}{\sqrt{q_{0}-s \cdot q_{0}-t \cdot r_{0}-p_{0}}} \\
= & \frac{\xi_{r}}{\sqrt{r_{0}-s \cdot r_{0}-t \cdot p_{0}-q_{0}}}=\frac{\underline{\sqrt{2}}}{\sqrt{q_{0}-r_{0} \cdot r_{0}-p_{0} \cdot p_{0}-q_{0}}}
\end{aligned}
$$

in (14), we get

$$
\begin{align*}
& \sin ^{2} S^{\prime \prime}=-(u-\mu)(u-q)(u-r)\left(u-p_{0}\right)\left(u-q_{0}\right)\left(n-r_{0}\right) \\
& \sin S^{\prime}=\frac{N S^{2}}{v^{\prime} u-p \cdot u-p_{0} \cdot u-q \cdot u-q_{0} \cdot u-r \cdot u-r_{0}} \tag{24}
\end{align*}
$$

Coufocals of lierolution.

7. It is also interesting from the geometrical point of view to consider the results obtained when two of the parameters a are equal to one another, and one of the families degenerates into the system of planes through an uxis.

It will be found that in this way a real geometrical construction is obtained for the sum of integrals of the third kind.
'Take

$$
\sum \underset{u_{1}+\lambda}{a_{i}^{2}}=1 \quad(\imath=1,2,3,4,5,6)
$$

where

$$
x_{1}^{2}=y^{2}+z^{2},
$$

so that $y, z, x_{y}, x_{3}, x_{4}, x_{5}, x_{0}$ are Cartesian coordinates, as the equation of a set of confocal ${ }_{2} L_{0}$'s of revolution in a space S_{7}, and let q, r, s, t, u, v be the values of λ for the six members of the set through any point. The degenerate seventh member of the set corresponding to the parameter p is given by

$$
y=z \tan \theta
$$

VoL. xxxiv.-No. 775.

Then, as before,

$$
\begin{aligned}
& \Sigma \frac{x_{i}^{2}}{a_{i}+\lambda}-1 \equiv-\frac{(\lambda-q)(\lambda-v)(\lambda-s)(\lambda-t)(\lambda-u)(\lambda-v)}{\Pi\left(a_{1}+\lambda\right)} ; \\
& x_{i}^{2}=-\frac{\left(a_{t}+q\right)\left(a_{t}+v\right)\left(a_{t}+s\right)\left(a_{t}+t\right)\left(a_{t}+u\right)\left(a_{t}+v\right)}{l^{\prime}\left(-a_{t}\right)}, \\
& f(\lambda) \equiv \Pi\left(u_{\mathrm{t}}+\lambda\right) ;
\end{aligned}
$$

writing
and $4 d s_{q}^{2}=\Sigma_{i} \frac{x_{i}^{2}}{\left(a_{1}+q\right)^{-}} d q^{2}=\frac{(q-v)(q-s)(q-t)(q-u)(q-v)}{f(q)} d q^{2}, \ldots$, but $c s_{p}^{2}$ is replaced by $x_{1}^{2} d \theta^{3}$, that is, by

$$
-\frac{\left(a_{1}+q\right)\left(a_{1}+r\right)\left(a_{1}+s\right)\left(a_{1}+t\right)\left(a_{1}+u\right)\left(a_{9}+r\right)}{f^{\prime}\left(-a_{1}\right)} d \theta^{*}
$$

8. In considering the "tangent cone," we may without loss of generality take the coordinates of the point h_{l} to be $0, h_{1}, h_{3}, h_{\mathrm{s}}, h_{\mathbf{4}}$, Λ_{6}, h_{u}; so that its equation is

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
y^{2}+z^{2} \\
u_{1}+\lambda
\end{array}+\Sigma_{1} \frac{n_{1}^{2}}{u_{1}+\lambda}-1\right) & \left(\begin{array}{c}
\mu_{1}^{2} \\
u_{1}+\lambda
\end{array}+\Sigma_{1} \frac{\mu_{1}^{2}}{u_{1}+\lambda}-1\right.
\end{array}\right) .
$$

which when refered to its principal axes takes the form

Then, exactly as before ($1 ., \S 12$), the common points of the three surfaces $I^{\prime}, I T, I^{r}$ and the three tangent planes $T^{\prime}, U^{\prime}, V^{\prime}$ are given by

$$
\begin{align*}
& \xi_{t}=0, \quad \xi_{m}=0, \quad \xi_{r}=0, \\
& !^{\prime \prime} \\
& \left(u_{1}+\ddot{t}\right)\left(u_{1}+u\right)\left(u_{1}+a\right)(q-i)(r-s)(s-q) \\
& ={ }_{(1,-1)(4-\mu)(q-r)(r-s)\left(\mu_{1}+s\right)\left(\mu_{1}+r\right)} \\
& =(r-t)(r-u)(r-r)\left(u_{1}+z\right)\left(u_{1}+q\right)(q-s) \\
& =\left(\begin{array}{c}
-\xi_{;}^{*} \\
(s-l)(s-u)(s-r)\left(a_{1}+q\right)(q-r)\left(u_{1}+r\right)
\end{array},\right. \tag{A}
\end{align*}
$$

putting - π_{1} forr ρ in the equations of $1 ., \S 12$.
1901.] Addition Theorems for H!perelliptic Integrals.

Now, writing, for $y, x_{1} l \theta$; for $\xi_{u}, d s_{q}$; \&c., we get, as the differential equations of the eight lines in the surfaces T, U, V,

$$
\begin{aligned}
\frac{1}{(q-r)(r-s)(s-q)} \frac{2 d \theta}{\sqrt{f^{\prime}\left(-a_{1}\right)}} & =\frac{\epsilon}{(r-s)\left(a_{1}+r\right)\left(a_{1}+s\right)} \sqrt{\sqrt{ } a_{1}+q \sqrt{ } f(q)} \\
& =\frac{e^{\prime}}{(s-q)\left(a_{1}+s\right)\left(a_{1}+q\right) \sqrt{a_{1}+r} \sqrt{f(r)}} \\
& =\frac{d r}{(q-r)\left(a_{1}+q\right)\left(a_{1}+r\right)} \overline{\sqrt{ } a_{1}+s \sqrt{f(s)}} .
\end{aligned}
$$

Writing $\quad Q \equiv\left(a_{2}+q\right)\left(a_{9}+q\right)\left(a_{4}+q\right)\left(a_{5}+q\right)\left(a_{0}+q\right), \ldots$, these are equivalent to

$$
\begin{aligned}
& \epsilon \frac{d q^{2}}{\sqrt{ } Q}+\epsilon^{\prime} \frac{d r}{\sqrt{ } l}+\epsilon^{\prime \prime} \frac{d s}{\sqrt{ } S}=0, \\
& \underset{\sqrt{ }(\mathbb{q}}{q l q}+\epsilon^{\prime} \frac{r d r}{\sqrt{ } R}+\epsilon^{\prime \prime} \frac{s l l s}{\sqrt{ } S}=0, \\
& \frac{2 d \theta}{\sqrt{f^{\prime}\left(-a_{1}\right)}}+\frac{\epsilon d q}{\left(a_{1}+q\right) \sqrt{ } Q}+\frac{\epsilon^{\prime} d r}{\left(a_{1}+r\right) \sqrt{ } h}+\frac{\epsilon^{\prime \prime} d s}{\left(a_{1}+s\right) \sqrt{S}}=0,
\end{aligned}
$$

and the integral of these is

$$
\begin{aligned}
& \begin{array}{c}
\cos \theta \frac{\left(a_{1}+\lambda\right)\left(a_{1}+\mu\right) \sqrt{a_{1}+q} \cdot a_{1}+q_{1} \cdot a_{1}+r \cdot a_{1}+r_{0} \cdot a_{1}+s \cdot a_{1}+s_{1}}{f\left(-a_{1}\right)}
\end{array} \\
& +\Sigma_{l} \frac{\left(a_{1}+\lambda\right)\left(a_{2}+\mu\right) \sqrt{a_{4}+\eta} \cdot a_{2}+\bar{\eta}_{n} \cdot a_{4}+r \cdot a_{t}+r_{0} \cdot a_{4}+s \cdot a_{2}+s_{0}}{f}+1=0 \\
& (\iota=2,3,4,5,6),
\end{aligned}
$$

which is the same as (21).

$$
\text { 9. Also putting } \quad S^{2}=y^{2}+\xi_{7}^{2}+\xi_{r}^{2}+\xi_{s}^{2}
$$

we get, from (A),

$$
\frac{S^{2}}{\left(a_{1}+q_{0}\right)\left(a_{1}+r_{0}\right)\left(a_{1}+s_{0}\right)}=\frac{y^{2}}{\left(a_{1}+t\right)\left(a_{1}+u\right)\left(a_{1}+v\right)} ;
$$

and therefore, substituting for η,

$$
S=\frac{\sqrt{a_{1}+q \cdot a_{1}+r \cdot a_{1}+s \cdot a_{1}+q_{13} \cdot a_{1}+r_{n} \cdot a_{1}+s_{0}}}{\sqrt{\prime} a_{2}-a_{1} \cdot a_{3}-a_{1} \cdot a_{4}-a_{1} \cdot a_{5}-a_{1} \cdot a_{0}-a_{1}} \sin \theta,
$$

which is equation (24).
In fact θ represents the "distance" between two points, wheu the absolute is taken to be

$$
\begin{equation*}
y^{0}+z^{2}=0 \tag{N 2}
\end{equation*}
$$

Paraboloids.

10. The degenerate case of paraboloids may also be briefly noticed. The particular case here worked out gives an integral of the two equations

$$
\sum_{r=1}^{r-6} u_{r}=0, \sum_{r=1}^{r-f_{6}} \Pi\left(u_{r} a\right)=0,
$$

where u is ath ordinary elliptic integral of the first kind, and $\Pi(u, a)$ one of the third kind. Starting with

$$
\sum \frac{x_{i}^{2}}{a_{\imath}+\lambda}=4 a(x+a \lambda) \quad(\imath=1,2,3,4)
$$

1 shall get

$$
\Sigma \frac{x_{1}^{2}}{n_{1}+\lambda}-4 a(x+n \lambda)=-4 n^{2}-\frac{(\lambda-p)(\lambda-q)(\lambda-r)(\lambda-s)(\lambda-t)}{\prod_{i}\left(n_{t}+\lambda\right)}
$$

Then

$$
x_{i}^{2}=\frac{4 n^{2}\left(i_{1}+p\right)\left(a_{4}+q\right)\left(a_{4}+v\right)\left(a_{t}+s\right)\left(a_{t}+t\right)}{f^{\prime}\left(-a_{6}\right)}
$$

where

$$
f(\lambda)=\Pi\left(a_{\imath}+\lambda\right)
$$

Also

$$
-\frac{n}{a}=p+q+r+s+t
$$

and so

$$
4 d s_{p}^{2}=d p^{2}\left(\Sigma \frac{q^{2}}{\left(a_{4}+p\right)^{2}}+4 a^{2}\right)=4 n^{2}(p-q)(p-r)(p-s)(p-t) d p^{2}
$$

The results of I., $\S \S 9,3$ will not be altered, and I shall get an algehraical integral of the equations

$$
\begin{aligned}
& \int \frac{d p}{\sqrt{P}},-\int \frac{d p_{n}}{\sqrt{P_{0}}}+\varepsilon\left(\int \because \frac{d q}{\sqrt{Q}}-\int \frac{d q_{n}}{\sqrt{ }\left(R_{0}\right.}\right)+e \cdot\left(\int \frac{d r}{\sqrt{R}}-\int \frac{d r_{n}}{\sqrt{ } R_{0}}\right)=0, \\
& \int \frac{p d p}{\sqrt{P}}-\int \frac{p_{0} d p_{0}}{\sqrt{ } 1_{0}^{\prime}}+\epsilon\left(\int \frac{q d q}{\sqrt{(\ell}}-\int \frac{q_{0} d q_{0}}{\sqrt{\left(q_{0}\right.}}\right)+\epsilon^{\prime}\left(\int \frac{r d r}{\sqrt{R}}-\int \frac{r_{0} d r_{0}}{\sqrt{R_{0}}}\right)=0,
\end{aligned}
$$

where

$$
\theta \equiv f(\theta) \equiv\left(a_{1}+\theta\right)\left(a_{2}+\theta\right)\left(a_{3}+\theta\right)\left(a_{4}+\theta\right)
$$

in the form

$$
\begin{aligned}
& \Sigma^{\left(a_{4}+\lambda\right) \sqrt{a_{1}+p \cdot a_{1}+p_{0} \cdot a_{1}+y \cdot a_{2}+q_{0} \cdot a^{\prime}+r \cdot a_{t}+r_{0}}} \\
& f^{\prime}\left(-a_{\imath}\right) \\
& +p+p_{0}+q+q_{0}+r+r_{0}+2 \lambda=0 \quad(\imath=1,2,3,4),
\end{aligned}
$$

where λ is an arbitrary constant.

1901.] Addition Theorems for Hyperelliptic Integrals.

11. I proceed to express the results obtained in the notation adopted in the former communication (I., §§ 5, 6). Making the substitutions

$$
p=\frac{1}{a-x}, \quad a_{1}=\frac{1}{b-a}, \quad a_{2}=\frac{1}{c-a}, \quad \ldots,
$$

and writing

$$
\theta \equiv a-\theta . b-\theta . c-\theta . d-\theta . e-\theta \cdot f-\theta,
$$

I take

$$
\begin{align*}
& u=\int \frac{(e-x) d x}{(e-f) \sqrt{X}}-\int \frac{(e-y) d y}{(e-f) \sqrt{Y}} \tag{25}\\
& \left.v=\int \frac{(f-x) d x}{(f-e) \sqrt{X}}-\int \begin{array}{c}
(f-y) d y \\
(f-e) \sqrt{Y}
\end{array}\right\},
\end{align*}
$$

from which $\left.\begin{array}{rl} & (x-y) \frac{d x}{\sqrt{ } X}=(f-y) d u+(e-y) d v \\ & (x-y) \frac{d y}{\sqrt{ } Y}=(f-x) d u+(e-x) d v\end{array}\right\}$.
Then $\int \underset{\sqrt{ } \boldsymbol{P}}{p^{2} d p}-\int \begin{gathered}p_{0}^{2} d p_{0} \\ \sqrt{ } P_{0}\end{gathered}$ becomes

$$
\sqrt{b-a \cdot c-a \cdot d-a \cdot e-a \cdot f-u}\left\{\int \frac{d x}{(a-x) \sqrt{X}}-\int \frac{d y}{(a-y) \sqrt{Y}}\right\},
$$

and
$\int \frac{d x}{(a-x) \sqrt{X}}-\int \frac{d y}{(a-y) \sqrt{ } Y}=\int \frac{a+f-x-y}{(a-x)(a-y)} d u+\int \frac{a+e-x-y}{(a-x)(a-y)} d r$.
But

$$
\begin{gathered}
F^{2}=\zeta^{2}(f-x)(f-y), \\
A^{2}=a^{2}(a-x)(a-y) ; \\
F^{2} / \zeta^{2}-A^{2} / a^{2}=(f-a)(a+f-x-y),
\end{gathered}
$$

therefore
und so

$$
\int \frac{d x}{(a-x) \sqrt{ } X}-\int \frac{d y}{a-y \sqrt{ } Y}=\frac{u}{a-f}+\frac{v}{a-e}+\int \frac{a^{2} F^{2} d u}{(f-a) \zeta^{2} A^{2}}+\int \frac{a^{2} E^{2} d v}{(e-a)} d v, \epsilon^{2} i^{2},
$$

and therefore $\int \frac{p^{2} d p}{\sqrt{ } P^{\mathfrak{j}}}-\int \frac{p_{0}^{2} d p_{0}}{\sqrt{ } P_{0}}$ becomes

$$
\begin{aligned}
& \sqrt{ } b=a \cdot c-a \cdot d=a \cdot \bar{e}-a \cdot f-a \\
& \times\left\{\begin{array}{c}
n \\
a-f
\end{array}+\frac{v}{a-e}+\int \begin{array}{c}
a^{2} F^{2}, \lambda u \\
(f-a) \zeta^{2} \dot{A}^{2}
\end{array}+\int \frac{a^{2} L^{2} d v}{(e-a) \varepsilon^{2} \Lambda^{2}}\right\}
\end{aligned}
$$

Now $b-a, a-f, \ldots$ can be expressel in terms of $a, \beta, \gamma, \ldots, *$ and I finnlly get equation (6) in the form
where, as in I., § 9, (a̧) is written as an abbreviation for

$$
(a \beta \zeta)(a \gamma \zeta)(a \delta \zeta)(a \in \zeta)
$$

Then, using $Z_{A}(u, v)$ to denote the function

I have $\underset{(\pi / 3 \gamma \delta \epsilon \zeta)^{i}}{2 S}=Z_{.1}\left(n_{1}, r_{1}\right)+Z_{A}\left(u_{2}, v_{2}\right)+Z_{A}\left(n_{3}, v_{3}\right)$,
where $\quad u_{1}+u_{2}+u_{3}=0$ and $v_{1}+v_{2}+v_{3}=0$.
12. Teet us now consider the transformation of S^{2} as given in § 2 (8). We may obviously put

where $\lambda_{0}, \lambda, \lambda^{\prime}, \ldots$ are coefficients to be determined. Then, firstly, since there is a linear relation between the squares of $\lambda, B, C, D, \lambda_{0}$ may be merged in λ, μ, ν; and, secondly, since S^{s} must vanish when

$$
u_{3}, v_{3}=0,0 \quad \text { and } \quad u_{1}, v_{1}=-u_{2},-r_{2},
$$

we have

$$
\beta \lambda^{\prime}+2 \lambda_{t}=0, \ldots,
$$

and we may therefore put

$$
\begin{aligned}
& S^{2}=\lambda\left(\frac{n_{1}^{2}}{A_{1}^{2}}+\frac{B_{2}^{2}}{A_{2}^{2}}+\frac{B_{3}^{2}}{A_{3}^{2}}-\frac{a}{\beta} \frac{B_{1} B_{2} B_{3}}{A_{1} \mathcal{A}_{2} A_{3}}\right) \\
& +\mu\left(\frac{C_{1}^{2}}{A_{1}^{2}}+\frac{C_{9}^{2}}{A_{9}^{2}}+\frac{C_{3}^{2}}{A_{3}^{2}}-2 \frac{a}{\gamma} \frac{C_{1} C_{9} C_{3}}{A_{1} A_{9} A_{3}}\right)
\end{aligned}
$$

- For the values of $a,(a \beta\}), \ldots$ in terme of a, b, c, n, c, f, sec Cayley, Coll. Horks, Vol. x., pp. 602, 503 . Neglecting Ω fourth root of unity which occurs as a roefficient, it is easily found that.

$$
a-b=(\alpha \dot{\beta}) / a \beta, \ldots
$$

uud that

$$
\sqrt{b}-\overline{a \cdot c-a \cdot d-a \cdot c-a \cdot f-a}=(a \beta \gamma \delta \in S)^{\frac{1}{1} / a^{n}} .
$$

But the coefticient of $-2 \underset{\mathcal{A}_{1} \mathcal{A}_{2} A_{3}}{B_{2} B_{2} B_{3}}$ in S^{2} as determined from (8) is $\frac{(c-a)(l-a)}{(b-a)(b-c)(\bar{l}-d)} \frac{a^{3}}{\beta^{3}}$, which, on substituting $c-a=(\overline{a \gamma}) / a \gamma$, becomes in reduction $\underset{(a \epsilon \zeta)^{2}}{a^{2}} \frac{(1 \hat{\varepsilon} \zeta)^{2}}{(a \bar{\beta})}$, and so we get, finally,

$$
\begin{align*}
& +\frac{a \gamma(\gamma \in \zeta)^{2}}{(a \gamma)(u \in \zeta)^{2}}\left(\frac{C_{1}^{2}}{A_{1}^{2}}+\frac{C_{9}}{A_{9}^{2}}+\frac{n_{3}^{2}}{A_{3}^{2}}-2 \frac{a}{\gamma} \frac{C_{1} C_{9}\left(C_{3}\right.}{A_{1} A_{2} A_{3}}\right) \\
& +\frac{a \delta(\delta \varepsilon \zeta)^{2}}{(a \dot{\delta})\left(u \epsilon_{\zeta} \zeta\right)^{9}}\left(\frac{D_{1}^{2}}{A_{1}^{2}}+\frac{D_{-}^{2}}{A_{-}^{2}}+\frac{D_{3}^{2}}{A_{s}^{2}}-2 \frac{a}{\delta} \frac{D_{1} D_{2} D_{s}}{A_{1} A_{2} A_{3}}\right), \tag{29}
\end{align*}
$$

where

$$
\frac{2 S}{(a \beta \gamma \delta \epsilon!)^{4}}=Z_{A}\left(u_{1}, v_{1}\right)+Z_{A}\left(u_{2}, v_{2}\right)+Z_{A}\left(u_{3}, v_{3}\right),
$$

which is one form of the addition theorem for integrals of the second kind.
13. The transformation of formula (12), § 3, leads similarly to

$$
S \frac{\left(A E F^{\prime}\right)_{1}}{(a \epsilon \zeta)} \frac{a^{2}}{(a \beta \gamma \delta \epsilon \zeta)^{\frac{1}{2}}} \frac{A_{1}^{2}}{a^{2}} \frac{\beta \gamma \delta}{B_{1} C_{1} D_{1}}=\Sigma \frac{\beta^{2} \gamma \delta}{(\tilde{\beta} \bar{\gamma} \bar{\gamma})(\overline{\beta j})} a B_{2} B_{3} A_{1}
$$

and therefore

$$
\begin{align*}
& S=\frac{(\pi, j \gamma \delta \zeta \zeta)^{i}}{(j \gamma \gamma)(\beta \bar{\delta})(\gamma \delta)} \frac{a(a \epsilon \zeta) B_{1} C_{1} D_{1}}{\left(A \bar{E} F^{\prime}\right)_{1} A_{1} A_{2} \cdot A_{3}} \\
& \times\left\{(\overline{\gamma \delta}) \frac{B_{9} B_{3}}{B_{1}}+(\bar{\beta} \bar{\delta}) \frac{C_{2} C_{s}}{C_{1}}-(\dot{\beta} \gamma) \frac{D_{9} D_{3}}{D_{1}}\right\} . \tag{30}
\end{align*}
$$

The signs of the terms in the bracket are determined by putting

$$
\left(u_{1}, v_{1}\right)=(e f), \quad\left(u_{1}, v_{\mathrm{s}}\right)=-\left(u_{3}, v_{s}\right)-(e f),
$$

when S is seen to vanish by the help of the identical relation
$(\gamma \delta \varepsilon)(\gamma \delta \zeta)(B E F) B+(\omega \delta \varepsilon)(\beta \delta \zeta)(C E F) C-(\beta \gamma \varepsilon)(\beta \gamma \zeta)(D E F) D=0$.
This gives the result that, with

$$
\Sigma_{r} u_{r}=0, \quad \Sigma_{r} v_{r}=0 \quad(r=1,2,3)
$$

$$
\begin{align*}
\Sigma_{r} Z_{\Lambda}\left(u_{r}, v_{r}\right) & =\frac{2 a(a \epsilon \zeta) B_{1} C_{1} D_{1}}{(\bar{A} E F)} \bar{A}_{1} A_{1} A_{3} \\
& \times\left\{\frac{B_{2} B_{3}}{(\overline{\beta \gamma \gamma})(\overline{\beta \bar{\delta}}) B_{1}}+\frac{C_{9} C_{3}}{(\overline{\beta \gamma \gamma})(\overline{\gamma \delta}) C_{1}}-\frac{D_{9} D_{3}}{(\overline{\beta \delta})(\overline{\gamma \delta}) D_{1}}\right\} . \tag{31}
\end{align*}
$$

184 On Addition Theorems for Hyperelliptic Integrals. [Nov. 14,
14. In exactly the same way $\int \frac{\sqrt{N d p}}{(n-p) \sqrt{ } P}$ (§5) is replaced by $\int \frac{\sqrt{ } N d x}{(n-x) \sqrt{ } X}$, and $\int \frac{\sqrt{ } N d x}{(n-x) \sqrt{X}}-\frac{\sqrt{N} d y}{(n-y)} \sqrt{X}$ is equal to

$$
\int \frac{\sqrt{N} F^{2} d u}{(f-n) \zeta^{2}(n-x)(n-y)}+\int \frac{\sqrt{N} E^{2} d v}{(e-n) \epsilon^{2}(n-x)(n-y)}
$$

Now take

$$
\begin{align*}
& B(a, \beta)=B^{\prime}=j \sqrt{b-n \cdot b-a} \tag{32}\\
& C(a, b)=C^{\prime}=\gamma \sqrt{c-n \cdot c-a} \\
& \ldots \quad \ldots
\end{align*} \quad \ldots \quad \ldots \quad \ldots .
$$

so that a, β are parameters of double θ-functions for which $A(\alpha, \beta)$ vanishes identically. Then, since

$$
\begin{aligned}
& \frac{(n-x)(n-y)}{(b-n)(c-n)(d-n)} \\
& =\frac{(b-x)(b-y)}{(b-n)(b-c)(b-d)}+\ldots \\
& =\frac{\beta \gamma \delta}{a(\overline{a \epsilon})(\overline{a \zeta})}\left\{(a \beta \epsilon)^{2}(a \beta \zeta)^{2} \frac{B^{2}}{\beta^{\prime 2}}-(a \gamma \epsilon)^{2}(a \gamma \zeta)^{2} \frac{C^{2}}{{O^{\prime 2}}^{2}}+(a \delta \varepsilon)^{2}(a \delta \zeta)^{2} \frac{D^{2}}{D^{\prime 2}}\right\},
\end{aligned}
$$

where the signs are determined from the identity

$$
\begin{aligned}
& (\alpha \beta \varepsilon)^{2}(a \beta \zeta)^{2}-(\sim \gamma \epsilon)^{2}(a \gamma \zeta)^{2}+(a \delta \varepsilon)^{2}(a \delta \zeta)^{2}=0, \\
& 1 \text { get } \quad \int \frac{V N}{(n-x)(n-y)}\left(\frac{F^{2} d u}{(f-n) \zeta^{2}}+\frac{E^{2} d v}{(e-n) \epsilon^{2}}\right) \\
& =\int \frac{a \beta \gamma \delta(a \epsilon \zeta)}{(\overline{a \epsilon})(\bar{a} \bar{\zeta})} \cdot \frac{B^{\prime} C^{\prime} D^{\prime}}{(A E F)},
\end{aligned}
$$

This I shall denote by $2 \Pi(u, v ; n)$, or by $2 \Pi(u, v ; a, \beta)$, and for shortness I write

$$
\begin{align*}
M^{2} & \equiv(a \beta \varepsilon)^{2}(a \beta \zeta)^{2} B^{2} C^{2} D^{2}-(a \gamma \varepsilon)^{2}(a \gamma \zeta)^{2} C^{2} D^{2} B^{2}+(a \delta \varepsilon)^{2}(a \delta \zeta)^{2} D^{2} B^{\prime 2}\left(^{\prime 2}\right. \\
& \equiv \frac{(a \beta \gamma \delta \epsilon \zeta)^{2}}{a^{2}}(n-x)(n-y) . \tag{34}
\end{align*}
$$

Then formula (20) becomes

$$
\begin{equation*}
S^{\prime}=\Pi\left(u_{1}, v_{1} ; n\right)+\Pi\left(u_{2}, v_{2} ; n\right)+\Pi\left(u_{3}, v_{8} ; n\right) . \tag{35}
\end{equation*}
$$

1901.] On Jinear Groups in an Infinite Field.

The transformation of (22) gives

$$
\begin{aligned}
& \cos S^{\prime}=\frac{(\bar{a} \bar{\zeta})}{a \beta_{\gamma} \delta \epsilon \bar{\zeta}} \frac{B^{\prime 2} C^{\prime 2} D^{\prime \prime} E^{\prime 3}}{M_{1} M \overline{M_{8} M_{5}}}
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{(\bar{a})^{2}(\overline{(\epsilon \zeta})}{E^{2}} \underline{E}_{1} E_{9} E_{\mathrm{s}}\right\}, \tag{36}
\end{align*}
$$

and, of (24),

$$
\begin{equation*}
\sin S^{\prime}=\frac{\alpha n^{2} \beta \gamma \delta \epsilon \zeta(a \epsilon \zeta) A_{1} A_{9} A_{s} B^{\prime} C^{\prime} D^{\prime} E^{\prime 2} F^{\prime 2}}{(\overline{a \epsilon})(a \zeta) M_{1} M_{\mathrm{s}} M_{\mathrm{s}}\left(A E V^{\prime}\right)^{\prime}}, \tag{37}
\end{equation*}
$$

which may be written

$$
\begin{aligned}
& \Sigma \Pi\left(u_{r}, v_{r} ; \alpha, \beta\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { when } \\
& \Sigma u_{r}=0, \quad \Sigma v_{r}=0 \quad(r=1,2,3) . \tag{38}
\end{align*}
$$

Linear Groups in an Infinite Field. By L. E. Dickson, Plı.D. Received June 20th, 1901. Read November 14th, 1901.

1. Introduction.

Various branches of analytic group theory may be coordinated and generalized by the study of groups of transformations in an arbitrary field or domain of rationality. A field (Körper) is a set of elements within which the rational operations of algebra may be performed. Thus the totality of rational numbers forms a field R; the totality of all complex numbers $a+b \sqrt{-1}$ forms a field C. A finite field is completely defined by its order, which is necessarily a power of a prime number p, the latter being the modulus of the field. Although certain infinite fields may have a modulus p, so that $\mu+p \equiv \mu$, $\tau p \equiv 0$, for arbitrary elements μ, τ in the field, such fields do not seem to have been inrestigated. An example is given by the aggregate of the Galois fields of orders $p^{\prime \prime}$, for $n=1,2,3, \ldots$.

[^0]: * A paper on the application of the method to consocal conicoids in ordinary space and the deduction of theorems for elliptic integrals has appeared in the Quarterly Journal, No. 131, 1902.

[^1]: * Staude, lue. cit., Mrath. Ann., Bd. xxir., p. 2:3, § 7.
 $\dagger \xi_{p}, \xi_{4}, d_{s p}, l_{s q}, \ldots$ have exactly the same meauing liere as in the last section, that is, they represent the same expressions in x_{i}, or in p, η, r, s, t.

