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The first of the two notes in the present communication deals with
certain properties of groups whoso order is even. It is shoAvn that if
2m is the highest power of 2 contained in the order of a group, and if
the suh-groups of order 2'" are cyclical, the group cannot be simple;
so that, in particular, no group whose order is divisible by 2, but not
by 4, can be simple. When the highest power of 2 which divides the
order of a group is either 22 or 23 it is shown that, unless the group
contains a smaller number of distinct conjugate sets of operations of
orders 2 or 4 than the sub-groups of orders 23 and 28 respectively
contain, the group cannot be simple. In the first case, this condition
cannot be satisfied unless 3 is a factor of the order; nor can it be
satisfied in the second case unless either 3 or 7 is a factor of the
order, and, therefore, no group of even order can be simple unless its
order is divisible by 12, 1G, or 56. It seems extremely probable that
this property may bo extended to the more general form that, if
the order of a group be

N — 2mn

where n is odd, and if iV is relatively prime to 2m— 1,2"1"1—1, ... 29—l,
the group cannot be simple; but I have not hitherto succeeded in
proving this more general result.

In the second note, Dr. Cole's and Herr Holder's determination of
all simple groups whose orders do not exceed 660 is carried on from
660 to 1092, the order of the next known simple group, with the
result of showing that no simple groups exist in the interval.
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V I I I . On Groups of Even Order ; and, in particular, those whose Orders
are divisible by no higher power of 2 than 2s.

Let N = 2mn,

where n is odd, be the order of a group; and let the sub-groups of
order 2'" be cyclical. Then, if the group contains an operation 8 of
odd order which is not permutable with any operation of order 2,
S must be one of a set of 2,"7* conjugate operations, where /w is odd.
If the group is simple, it can be represented as a transitive permuta-
tion-group arising from the permutations of the 2mp conjugate
operations among themselves, when they are transformed by the N
operations of the group. If the set of conjugate operations be trans-
formed by an operation of order 2'", the resulting substitution of the
permutation-group must consist of fx cycles of 2m symbols each; for,
if any cycle consisted of 2r (r<m) symbols only, the corresponding
2r operations conjugate to S would be permutable with a group of
order 2m'r, which is supposed not to be the case. Now a substitution
consisting of fi (odd) cycles of 2'" symbols each is equivalent to an
odd number of transpositions, and a group containing such a substi-
tution cannot be simple.

If, on the other hand, the group contains no operation of odd order
which is not permutable with an operation of order 2, an operation
of order 2 must itself be contained self-conjugately in the group,
which again cannot be simple. Hence a group whose order is 2mn
(n- odd), in -which the sub-groups of order 2'" are cyclical, cannot be
simple. In particular, a group whose order is even, but not divisible
by 4, cannot be simple.

The number of possible different types of sub-group of order 2m

increases very rapidly with w, but, when m is either 2 or 3, it is not
difficult to determine under what limitations it is possible for a group
to be simple.

If the order is N = 2STO,

where m is odd, and the sub-groups of order 2s are not cyclical, each
such sub-group contains 3 operations of order 2. Suppose that a
sub-group of order 29 is contained self-conjugately in a sub-group of
order 22m,, where m = m^m^. If 3 is a factor of Wj, the 3 operations
of order 2 in this sub-group may form a single conjugate set, and
then all the operations of order 2 in the main group form a single-
conjugate set. Suppose now that this is not the case, so that the.
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group contains 3 different conjugate sets of operations of order 2.
Every operation of order 2 is certainly self-conjugate in a sub-group
of order 2'mn and may be self-conjugate in a more extensive sub-
group. Let, then, 8, an operation of order 2 be self-conjugate within
a group of order 21W1/u. An operation of this sub-group whose order
is odd, and which is not contained in the sub-group of order 23??i,, is
permutable with S, and with no operation of order 2 which is not
conjugate to 8. Hence it must form one of a set of 2r conjugate
operations, where r is odd. If now the group be represented as a
permutation-group, consisting of the permutations of these 2r opera-
tions among themselves which arise by transforming them by all the
operations of the group, any operation of order 2 -which, is not con-
jugate to 8 will give a substitution in the permutation-group,
consisting of r transpositions, i.e., an odd substitution, and,
therefore, the group cannot be simple. Hence, the group is cer-
tainly not simple unless the maximum sub-group, which contains
an operation of order 2 self-conjugately, " is of order 2im1; and
when this condition is satisfied every operation of order 2 is
permutable with just 2 other operations of order 2, and with no
more.

But, now, if A, B are two operations of order 2 belonging to
different conjugate sets, and if

A, B generate a dihedral group of order 2n. If n were odd, A and B
would be conjugate, which is not the case. Hence, n must be even,
and then (AB)in is an operation of order 2 which is permutable
with n distinct pairs of operations of order 2. But this is in direct
contradiction to what has just been proved, so that this case cannot
occur. It follows that, if a group -whose order is 229)i {in odd) contains
3 different conjugate sets of operations of order 2, it cannot be
simple.

If, next, the order is N = 28m.,

where m is odd, and if, as in the case just dealt with, the main group
contains the same number of conjugate sets of operations of orders
2 and 4 as are contained in a sub-group of order 2s, it may again be
shown that the group cannot be simple. In this case, however,
putting aside the cyclical groups of order 2s which have already
been dealt with, there are 4 other possible types of sub-groups
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of order 2s. These are the groups which may be generated as
follows:—

(i) 48 = JB1 = 0s = 1, AB-BA, AG = OA, BG=GB;

(ii) A* = B* = 1, AB = BA>,

(iii) 42 = J51 = 1, AB -BsA't

(iv) A% - B* = 1, 4J3 = B»il, 4» = B\

Of these (i) is an Abelian group containing 7 operations of order 2,
each of which, is self-conjugate. Group (ii) is again Abelian, and
contains 4 operations of order 4, and 3 operations of order 2, each
one of the 7 being self-conjugate. In the case of group (iii) there
are 2 conjugate operations of order 4, and 5 operations of order 2, one
of which is self-conjugate, while the remainder form 2 conjugate
sets of 2 each. Group (iv) contains a single self-conjugate opera-
tion of order 2, and 6 operations of order 4 forming 3 conjugate sets
of 2 each.

If, now, in the group of order

N — 2sm (m odd)

the sub-groups of order 23 are of type (i), and if the main group con-
tains 7 conjugate sets of operations of order 2, let A, B be two such
operations chosen from different sets. The group generated by A and
]J must be a dihedral group of order 4n, where n is odd. If this sub-
group is not self-conjugate within a sub-group of order 2'V, it must
form one of a set of 2r conjugate sub-groups, where r is odd, and,
when those arc transformed among themselves by operations of order

2 of conjugate sets other than those contained in the dihedral group,
tlie corresponding substitution of the permutation-group will consist
of r transpositions, which involves that the group is composite.

1 f the (Jibednil group is contained self-eon jiiy.'if.ely in a gioup of
order 2s?*, the cyclical sub-group of order n which it contains must be
transformed into itself by the operations of a group of order 2s. Lot
S be the operation of order n generating the cyclical sub-group,
and let A, B, G be the generating operations of the group of order 2\
A and B belonging to the dihedral group. Then

. ASA = S~x and BSB - 8~\

If, now, (a) CSG=S~\

S is permutable with the sub-group formed by 1, BO, 0At AB
a n d i f (/3) CSO=S,
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S is permutable with tlio sub-group formed by 1, 0, AB, ABC.
Hence, in either case, S is one of «a set of 2.s conjugate operations,
where s is odd; and it follows as before that the group is composite.

if next, the sub-groups of order 23 are of type (ii), and if the main
group contains 3 distinct sets of conjugate operations of order 2, one
of these sets contains exclusively operations which are the squares of
operations of order 4, and the other two sets those that are not.

Let, now, A be an operation of order 2 which is the square of an
operation of order 4, and let B be an operation of order 2 belonging
to a different conjugate set from A. Then A and B must generate a
dihedral group of order -in, where n is odd. Suppose that AB is an
operation of this group of order 2n, and write

(AD)*=Ct {AB)' = 8n,

so that C is an operation of order 2, and Sn an operation of order n.
The operation G must clearly belong to a different conjugate set from
both A and B. Now

A8nA = s;\ BsnB = s;\ osno = sn.
If A1 is any operation contained in the sub-group within which the
cyclical sub-group generated by Sn is self-con jugate, and belonging to
the same conjugate set as A, then

A\SUAX = Sn\
and, therefore, S,t cannot certainly be permutable with any operation
of order 4, since it is not permutable with the square of any such
operation. The operation Sn therefore forms one of a set of 4r
conjugate operations, where r is odd ; and, when these are transformed
by any operation of order 4, the resulting substitution of the permu-
tation-group consists of r cycles of 4 symbols each. This is an odd
substitution, and therefore, again, in this case, the group cannot be
simple.

A group of order 8 of type (iii), generated by A and B, where

A2 = 1, B* = 1, AB - B*A,

contains 5 operations of order 2, viz.,

A, B\ AB, AB\ AB\

of which B% is self-conjugate, while A, AB2 and AB, AB3 form con-
jugate sets. From these 5 operations and identity 2 groups of
order 4 may be formed, viz.,

1, B\ A, AB2

-and 1, B\ AB, AU\
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If, now, the sub-groups of order 2s contained in a group of order
2*TO (TO odd) are of this type, and if the main group contains 3
distinct sets of conjugate sub-groups of order 2, one of these sets
consists of the squares of operations of order 4, and the other two sets
of operations of order 2, which are not such squares. Moreover, the
above analysis of the operations of such a group of order 23 shows that
no operation of one of the two latter sets can be permutable with any
operation of the other. Now each set contains 2r conjugate opera-
tions, where r is odd, and, if one set is transformed by an operation
of the other set, the resulting substitution consists of r transpositions,,
and is therefore an odd substitution. Once, again, in this case, the
group, then, cannot be simple.

Finally, when the group of order 2s is of type (iv), and the main
group contains 3 distinct sets of conjugate operations of order 4, the
number of operations contained in each set must be of the form.

If such a set is transformed by one of its own operations, the resulting-
substitution will keep 2 symbols unchanged, and interchange the
remainder in 2r cycles of 2 and (/u—r) cycles of 4 each, where r is
some number less than ft. If the set is transformed by an operation
of order 4 belonging to another conjugate set, the resulting substitu-
tion will consist of 2?-1 + l cycles of 2 and (fx— r1) cycles of 4 each.
Now, since there is only a simple conjugate set of operations of order
2 in this case, the squares of these two substitutions must be of the
same type, and therefore r = r1. Hence, one of the two substitutions
is necessarily odd, and it follows again in this last case that the group
must be composite.

The conditions under which it has been shown that groups of order
2'TO and 2sm, m being odd, cannot be simple may now be shown
to hold necessarily if in the one case 3, and in the other 3 and 7, are
not factors of TO. For this purpose I prove the following theorem.

If, pm being the highest power of a prime p which divides the
order of a group G, a sub-group h of order pm is Abelian, and if H be
the greatest sub-group that contains h self-con jugately, the number
of distinct sets of conjugate operations whose orders, are powers of p
in 0 is the same as the number in JET.

Let P be any operation of 7i, and let it be one of x conjugate-
operations of H. Then P is permutable in a sub-group of H of order

—, nB being the order of H. Hence, if the order of the greatest Bub-
x
group within which P is permutable ia -2—r, P must belong to *
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different groups of order pm. Hence, summing for the distinct sets:
of conjugate operations whose orders are powers of p contained in G,

n0 being the order of G, or

which proves the theorem.

Now, if the order of H is relatively prime to pm — 1, pm'* — 1, ... p—1,.
^very operation of h is self-conjugate in JET, and 0 contains pm—1 dis-
tinct sets of conjugate operations whose orders are powers of p.

When pm = 2\ this condition will be satisfied if the order of H
does not contain 3 ; and, when pm = 2s, it will be satisfied if the order-
. of H contains neither 3 nor 7 as a factor.

A group of order 2im is therefore certainly composite if the odd
number w is not divisible by 3 ; and a group of order 28m, in which
the sub-groups of order 28 are Abelian, is certainly composite if m is
divisible by neither 3 nor 7.

Suppose, next, that in a group of order 2sm the sub-groups of
order 2* are of type (in), given by .

4 s = 1 , £* = 1, AB=B*A;

and suppose that A and B% are conjugate operations in the group-
Then A must be the square of some operation B> of order 4, and the-
sub-group formed by. .... . .

1, B\ B*,

occurs in the two sub-groups of order 28 which contain B and B*. In
the first BP and BPB"* are conjugate operations, and in the second JB*
and B%Bfi are conjugate. Hence B8, JB*2, BiB'i form a single conjugate;
set in the sub-group that contains the group

1, B\ Bf\ B3F*

8elf-conjugately. The order of this sub-group is therefore divisible
by 3; and hence, unless m is divisible by 3, A and B% cannot be conju-
gate operations.

The operation A must enter into an odd number ri of sub-groups
of order 2\ If, then, A and AB belong to the same conjugate set,
each operation of the set enters into n' sub-groups of order 2s; while=
the number of operations in the set is 2n", n" being odd.
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Hence 2n"n' is the total number of these operations, distinct or not,
-which enter in the conjugate set of sub-groups of order 2s. But, since
4 enter into each sub-group of order 28, this is impossible; and
therefore A and AB cannot be conjugate.

Suppose, now, lastly, that in a group of order 2am the sub-groups
of order 2s are of type (iv), given by

and suppose that A and B are conjugate, so that

and 8 occurs in the group g within which A2 is permutable. Let
the order of this sub-group be 2snlni) and let it contain nt sub-groups
of order 2s. Since, within g, A and B are conjugate, it cannot contain
3 distinct conjugate sets of cyclical sub-groups of order 4. Suppose,
now, that the sub-group of g of order 28«j which contains a sub-group
of order 2s self-con jugately also contains each of its 3 sub-groups of
order 4 self-conjugately. Then any sub-group of order 4 will be self-
conjugate within a sub-group of g of order 2sw,w.J, and will form one
of n" conjugate sub-groups within g, and each of these will enter in n'z
of the wa(=W2M-i') sub-groups of g of order 2*.

Hence 3»4 = 2 w^ ' ,

where the summation is extended to the different distinct sets of
conjugate sub-groups of order 4 contained in g. This is impossible,
since the number of these seta does not exceed 2; and therefore the
•3 sub-groups of order 4 contained in the sub-group of g of order
2\ are, in this sub-group, conjugate to each other. Hence w, must
be divisible by 3; and, unless this condition obtains, A and B cannot
•be conjugate. .

Hence a group whose order is 28m (m odd) in which the sub-groups
of order 2s are not Abelian cannot be simple unless ni is divisible
by 3.

Combining now all the results, they give the theorem that a
group whose order is even cannot be simple unless the order contains
either 12, 16, or 56 as a factor.
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IX. On the non-Existence of Simple Groups whose Orders lie between
660 and 1092.

In Vol. xv of the American Journal of Mathematics, Dr. Cole has
carried on. from 201 to 660 a discussion of the possibility of a simple
group coiTesponding to a given order, which was begun and taken as
far as 200 by Herr Holder {Math. Ann., Vol. xui). The simple
group of next smallest order to 660 that is known to exist is a group
of order 1092 ; and it appears a not uninteresting application of the
tests for the simplicity of a group, which depend on its order, that
have been given in these notes and elsewhere, to detei'mine how many
of the 432 numbers from 661 to 1092 inclusive are at once shown to
have no simple group corresponding to them. These tests may now
be stated as follows. There are no simple groups whoso orders are

(i) the power of a prime,
(ii) the product of two or three prime factors,

(iii) the product of four prime factors (with the exception of the
order 22. 3 . 5),

(iv) the product of five prime factors (with the exceptions of the
orders 28 .3 . 7, 28.3.5 .11, 22 .3 . 7.13),

(v) of the formsp"1 p% (px, p} primes in ascending order),

(vi) even, but not divisible by 12, 16, or 56.

These tests imply that, if there are simple groups whose orders are
odd, none can be of smaller order than 3*. 5s or 2025, so that in the
interval in question there can be no simple groups of odd order. One
further test that may be given here for the sake of completeness is
that there are no simple groups whose orders are p2pm or pap'''.f

These tests applied to the 432 orders from 661 to 1092 dispose of
all cases except the following sixteen, viz.:—

*672 = 25.3.7, 800 = 25.5f, • •880 = 2*.5.11, . 960 = 28 .3.5,

720 = 2*.3J.5, *816 = 24.3.17, 900 = 2s. 31.5s, 1040 = 2*. 5.13,

756 = 2 J .3 \7 , 840= 2". 3.5.! 7, •912 = 2*.3.19, 1056 = 28 .3.11,

= 25.3S, • *936 = 28 .3M3, 1080 = 2s. 3s. 5.

Of these the six that are marked with a star are immediately shown,

t Unless JJ2 = 3, a group of order p3p™, if simple, would necessarily contain p*
Conjugate sub-groups of orderp"'. If the operations of these were all distinct, the
sub-group of order pS would be self-conjugate. If, on the othor hand, two sub-
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•each by a simple application of Sylow's theorem, not to correspond to
a simple group. That none of the remaining ten correspond to a
simple group may be shown by considering them individually.

N= 720 = 2*. 3*. 5.
A simple group of this order would contain either 16 or 36 conjugate

sub-groups of order 5. If there are 16, each is self-conjugate in a
.group of order 3*.5. Such a group is necessarily Abelian, and
cannot be expressed in 15 symbols. There must therefore be 36 con-
jugate sub-groups of order 5, and each is then self-conjugate in a sub-
group of order 22.5. If this sub-group contains an operation of order 4,
it must, when expressed in 36 symbols, consist of either 5, 7 or
8 cycles. If it has 5 or 7, it is an odd substitution, and the group can-
not be simple. If it has 8, it is one of 45 conjugate cyclical sub-groups
of order 4 whose squares are all distinct. No one of these can trans-
form another, or the square of another, into itself, and therefore, when
expressed in 45 symbols, these operations of order 4 consist of 11
cycles, and are odd operations, making the group composite. If the
sub-group of order 2*. 5 contains no operation of order 4, it must
contain an operation of order 10. The corresponding operation of
order 2, which is permutable with an operation of order 5, must, if it
is an even substitution of 36 symbols, consist of 10 transpositions.
Such an operation is permutable with 16 distinct sub-groups of order
5, and is therefore permutable in a sub-group of order 2*. 5 at least,
which makes the group composite.

^ • = 7 5 6 = 21.38.7.
If simple, the group must contain 3*. 7 operations of even order

; and 6. 36 operations of order 7, leaving 350 operations whose orders
are powers of 3. There are 28 sub-groups of order 38, and, if any two
of these have a common sub-group of order 3J, the group is certainly
composite. The sub-groups of order 3 which are common to two
.sub-groups of order 38 form a single conjugate set; and when the
group is expressed in 28 symbols a simple calculation will show that
each sub-group of order 3s must contain 8 operations keeping
1 symbol unchanged and 18 keeping 4 symbols unchanged. There
are therefore 63 sub-groups of order 3 which occur in more than one
sub-group of order 3s. On the other hand, such a sub-group of

groups of order p"* had a maximum common sub-group of order p^, this would
(see Note VI) be self-conjugate in a group of order p3 P*, and therefore in the main

. group. See also the recent investigations of Hen* Frobenius in the Berliner Sitzungi-
berxchte.



1895.] Theory of Groups of Finite Order. 835

order 3 must (Note VI) be permutable in a sub-group of order 22.3s

-at least; and must therefore be one of a set of 21 conjugate sub-
groups at most. The supposition that the group is simple thus leads
to a contradiction.

A simple group of this order must contain 16 conjugate sub-groups
of order 5s, each self-conjugate in a group of order 2. 58. Expressed
in 16 symbols, the sub-group of order 52 must contain 3 sub-groups of
order 5, each of which consists of 3 cycles, and 3 each of which con-
sist of 2 cycles. Hence, in the sub-group of order 2.58 an operation
of order 2 must be permutable with an operation of order 5, which
consists of 3 cycles. The operation of order 2 therefore must consist
of 5 transpositions, and, this being an odd substitution, the group
cannot be simple.

N = 840 = 28 .3 . 5. 7.

There must be 8, 15, or 120 conjugate sub-groups of order 7. That
there should be 8 is clearly impossible if the group is simple; while,
if there are "120, there can only be 28. 3 . 5 operations whose orders
are not 7. Now (method of Note V), the group contains at least
3 .5 .7 operations of even order, so that in this case there would only
remain 15 operations of orders 1, 3, and 5. This is clearly impos-
sible if the group be simple. Hence, there must be 15 conjugate
.sub-groups of order 7, each contained self-conjugately in a sub-group
of order 28. 7. Such a sub-group necessarily contains an Abelian
sub-group of order 2J. 7, and this cannot be represented in 14 symbols.
The group is therefore composite.

Before dealing with the next case, it will be convenient to prove
the following lemma :—

If pm is the highest power of a prime p, which divides the order of
a group, and if h is a sub-group of order pm, the number of sub-groups
conjugate to h that have a sub-group of order pr, but no sub-group of
order p"*1, in common with h is zero or a multiple of pm'r.

If there are any such sub-groups, let h' be one, and let

•Pi ( = 1)> A J ••• Pp™

be the operations of h. Then, of the sub-groups

p;lh'Pv p;lh'p%, ... p-J.h'P^,

just pm~r are distinct, and each has in common with h a sub-group of
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order pr, and none of higher order. If these do not exhaust the sub-,
groups conjugate to h which have in common with it a sub-group of
order p'', and none of higher order, let h" be another such sub-group.
Then, of the sub-groups

no one can be the identical with any one of the previous set, and just
p""r are distinct. This process can be continued till the set is
exhausted, and the lemma is thus proved.* A theorem which is
equivalent to the above is given without proof in a note by M. E.
Maillet (Oomptes Heiidtis, cxvm, pp, 1187, 1188).

N = 864 = 26.38.

There is no transitive group of 9 symbols of this order. (Of. Dr.
Cole, Bull. New York Math. 8oc.t Vol. n, No. 10.) Hence, if the
group is simple, there must be 27 conjugate sub-groups of order 25.
Let h be one of them; then there must be 2xv 4a?3, 8#8, and 16a;4
groups conjugate to h, and having in common with it sub-groups of
order 2*, 2s, 2a, 2 respectively, and no sub-groups of respectively
higher orders. Hence,

1 -f 2a, + 4JC, + 8ic8 + 16a4 = 27,

and therefore xx must be different from zero.
But a sub-group of order 2* which is common to the sub-groups of

order 26 must (Note VI) be self-conjugate in a sub-group of order
26.3 at least. Hence the group must be isomorphous to a transitive
group of 9 symbols; and, therefore, since the isomorphism must be
merihedric, the group eannot be simple.

JV = 900 = 2s. 3s. 5s.

There must be 36 sub-groups of order 53. If a sub-group of order
5 were contained self-con jugately in a more extensive sub-group than
one of order 5J, it must necessarily be in one of order 6. 53, and the
sub-group would then be one of 6 conjugate sub-groups, which would
make the group composite. If this is not the case, all the operations
of the 36 groups of order 53, except identity, are distinct; so that
there are only 2J. 3s operations whose orders are not powers of 5. But
the group must contain at least 38.5s operations of even order; so
that this latter supposition is impossible.

* From tluB lemma it follows at once that a group of order p^pt cannot in any
case bo simple unloaa p.t = 1 (mod. p2). Of. Note VI.
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IN = 960 = 28. 3 . 5.

The group must contain 15 conjugate sub-groups of order 29. Let T
be an operation of order 2 which is contained self-conjugately in a
sub-group of order 26. If the group is simple, T, when expressed in
15 symbols, must consist of 6 or 4 transpositions. Represent the
symbols by 1, 2, ... 14, 15, and consider that sub-group of order 2°
which keeps 15 unchanged. Let T keep 13, 14, and 15 unchanged.
Then, if T is self-conjugate in the sub-group, every one of its opera-
tions must either keep 13 and 14 unchanged, or must interchange
them. Now T belongs to 3 different sub-groups of order 2a, and

therefore the sub-group that keeps 15 unchanged must contain 3
operations of the conjugate set to which T belongs. These 3 opera-
tions must all keep 13, 14, and 15 unchanged, as otherwise T v/ould
be self-conjugate in a group of greater order than 2°. Henco the 15
conjugate operations consist of 5 sets of 3 each, each set keeping 3 of
the 15 symbols unchanged. The group is therefore imprimitive in 5
sets of 3 symbols each, and, if simple, must bo expressible as a
transitive group of 5 symbols. This is impossible for a group whoso
order contains the factor 2". The case in which T consists of 4 trans-
positions may be treated in a similar manner.

If simple, the group must have 26 sub-groups of order 5, each
contained self-conjugately in a sub-group of order 28. 3. Such a sub-
group necessarily contains an operation of order 10 ; and the corre-
sponding operation of order 2, which is permutable with an operation
of order 5, must, if expressed as an even substitution of 26 symbols,
consist of 10 transpositions. It must therefore occur in 6 sub-groups
of order 23. 5, and be permutable with 6 sub-groups of order 5. But,
since 6 is not a factor of the order of the group, this is impossible.

There must be 12 conjugate sub-groups of order 11, each self-
conjugate in a sub-group of order 2s. 11. But such a sub-group
necessarily contains an operation of order 22, and this cannot bo
expressed in 12 symbols.

VOL. xxvi.—NO. 521. z
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There must be 6, 36, or 216 sub-groups of order 5; and the first
supposition is clearly impossible for a simple group. If there were
36, each would be self-conjugate in a group of order 2 . 3 . 5 . This
group would contain a sub-group of order 15, and a sub-group of
order 3 self-conjugately. The latter would necessarily be self-conju-
gate in a sub-group of order 2.39. 5, and would be therefore one of at
most 12 conjugate sub-groups. But in a group of degree 12 an
operation of order 15 would contain a single cycle of 5 symbols, so
that this case cannot occur. There must therefore be 216 sub-groups
of order 5; leaving only 2s. 38 operations whose orders are not 5.
Now, since 7 is not a factor of the order of the group, there must be
more than one conjugate* set of operations whose orders are 2, or
powers of 2, and corresponding to each there must be a distinct set
of either 38.5 or 2.3a.5 operations of even order in the group
(method of Note V). Hence this case certainly cannot occur, and
this group must be composite.

If simple, a group of this order must contain 14 sub-groups of order
13, each being self-conjugate in a group of order 6.13. Since a
group of degree 14 cannot contain operations of order 26 or 39,
this latter sub-gronp must be metacyclical in type. Again, there
must be 78 sub-groups of order 7, each self-conjugate in a sub-group
of order 2 . 7 ; and this must be dihedral in type, as otherwise the 78
sub-groups would contain 78.12 distinct operations. Hence the
distribution of the operations of the group in conjugate sets is neces-
sarily identical with that of the known simple group of this order.


