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1. Apart from the practical importance which the detailed study of a
particular series of Fourier may possess, such a study may be of theoretical
interest in two ways—first, in the light it throws on the properties of the
general Fourier sreries by showing what the possibilities are, and by sug-
gesting theorems; secondly, in virtue of the fact that such a series,
considered in conjunction with the general series, gives rise to definite
convergence properties of series involving the coefficients of the Fourier
series, whether these be numerical or themselves trigonometrical series
connected with the general Fourier series. Of primary importance in this
connexion are the two series, respectively sine and cosine series, whose
coefficients are the reciprocals of the natural numbers in order. The
sums of both these series are, of course, well known, and the fact) that the
sine series converges boundedly is classical; it is, moreover, a particular case
of the theorem* that the Fourier series of functions of bounded variation
converge boundedly. So little have these series, however, been studied
that it was only quite recently! that the fact was enunciated that the partial
summations of the sine series are all positive or all negative, according as
x is positive or negative in the interval (—ir, ir). The present paper is
devoted to the cosine series, and more especially to the mode in which
it diverges in the neighbourhood of the origin. Thus, it is shown that
the chasm function, as well as the peak function, has the value of + oo at
the origin, so that the divergence is what I have called + uniform diver-

* W. H. Young, " On the Integration of Fourier Series," §3, 1910, Proc. London Math.
Soc, Ser. 2, Vol. 9, pp. 852, 853.

t Dunham Jackson, "Ueber eine trigonometrrsche Surnme," 1911, Rend, di Palermo,
XXXII, pp. 257-262, where references to Fejer will be found.

% W. H. Young, "On Uniform and Non-Uniform Convergence and Divergence of a
Series of Continuous Functions and the Distinction of Right and Left," §6, 1907, Ptot
London Math. Soc, Ser. 2, Vol. 9, p. 30.
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genee. Moreover, the ratio of the sum-function to the n-th partial summa-
tion has the unique double limit unity as n -> oo and the point approaches
the origin.

As an illustration of the application which may be made of these
results to the general theory of Fourier series, a property of the co-
efficients of the cosine terms of these series is deduced which holds good
for an extremely wide class of series. As is well known, the coefficients
of the cosine terms and those of the sine terms behave in various respects
differently from one another. The property here obtained has reference
precisely to one of these points of difference. The series whose typical
term is a sine-coefficient converges when each term is divided by the
integer denoting its place in the series, but it is known * that this is
not true for the cosine-coefficients in the general case. It is not difficult
to see that, if the Fourier series has for its function one which remains
summable when raised to some positive power greater than unity, the
series in question converges; this follows, in fact, from the known
sufficient condition for the convergence of the allied series of the Fourier
series, coupled with a necessary condition that a function should be the
integral of one which remains summable when raised to such a positive
power. It is shown in the present paper that this series converges if
the function be such that it remains summable when multiplied by the
logarithm of its modulus, a condition which, of course, includes the con-
dition for convergence above given as a very particular case. In the proof
of this result the following inequality is required, and is, accordingly,
proved :— ^ ^ u b

This is deducible by limiting process from the inequality

(p+l)uv < u1+p+pv1+1!p,

which I have already t had occasion more than once to employ in the
theory of Fourier series. Once the statement has been made, it can
be proved still more easily by a direct process. In the general theory of
classes of summable functions and elsewhere, this inequality, and others
akin to it, are bound to play a prominent and increasingly important
part.

It will be seen from perusal of the paper that the reasoning employed

* W. H. Young, "On the Nature of the Successions formed by the Coefficients of a
Fourier Series," §§1 and 4, 1911, Proc. London Math. Soc, Ser. 2, Vol. 10, pp. 344-348.

•f W. H. Young, " On a Class of Parametric Integrals and their Application in the Theory
of Fourier Serie3," §7, 1911, Proc. Boy. Soc, Ser. A, Vol. 85, p. 407.
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is of a delicate nature as soon as the more obvious properties of the series,
such as the distribution of the maxima and minima of the partial summa-
tions, have been disposed of. It is not impossible, therefore, that the
corresponding discussion of the nature of the divergence of the most
general Fourier series of the type here considered, that is of one
whose function is continuous in the extended sense, periodic and mono-
tone towards the origin, which is the sole infinity, may not require
essentially more subtle considerations; they will necessarily be, however,
at least in part, of a different character to those here employed. From
this point of view, therefore, as well as from others, the publication of the
present account seems desirable. A further remark may be added: the
notion of extended continuity, in which infinite values are allowed, pro-
duces in the theory of integration no sensible simplification in the state-
ment of results ; a point at which there is continuity in the extended sense
behaves for purposes of integration like a discontinuity. In the theory of
series-, on the other hand, I have more than once emphasized the in-
evitableness of the concept. Its importance is onee more illustrated
by the results here obtained.

2. Let

Sn{x) = cosx+£ cos 22; + ...H cosnx, (0 ^ x ^ 7r). (1)

The greatest value of Sn(x) is obviously at the origin, and since

S'n(x) = — sinx—sin 2x-f-...—sin nx

= — tcosec\x (cos\x—cos —^— x\

= — cosec %x sm -JJ- &m -—-r—, (2)

we see that the maxima of Sn(x) are at the points 0, %irjn, 47r/«, ..., and
the minima at 27r/(/i+l), 47r/(n-f-l), . . . .

Now taking A < k,

2 [kK / • * x \ • j
= — I (sin x eot —— —cos x sin x dx

2 f*"" x
= r-r \ sin3 x cot —— dx, (8)

n+ljxir n+1
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which is certainly negative, since &<£(ft-|-l), so that the cotangent in
the integrand is positive.

Thus the minimal values of Sn(%) decrease as we move to the right, so
that the least value of Sn(x) is at the point [2for/(w+l)], where k is the
greatest integer in £(w+l). Thus if n is odd, the least value is SnW,

while if n is even, it is Stl (ir r-r).
\ M-f-l/

In the former case we have

In the latter case,

= — c o s j p + J c o s 2p—.. .H coanp

= ~ ( 1 - ir ) e o s p + (h~ n=r C O S ^—

Since 1 > £
n vi—1 ' 3 n—2 ' n \

and cos p ^ cos 2p ^ ... ^ cos %np,

we have Sn (TT— —^—) > — (1 ) cosp > — 1.
\ 71+1/ \ n I

Thus, in any case, SAx) > — 1, (0 ^.x ^.TT). (4)

8. If we take any interval (0, e), we know that, for all values of n,
such that o

< e, (5)
n+1

the least value of Sn(x) in the interval is at the point 2XTT/(7I+1), where

n

Thus we have only to show that, as n increases indefinitely, the value of
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Sn(x) at this point is greater than a certain positive quantity, depending
on e in such a way that, by choosing e small enough, the quantity is as
large as we please, to prove that Sn (x) diverges uniformly to +00 at the
origin.

Now regarding k in (3) as giving the point already considered at which
Sn(x) assumes its least value in (0, if), we know that the first term on the
left of (8) is greater than — 1 ; therefore it is only necessary for the proof
of our statement to shew that the integral on the right, taken with sign
+ instead of —, is as large as we please.

Now the integral may be written

—rrr \ (sin kx)2 cot —r-; dx ^ —— I (sin kx)2 cot —rrdx,U n + 1 n+l)ei
K

where e1 = e(l-\- ),
\ 27T—el

since k ^ £n, and therefore

using (6). Since n ^ 2k ^ n + 1 , our integral

xxc o s %kx)cot — dx.

But, by the theorem of Riemann-Lebesgue,* sinoe cot %x is summable
from ex to TT, -

Lt ——- 1 cot \x cos 2kxdx = 0.

But, by (5), n -> oo , when e -> 0; therefore our integral

> (l— £-) logcosec ^IS+JE,

where E has the unique limit zero, when e approaches zero.
This shows that our integral is as great as we please, which, as already

pointed out, proves the statement that Sn(x) diverges uniformly to +00 at
the origin.

4. Write
m + n

o-vi,ix(x) = Sm+nix)—Sm(x) = 2 r~lcos rx, (0 < x < TT).

• See, for example, Hobson's Theory of Functions of a Real Variable, p. 674.
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Differentiating,

m+n
(r'm,n(x)= 2 (—ainrx)

= £ cosec %x | cos (2m+1) -=—cos (2»i+2»+l) -r- -

• nx • (2?u-\-n-\-l)x I . x
= - sin T sin / sin y

^ ^ ^ _^_ Q i T^ JLii1^ I J/'TJ7 B ^ ^ | 1 O'* Q l *n - ^ I ' I I ^^— I I I /^'JJ? —••" I 1 O* / Q171 ^*-O* l / l
"•"•• ^^^ OX 1-1 Q iL/ V ^ * *v I JL/ *C/ o i l l ^^ V * / I JL/ V * J / / V I JL / • ( / / Q | • I <j«(/ • I I J

where we have written ?J =

and we may, if we please, so choose our succession of n's, so that p is an
odd integer. Thus

Since the origin is evidently a maximum of <rWi n (x), we see, from (7), that
the maxima of <rm<n(x) are at the points 0, 27r/?i, 47r/n, ..., and the minima
at the points 27r/(2w+?&+l), 47r/(2??i+n+l), ..., the extreme right-hand
minimum point being at x =• IT.

5. Let us write y, in (7), for ^(2?7i+l)x. Then we have

rm, n (x)—trm,« (TT) = o , sin ̂ ?7/ sin (_p +1) ij cosec HZ,Vi dV-

If, in thefirst place, the point {m-\-$)x lies at, or to the right of, the point
\ir, we use the Second Theorem of the Mean, and bring out the monotone
decreasing factor cosec y/(2?/iH-l) of the integrand. We thus have

r«,«
1 fx

<rm, n (TT) = 0 , cosec %x [cos y—cos (2p+1) y] d5y

( \ $ sin %x '

where d is numerically ^ 1.

Thus, since |x/sin \x < ^7r,

| crm, n (x)—<rw, tt W | < 4 (̂ TT < x < TT). (9)

In the second place, if a; < lirlim+l), and therefore 2 /< ITT, the
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sin 11
function - — l / n , .., is a monotone decreasing function of y up to y = %TT.

8int//(2?w.+l) & 9 r *
Thus dividing the interval of integration in (8) into two parts at the
point y = Jx, the second part gives us an integral which, as we have
just seen, is numerically <! 4, and the first part gives us an integral
which may be written

~—//f> , ... (sin2pu coty-\-sin py cospy) dy
J ( O T + J ) x s iny/(2w+l) v *» J^ *y ty> J

2w+l sin^a;
( fX ^ \ j

X sin2py cot ydy+ =- {sin2^X-sina#(m+£)a:[ > — 5-
U(m+})x &P

Thus we have, nnally, combining with (9),

, n (X) — O"m, „ (ir) > — 4 — ^ , (10)

where ? i =

6. Hence SM (a;) - Sm+n (x) < 5 + ^ - ,

since <rTO>n(x) is numerically ^ l /(m+l) ^ 1.
Now, let n increase without limit, Sm+n(x) becomes in the limit S(«),

where, except at the origin,

£(*) = £ l o g — — r.
2(1—cos a?)

Combining this with a former result (§ 2), we have, since p -> 00,

- 1 < $ * ( » ) < $ ( * ) + 5. (11)

Hence — JE? < f 8m(x)dx < 5 # + f ^(ajjda;,

which show8 that I Sm(x)dx has the unique double limit zero, when
}E

It will be seen in § 9, that this last result, which is otherwise evident,
is included in the more general statements of that article.
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7. We shall now require the inequality referred to in the introduction.
We know that, if u > 0 and w > 0,

Hence, subtracting u from both sides and dividing by p,

( t 0 ) ^ _L
\ p p) p

or, say, ^ ^ i + (±X^J

where pv = (p-\-l)w—l;

and therefore w = (l-\-pv)/(l+p).

Now

T f 1 T f pl(l+p) _ 0 _ T .

Therefore, letting p approach zero, the inequality (12) gives us in the limit
the following:—

uv < u \ogu+ev~l (0 < u, —oo < v). (18).

8. The preceding proof is of interest as showing how the inequality
naturally suggested itself. The following proof is, however, more direct.

We have at once v < ev~l;

and therefore v—log u < e»-i-i°g« ^ — e»-i
u

whence uv < u log u+ev~l.

9. We have already proved (§ 6), that

(11)

Hence <r* < e^^1 < eU™ < e$ {jj^^jf < &e*C08ec
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This shews that e^''^"1 is summable; moreover, if u (x) is any positive
function, such that u\og u is summable, we have, by the inequality (18),

',ix)dx ^ 1 uix) %Sn(:x)dx *C\ u log u dx-j- \
JE JE JE

<*>-l dx

which shews that 1 u(x) Sn(x)dx has the unique double limit zero, as
Js

n -> oo , JE7 - > 0.

Again, if f{x) is any function such that \f{x) | log|/(#) | is summable,
and u(x) denote either the function which is equal to f{x) wherever posi-
tive and zero elsewhere, or the function which is equal to | f(x) | wherever
negative and zero elsewhere, u{x)logu(x) is evidently summable, and

therefore I u(x) Stl(x)dx has the unique double limit zero, and therefore,
JE r

since f(x) is the difference of these two functions, 1 f(x)Sn{x)dx has
the unique double limit zero.

10. Now the succession f(x)Sn{x) converges, except at the origin, to
the summable function f(x) S(x). Therefore, Vitali's condition* having
been just shown to be satisfied, the succession may be integrated term by
term, and we have

Lt [ f(x) Sn (x) dx = T f(x) S (x) dx.
n—>oo Jo . Jo

Hence,sinceSn(x) is an even function, we see that,provided [f(;x)\\og \f(x)|
is summable, not only from 0 to TT, but also from (—TT) to 0, the same
equation holds when we change the upper limit of integration from x to
—x. Hence,

rb rb

Lt fix) Sn(x) dx = f(x) Six)dx ( - x < a < b < TT), (14)
n—>oo Ja Ja

provided only |/(x)| log |/(a;) | is summable from — ir to ir.

* 8eo my paper on " Semi-Integrals and Oscillating Successions of Functions," 1910,
Proe. London Math. Soc, Ser. 2, Vol. 9, p. 308.
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Taking the extreme limits of integration 7r and —ir, and writing as
usual, ,, . ,

(14) becomes

v . . . .
2 (ar cos r a+o r sin rx),

r= l

Thus, as stated in the introduction, in the case of the large class of func-
tions f(x) here considered, the series whose general term is the n-th
Fourier cosine constant of f(x) divided by n, converges, and its sum may
be expressed by the right-hand side of (15).


