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1. My object in writing this paper is to give a full proof of a theorem
enunciated without proof in the tract " The general theory of Dirichlet's
series", recently published by Dr. Marcel Riesz and myself*. The theorem
is as follows :

If (i) the series 1cn is summable (X, K), to sum C;

(ii) fi is a hgarithmico-exponential function of X such that

xohere A is a constant; then the series 2cn is summahle (JJL, K) to sum C.

2. I begin by recalling Riesz's definition! of summability (X, *•), i.e.
summability by means of type X and order K. Suppose that (Xn) is an
ascending sequence of positive numbers whose limit is infinity; and let

if Xn < T < X,

Further let

(2.1) CxM=C A

if K = 0, and

(2.2) CM = 2 (to — XaVCa = f

* Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, p. 33 (Theorem
19). I refer to this tract as •' H. and R."

t H. andR., p. 21.
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if ic > 0 . Then (»~KCx(w)

is called the typical mean of type X and order K formed from the series
2cn, and the series is said to be summable (X, *•), to sum C, if this " typical
mean " tends to the limit C when w -> oo .

When X,t = n, the means are said to be arithmetic. Arithmetic
means are equivalent to Cesaro's means, or to the generalisations of
Cesaro's means considered by Ktiopp and Chapman : a series is summable
(w, K) if and only if it is summable (C, K).*

The first theorem of consistency \ asserts that, if a series is summable
(X, K), then it is summable (X, K'), to the same sum, for any value of K' greater
than K. In particular a convergent series is summable by typical means
of any positive order, since summability (X, 0) is equivalent to conver-
gence. The general idea expressed by the first theorem of consistency is
that, so long as the type remains the same, the efficacy of a method of
summation increases loith the order.

The second theorem of consistency lies somewhat deeper. The general
idea which it expresses is that, when the order of a method of summation
remains the same, its efficacy increases as the type decreases, that is to
say as the rate of increase of the function X?l which defines the type de-
creases. If . _

that is to say if the rate of increase of Xn is as great as that of an expo-
nential eAn, then the efficacy of the method is nil: it will sum convergent
series and no others;. If X,,, runs through the functions of the
logarithmico-exponential scale, such as

en, n, log?i, log log n, ....

then we obtain a succession of systems of methods of gradually increasing
efficacy.

The theorem suggested by this general idea is that if a series is
summable (X, «•) then it is summable (M, K), /J. being any function of n
whose rate of increase is less than that of X. The actual theorem stated
in § 1 is in one way less general and in another more general than this.
In the first place, in order to ensure the truth of the theorem, we must
suppose that the relation between the rates of increase of n and X is
characterised by a certain regularity ; and the most convenient way of

* Biesz, "Sur une m6thode de sommation e"quivalente a la method e des moyennes
arithme'tiques", Comptes Rendus, 12 June 1911.

t H. and R., p. 29 (Theorem 16).
% H. and R., p. 46 (Theorem 36).
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ensuring this is to suppose that /i is a logarithmico-exponential function
of X, a phrase which we will define more precisely in a moment. But,
when this limitation is made, we are able to assert rather more than our
general principle suggests. The efficacy of the method increases, or at
any rate does not decrease, as the rate of increase of the type decreases ;
a series summable (X, K) is certainly summable (JJL, K) if /* increases more
slowly than X. But the converse implication will also be true, and the
two methods completely equivalent, if the difference between the rates of
increase of X and /J. is not too pronounced, if in fact either function in-
creases with a rapidity comparable to that of a power of the other. If,
for example, both X and /x are powers of n, then any series summable (X, K)
will be summable (/x, K), and conversely.

8. Proofs of certain special cases of this theorem have already been
published. The most important case is that in which

(3.1) M = logX.

This case of the theorem was enunciated in 1909 by Riesz* ; and his
proof was published for the first time in our tractt. Another case is that
in which

(3.2) M = P(X),

where P is a polynomial. This case has been treated by Berwaldl, when
X = n and K is an integer. A third case§ is that in which K = 1: the
theorem then amounts to little more than a restatement in different lan-
guage of a theorem of Cesaro.

I had conjectured the truth of the general theorem some years ago,
when engaged, in collaboration with Mr. Chapman, on a paper dealing
with the general theory of summabilityll. At that time I had a proof not
of the theorem itself, but of its analogue for integrals, and only in the two
cases in which (i) K is an integer or (ii) 0 < K < 1. As soon as I became
familiar with Riesz's methods it became clear to me that my proof applied
to series as well; but I was still unable to overcome the algebraical diffi-
culties presented by the proof of the theorem in its most general form.

* " Sur la sommation des series de Dirichlet", Comptes Rendus, 5 July 1909.
t H. and B., p. 30 (Theorem 17).
\ "Solution nouvelle d'un probleme de Fourier", Arkiv for Matematik, Vol. 9, 1913,

No. 14.
§ Hardy, " On certain oscillating series ", Quarterly Journal, Vol. 38, 1907, pp. 269-288.
|| Hardy and Chapman, " A general view of the theory of summable series ", Quarterly

Journal, Vol. 42, 1911, pp. 181-216.
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It was only when Biesz, in the course of the preparation of our tract, dis-
covered an important simplification of his method of treatment of the case
in which yu = log A, that I was able to find a completely general proof.

Definitions and lemmas from the Infinitdrcalcul.*

4. A log arithmico-exponential function, or, shortly, an L-function, is
a real one-valued function which can be defined by an explicit formula
involving, each only a finite number of times, the ordinary algebraical
symbols .

~r> » * i • » v »

and the symbols log(...), e"

of the logarithmic and exponential functioiib.
The properties of L-functions which are required for the argument of

this paper are as follows.

4.1. Any L-function yu (A) is continuous, of constant sign, and mono-
tonic, from a certain value of X onwards; and the same is true of any of
its derivatives A

We may suppose, without real loss of generality, that /x(X), and such
of its derivatives as occur in the argument, satisfy these conditions for all
values of X in question.

4.2. If /J.-*- oo, and a number A exists such that

(4.21) /* = O(AA),

then / A ( r > = 0 (v r ) 1

/uSr) denoting the r-th derivative of fx (X).t

4.3. If ix satisfies the conditions of 4.2, and v lies between two posi-

* See Hardy, " Orders of infinity", Cambridge Tracts in Mathematics and MatJtematical
Physics, No. 12, 1910, or " Properties of logarithmico-exponential functions ", Proc. London
Math. Soc, Set. 2, Vol. 10, 1912, pp. 54-90. I refer to the first of these publications as
"O. I.".

t 0. I., p. 18. See also " Properties &c", p. 40.
% 0 .1 . , pp. dQetseq.
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tive numbers g and G, then positive numbers h and H exist, such that

(4.81) h

where 6 lies between X and \v. Hence

_ \O(1/X) _ .0(1)

It is evident that the same result holds for decreasing functions which
decrease less rapidly than X~A for some value of A.

Proof of the theorem when K is an integer.

5.1. In proving the theorem we may suppose cn to be real: if cn is
complex we can consider the real and imaginary parts of the series
separately. We may also suppose, without real loss of generality, that
0 = 0. If G is not zero we begin by proving the theorem for the series

(ci—O-f-c2+c3+...,

and afterwards add to this series the convergent series

C+0+0+....
We are given that

(5.11) [" Cx(o-)(^-(rr1^ = o(^),t
.Mi

and we wish to prove that

(5.12) f C.(T){Z-T)'-ldT = o(

In (5.12) we put r = /JL(<T),

and observe that CM{/x(o-)} = Cx(<r).

* More precise results of this character will be found in my paper " Oscillating Dirichlet's
integrals ", Quarterly Journal, Vol. 44,1913, pp. 1-40 (see p. 23 et seq.).

t Since C\{ff) = 0 for 0 ^ cr ^ \ ) t it is a matter of indifference whether the lower
limit is 0 or A].
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We thus obtain

(5.13)

where /u=/x(o-), £ =

From this point onwards our argument depends on the nature of K. I
shall suppose first that K is an integer.

5.2. If K is an integer, we have

The integral (5.13) is therefore a constant multiple of

We transform this integral by K integrations by parts. Observing that
CK(O) and its first K—1 derivatives vanish for <r = XJ, and that f—ft
vanishes for <r = rj, we obtain

(5.22) J= ( - V - C I

say.

5.3. In the first place

(5.31) Ji=-Kl

where £' is the value of fi' when a- = »/, /* = .̂ Hence

^ ( ^ ) ^ ="o(l) 0(1)S" =
by 4.2.

* H. and R., p. 28.



78 MR. G. H. HARDY [NOV. 11,

On the other hand, it is easily verified that

(5.32) (£)"+1 tf-tf* = 2i!£-W)'1 GO* ....

where the A's are constants, and

(5.831) o < s + s 1 + s a H - . . . = > '<*,

(.5.332)

Hence our integral reduces to a sum of constant multiples of integrals of
the types

(5.34) f-' P CM S(nT (MT • • • d<r.
hi

Observing that Cx(<r) = o{aK),

and

by 4.2, we see that (5.34) is of the form

(5.35)

= o(f-r£Mr7Vd<r) =o(f").

This completes the proof of the theorem when K is an integer.

Proof when 0 <C K < 1.

6.1. We consider next the case in which 0 < K < 1. I shall suppose
first that the increase of /* is greater than that of log X, so that X^' tends
steadily to infinity with X.

We observe first that, in virtue of the first theorem of consistency,
2cft is summable (X, 1), to sum zero, so that

(6.11) Cl(<r) = o(a).

Now let A be any positive constant. Then we can, when rj is large
enough, determine a unique number ^ such that

(6.12) \<rn<n, f -& = ^iifl ,
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where

(6.121)- fi

For, as <r increases from \ to >/, £—fx decreases steadily from £—/Uj (which
is large when r\ is large) to zero, whereas <rn' increases steadily with cr.

Let us suppose that 0 < A < 1, and that ^ has been chosen so as
to satisfy (6.12). Then we can determine a positive constant h such that

(6.13) hfi<fix<n-

For f - & = 0i->ii)S,

where $ is the value of / / when cr has a certain value ij2 between »;x and >/.
Thus

since cr//' increases with X. Hence

and we may take h = 1— 4̂.

6.2. We now write

<6.21) J=[ CMit-M)-1/*'** = f" + [ = J1+J2,

say. We begin by considering Jv Integrating by parts, we obtain

(6.22) Jx = ClbM-ti*-1?!-

:say. In the first place

(6.23) Jh x = ^ ^ Wvifi)-1 f

Secondly,

<6.24) Jh2=(K-l) f" ClW^-
JXl

= = " 1 , 2, 1 T « 1 , 2, 2>
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say. Now

07*' ^ W ^ a-fi' . 1

r i s ^ s ^
since X2 < <r < ^ and <T/JL' increases with o-. Hence

(6.26) / l i 2 i l = (/c-

= 0

Also

(6.27) /,,2)2 = -po fo -X f - ^^O f-^-) da-
J \ <T /

From (6.22)-(6.27) it follows that

(6.28) Jx = o(i%

6.3. It remains to consider t72. We have

(6.311) J2 = f C J o O t f - ^ -

if in' increases ; and

(6.312) J2 = fl

if /x' decreases, »/2 denoting in either case a number between ^ and q. Now

dcr *] — <r (rj — <r)a >;—o-

^' being the value of fx for a value »; of its argument between o- and r\.
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This is positive if fx increases and negative if ix' decreases. Hence

tit
r} — ar

is monotonic, and varies in the same sense as fx'; so that

is monotonic in the sense opposite to that of the variation of u\ We have
therefore

(6.321) J"2 = £' j CK(<r)

= £' (^^Y'1 f" Ckio)b-oy-x do-

if fx' increases ; and

(6.322) J2 = fi f Cx (a-) ( t ^ ) (r,-*)*-1 do-
J \ri-o-J

-1 do-

if fx' decreases, 173 being in either case another number between >/i and >;.
And in either case

f — »/2

lies between ^i and £'.

The order of AI lies between log X and XA, and that of /x' between 1/X
and XA-1, and a fortiori between \~A and XA.* Also

It follows from 4 . 3 that the ratio £{/£' lies between fixed positive limits.
We have therefore in any case

(6.33) / 2 = O(£'yT

* Evidently we may suppose A > 1.
SBR. 2. VOL. 15. NO. 1256.
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But*

(6.34) \[*CK(o)(ti-o)K-lao- < 2 Max C'x(r).

Hence

(6.35) J2 = O(Z')Ko(r,K) = oinir = o(?).

From (6.21), (6.28), and (6.35) it follows that

(6.36) J = o(£*).

6.4. We have thus proved the theorem when 0 < K < 1 and the order
of ix lies between log X and XA. Suppose next that the order of /x lies be-
tween log log X and (log X)A; and let

v = dog xr,

where a > 1. The series is summable (X, «•), and therefore, by what
precedes, summable (v, K). But

is an L-funcfcion of v whose order lies between (I/a) logy and iAa. Hence
the series is summable (JUL, K). The theorem is thus proved when
0 < K <. 1 and the order of /u. is greater than log log X. Repeating
the argument, we prove it whenever the order of fx is greater than any
one of

log log log X, log log log log X, . . . .

Since any L-function which tends to infinity must increase more rapidly
than some one of the repeated logarithmic functions!, the theorem is true
without restriction on /x. The proof when 0 < K < 1 is thus complete.

Proof when K is greater than 1 and not integral.

7.1. The proof of the theorem when K is greater than 1, but not an
integer, presents no fresh difficulty of principle. All that is necessary is
to combine in an appropriate manner the arguments used in 5 and 6.

We suppose that

(7.11) k<K<k+l,

* H. and R., p. 28 (Lemma 7).
•f 0.1. , p. 20; " Properties &c", pp. 63 et
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k being an integer, and (for the moment) that /x is of higher order than
logX. Tntegrating the integral (5.13) k times by parts, we obtain a con-
stant multiple of

(7 -12) J = j CHa) ( £ ) <£-/*)« dcr.

We write, as in 6.2,

)>>1 [V

A, J , ,

7.2. In order to obtain an upper limit for Jx we integrate once more
by parts. We thus obtain

say. Now

(7.22) (£]
where

(7.231)

(7.232)

Hence

(7.24)

But Cfc+1.M = o(vf+1),

since the series is summable (X, «•), and a fortiori summable (X, fc-|-l)> to
sum 0. Also - t

S — & =

by (6.12), and S r ) = f |

by 4.2. Hence

(7.25) Jltl = 'Lo{ff+l(f,iSf^

G 2
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7.3. The integral Ji, 2 is a sum of constant multiples of integrals of
the type

(7.31)

where now

(7.321)

(7.322) Sl +2s2+3s3+... = fc

The integral (7.31) is of the form

(7.33) f'Io(«rfc+1)(f-/*r'c+1C«*')'l"1(A*T ••• (f-A»)«-Vf Ar.

JA,

Now f—A* > ?-& = ̂ f i > W ,

for Ax < <r < ^ ; and
s — K + 1 = 1—sx—sa—... < 0.

Hence

(7.34) (f-A*)1""*1 = O(«r/t*')

and

(7.35) ^ ( f - ^ - ' + V ^

= 0(1),

3ince fc+l+s—K+1— s2—253—... = 0

and s—/cH-l+s1+s2+... —1 = 0,

in virtue of (7.321) and (7.322). Thus the integral (7.88) is of the form

so that

(7.36) /i,2 =

From (7.25) and (7.36) it follows that

(7.37) Ji = o
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7.4. It remains to consider

(7.41) <72 = j Ck(a)(~J (£-M)*tf<r,

which is a sum of constant multiples of integrals of the type

(7.42) f Cfc(<r)(̂ -/>t)8(M')Sl ( M T ... da,

where

(7.431) .s+S l+52+. . . = /c,

(7.432) ^ + 252+3*3+... = fc + 1.

The integral (7.42) may be written in one or other of the forms

(7.441) (£')* ( £ T • • • T Ck(<r)(£-M)s d<r,

(7.442) ( ^ ( f i r - Ck{a)^-ixYcl<r.

Arguing as in 6.3, we replace each of these integrals by one of the
form

(7.45) j = &&>..

where %, *}if ... are numbers between ^ and >/, and ^3, f4, ..., £3, £'4, ... are
the corresponding values of m and /x . We write (7.45) in the form

(7.46) j=hh,

where j t and j2 denote the external factor and the integral in (7.45) re-
spectively.

7.5. It follows from arguments similar to those employed in 6.3 that

(7.51) h = O\ ( O ^ t f T •..} = 01 ,-*-*>--(£')•+*+*+...;..

In order to obtain an upper limit for j ^ we observe that

(7.52) [s] = * j — * ! — * a — " . . . = k',

say, and integrate k'-\-1 times by parts. "We thus obtain '

(7.£3) H = P Ck(a-)(v-o-y d* = FW-F(ri+jt = j9+jtt



86 MR. G. H. HARDY [NOV. 11,

say, where

( 7 . 5 4 ) F M = / _ L I C - W ( , - ^ + j i »

• SJS — 1 ) . . . (.S — A1!

( 7 - 5 5 ) j 4 -

Any term of F{<r) is of the form

o ( ^ . + , + , _ , , 1 ) = o ( j / f c + , + l ) .

and so

(7.56) y8 = o(i|fc+'+1).

On the other hand .9—A*' lies between 0 and 1, and so*

(7.57) I [% Ck+h'"i(a-)(f}-a-Y-li-1da-

Thus both j 3 and j 4 are of this form, and so, therefore, is j2; and therefore

(7.58) j =jja = o

Hence

(7.59) J"2 = o(r).

7.6. From (7.18), (7.37), and (7.59) it follows that

(7.61) J = o(t).

The proof of the theorem is thus completed, provided that the order of /u
is greater than that of log X. In order to extend the result to cover all
possible cases we have only to repeat the argument of 6.4.

« H. and R., p. 29 (Lemma 8).
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Conclusion.

8. It remains only to show that the theorem is the best possible
theorem of its kind. In order to prove this it is necessary to show that
if /n is any L-function of X which tends to infinity more rapidly than any
power of A, then we can determine a number K and a series 2c^ which is
summable (X, K) and not summable (/u, K).

We may take X = n, and we may suppose that /x. is of lower order
than en, since methods of type as high as en will sum convergent series
only*. Consider the series
(8.1) v ( _ 1 }

which may be written in the form

2,(—1) n \——r) '

Since fxn is of order higher than any power of n, we have

A = o(l).+
)lfXn

Hence

is an L-function which tends to zero, and so also are all its derivatives.
All of these derivatives, moreover, are ultimately of constant sign ; and the
same is true of all the successive differences of the function. Also the series

infinite {C, K). It follows from known theorems + that the series (8.1) is
summable (C, «•), i.e. (n, K).

But the series (8.1) is not summable (/z, K). For if it were, we should
have

* H. andR., p. 46 (Theorem 36).
•f O.I., p. 38.
| The theorem required is a special case of Theorem la (p. Cl) of Bohr's dissertation

Bidrag til de Dirichlet'ske Raekkers Theori." (Copenhagen, 1910).
§ H. and R., p. 36 (Theorem 21).



88 THE SECOND THEOREM OF CONSISTENCY FOR SUMMABLE SERIES. [NOV. 11,

and this is untrue, since nn+i ~ fin

and M«+I—/*»~ Mni

when ĉn is an L-function of n of order less than e'1*.

For example, the series

is summable (1, K) for any positive value of K, but is not summable (en,
for any value of K. The series

is summable (n, 1) but not summabla {e^n, 1); and so on.

* O.I., pp. 41 el seq.


