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Applications of Q)~aternions to Theor~ of J~elativity. 439 

the important factor (T(u)) seems to leave no escape. The 
(superficially) uneoSrdinated employment of the Lagrango 
function which proves a salient characteristic of relativity; 
that is, making a new zero for each frame; as in the 
elementary case of a lifted body and its weight, would in 
effect disregard that factor (7(u)). But, as we see, to 
eliminate that factor is detrimental to the i'ull attainment of 
symmetry. Logarithmic fundamental relations prevent the 
mere "butt- jolnt"  arrangement that is allowed for vertical 
intervals and weight. A discontinuify of energy values is 
avoidable only by some form of agreement thai has for 
corollaries: lnvariant transition at the " junct ion"  with a 
new frame ; and then equal activity reckoned for the same 
time-unit. Relativity contrives to satisfy these conditions 
however indirectly; at times its perhaps unavowed goal 
is masked behind an ahnost opaque veil of four-dimensional 
mathematics. Yet no just mind wouhl endure cancelling 
anything of that brilliant achievement of expansion. Once 
more in physicsan inestimable service had its source seemingly 
in a misapprehended premiss~about Newton's second law 
and vis viva. 

The matter is weighty enough, if it resolves a puzzling 
riddle, to call for immediate publishing in condensed outline 
o1" the line of varied attack. A prepared paper discussing 
the subject less summarily cannot appear for several months. 

University of California. 
September 12, 1919. 

XLI[ [ .  Applications of Quater~ions to the T]teory of Relativity. 
By H. T. FLINT, z]~Sc., Lecturer i~t Physics, University 
College, Reading *. 

Introduction. 

I N this paper it is proposed to express the results of 
Relativistic Dynamics by means of quaternions. I t  

amounts to expressing the Minkowski four-vector as a qua= 
ternion, amt bringing about its transformation by a certain 
operator introduced by Silberstein t .  I t  is shown in the 
paper, of which the reference is given, that the Lorentz- 
Einstein transformation is equivalent to 

q '=Q~q]Q. 

qt is a quaternion considered in a system of reference S r 

* Communicated by Pro%ssor W. G. Duffield, D.Sr 
t Phil. Mag. May 1912. 
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440 Mr. H. T. Flint on the Applications of 

moving with velocity, v, with respect to a system, S, along 
a direction denoted by the unit vector v. 

The vector part of qr is r', the vector from the origin to a 
point P', and the scalar is l' where l'-~it', t ~ is the time in S' 
and is measured in units in which the velocity of light is 
unity, q is similarly r + / ,  in S. 

Q is also a quaternion, and expressed in detail is 

1 

where ~ = ( 1 - - v  ~) -t. 
I t  is to be applied in front of and behind the quantity to 

be transformed and obeys, of course, the rules of multiplica- 
tion of quaternion analysis. 

Expressions like q, which transform in this way, are called 
physical quaternious, and evidently such quantities, like 
four-vectors,  are capable of expressing the theory of 
Relativity, in fact, they are just what is required. 

We here consider tile application of this notation to 
velocity, force, and momentum. 

It  will be seen that the well-kno~n results of the 
Cartesian mode of expression are easily derived, but the 
results obtained are more general and have no special 
reference to axes. 

An expression for the kinetic energy of a particle, slightly 
different from that usually accepted, is indicated by the 
notation. This form has been discussed elsewhere by 
W. Wilson *. 

Application to electric and magnetic forces give quite 
general transformations, and we again recognize by refer- 
ence to special directions the Cartesian formulae resulting. 
Finally, the problem of the field due to a uniformly moving 
charge is solved by a very easy application of the general 
formulae. 

1. _Notation. 

T will be used in its usual meaning, so that 

(dx' +dy~ +dz~ +dl  ~ )=(1-u~)d t  ~--~ l dt~ (say) (dr)~= 

if u = ~dt-) \d t  ] + \d t  ] " 

dr is an element of the " proper t ime" and is invariant in 
our transformations. 

* Prec. Phys. Soc. xxxi. pt. it, p. 74. 
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Quaternions to the Theory of Relatlvity. 44/  

Write q = a + X 

so that a ' + x ' = Q ( a + X ) Q .  

It  follows that 

a' = x ( t - 3 ~ )  Jv + a + v (1 -3 )Sav  (i.) 

and ~/=f~X+ (1-B~)~Sav . . . . . . .  (it.) 

2. From the quaternion q we pass to 

d 

We may describe w as the velocity quaternion. I t  is 
evidently a physical quaternion, for dr  is invariant. 

This statement, or what is the same thing, 

w'--QwQ, 

contains all that need be said about transformation of 
velocities. I t  is, however, interesting to derive the well- 
known formulae. We have 

w '=~r ( rd  , + l ) = Q d ( r + / ) Q "  

Thus by (i.) and (it.) 

dr' dl - d - r + v ( 1 - - f ~ ) s d r .  v,. (iii.) d~-= ~ (1-B2)~v + dr 
and 

dl I dt dr 
d-~- = / ~  q-(1--/32)~S~Tr" v . . . . . . .  (iv.) 

From (iv.) 
1 _ f f ~  vB dr 

(1-u'~)~ = ( 1 ,  + ( 1 - ~ 9 ~  S ~ .  v, (v.) 

and if v is taken along Ox this gives 

1--u ~ t _ B .  1 . . . .  ( l ~ u ~ ) - -  (--vu~). (vi.) 

This is the well-known and important transformation of 
(1--u'~). 

:From (iii.) by making use of (vi.) 

U z  - -  V 

U t x ~ "  1 - -  V U  x ~ 
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442 Mr. It. T. Flint on the A p p l i c a t i o n s  o f  

Similarly, we may derive 

t 'b/y t ?~z 
~ - ~ ( 1 - ~ )  and ~ - ' - ~ ( 1 - w , )  

by taking v along Oy and Oz  respectively. 

3. Let m0 denoLe the " rest mass"  of a particle, and then 

is also a physical quaternion--the momentum quaternion. 
We obtain from w 2 

*no . ) me (vii.) - ( l ~ . ~ ) ~ ( 1 - v u ~ . ,  �9 
(1-~,~)~ 

or writing this 
.~'= m # ( 1 -  wx) 

we obtain the usual transformation for mass. 

4. By a second differentiation we pass to acceleration and 
write : 

d w  f=~. 
Transformation of acceleration is completely expressed by 

f '  = Q/Q.  

5. We write P = m o f  

and ca]] P the physical force quaternion. 
We then have 

/d~r  ~ d~t~  ~ ,  ~ {dZr d~l \ 
mo z,  + w j  ="nots,, + 

Thus 
d~r ~ . ~ d~l d2r d~r 

mOd-~- =~rno~vv ~ + m o ~  +v(1- f l )moS ~ . v ,  (viii.) 

and 
d2l ' ~ d~l d2r 

~o ~ = -~o/Z d~:-' + ,~oi~VS 3~T~. v . . . . . .  ( ix.)  

If  v is along Ox we find from (ix.) 

din' d m  m v du:~ 
, u '  - d t  ( 1 - ~ x ) "  d ,  (x . )  
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Quaternlons to tlte Theory oj Relativity. 443 
d 

Writing F~=  ~-t (mou~) etc. we find from (viii.) 

F~- v dm 3 
d--~ I 

vuy F ~ -  v~t~-F [ 
F J =  1--wtz = F x - -  1-wt~ ~ 1--vu~ " ~.(xi.) 

and similarly, 
I F~ , F . '  = F ~  I 

F/= ~(1--~D ~(1--w~A ) 
These are PIanek's equations for transformation of force. 

6. I f  mass be regarded as a manifestation of contained 
energy we may, on this view, regard m o as a measure of 
the energy of a body at rest. 

The expression3l for the energy is ( l_u~) . i .  Thus t~ho 

scalar term m0 ~ of M is equal to i (energy). 

From the definition of d~" we have 

(dT)2--- - (dr) 2 -  (dl)2. , (xii.) 

Hence (dr'~ s (dl ~: 
\ ~ /  - -  k d ~ ' ]  = 1  

and a_tdr ? a (az V 
d~" ~, aT ] = x ,  , , ~ ]  ' 

or s d r  d~r dl d'l (xiii.) 
�9 d r "  d'c "~ = dTT" ~ . . . . .  

Multiply throughout by m0 and the term on the left becomes 

(1-~,~) ~ 
On the right we have 

1 d ~ mo ( 
m 

0 u-') a-t i - -  ( 1 - - u ~ ) ~ j  " 

Thus 
dr d ( dr) d { mo } 

--Sc-[['~" m-dr ----" dt" (1--u~)i " 

This equation represents the principle of conservation of 
energy, for on the left we have the activity of the force and 
on the right the rate of change of energy. 
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444 Mr. II. T. Flint on the Applications of 
If  Kw denotes the quaternion conjugate to w and P is the 

force quaternion, the equivalent of (xiii.) is 

S P .  Kw = 0 . . . . . .  (xiv.) 

This is the same as the condition for constancy of internal 
energy given in the ' Theory of Relativity'  * 

The quaternion Kw or any physical quaternion of the form 

q~=l--r 

is transformed to S' by the operation O.~qoQ~, where Qr is 
derived from Q by writing --v instead of v t. 

Transformed to S', S P .  Kw becomes 

SP'Kw'---- SQPQ.  QcKwQ~-- SQPKwQ,. 

Thus PKw is an " R "  quaternion :~ whence its scalar is 
invariant. Thus SP 'Kw'- -0 ,  or the principle of energy is 
invariant. 

7. From (xiii.) we obtain a more general result by 

regarding the term on the right, viz. dl d (dl~ dr i ~ \ ~ ]  prefixed 

with the negative sign and multiplied by me as the rate of 
change of energy, ~. e. 

d (energy)---- dl d (  dl )  ~t-~ - ~ ~ 1-0 3~ " 

This leads to the expression �89 2 for the energy, omitting 
an arbitrary constant. 

We may denote the kinetic energy by the expression 

�89 ( k ~ -  1) w 

I t  has been pointed out by Jeffreys iF that while there is a 
certain arbitrariness in the choice of tile exact form for the 
kinetic energy there is convenience in the adoption of this 
form. 

This expression, like n~0(k--1), reduces to the ordinary 
value X~mv 2 for velocities very much smaller than that of 
light. 

* Cunningham, Theory of Rel. p. 167. 
t Silberstein, Phil. Mag. May 1912. 
:~ Silberstein, ibid. 
w Cfl W. Wilson, Prec. Phys. Soc. xxxi. pl. it. p. 74. 
'[ H. Jeffreys, Phil. Mag. July 1919. 
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Quaternlons to the Theory of Relativity. 445 

8. The equation of motion is to be written 

d: 

where P = F + A  and the relation between the scalar and 
vector paris of P is 

dr F i K A =  S dT ' 

and this is the same as 
S K w P = 0 .  

9. An examination of P shows that it is constructed 
so that 

dw 
F = k p  and A=ik-d[  , 

where p is the force as it enters into ordinary mechanics, 
dw 

and ~-/ is the rate of cbange of energy. 

We may easily derive the force in S' in terms of the 
S measure. We have merely to transform P', 

F ' = F ' + A ' = Q ( F + A ) Q .  

Equations (i.) and (it.) give im,ned~ately 

F '=A(1--f l2)  v + r + v ( t - -~ )SFv  (xiv.) 

and A ' = p A  + (1-B-o?SFv . . . .  (xv.) 

.'. k 'p '= - k B v  dwdt" v + F + k (1-B)vSpv .  

k 
Using the ratio ~ given by (v.) 

p + v (1 - ~ ) S p v -  v~v~-~, w 
r' = " ~  (xv i . )  

~(i . v~uv) 
and in the same way 

dw 
dw' dr- + vSpv 
dr' 1 + vSuv . . . . .  (xvii.) 

These two equations represent the general transformation, 
and there is no particular direction for the vectors occurring 
in them. Equations (xi.) are particular cases. 

As an example, we may apply the transformation to the 
mecha~lical force o~I a moving charge. 
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446 Mr. H.  T. Flint on the Applications o f  
Thus if dw 

p=Ig+VuH,  d t  = - - S E u ,  

and making use of the Principle of Relativity, the physical 
laws being unaltered by transferring to S'. 

We have 

p'=  ~,' + V(u'~'),  
d.~/2 [ 

= - S E1u r. 

substitutions in (xvi.) and On making the appropriate 
(xvii.) and remembering that 

u'  = u + v (  1 - -  r Say--/~vv (xviii.) 
r + ~Suv) . . . .  

We find 
E '+  v(l - B )  SE'v = B(I~ - rVttv), (xix.) 

and this eontains the well-known formulm 

]~;=E~, E/=fl (E~-- , 'H~) ,  E /=~(E .+vH,~ ) .  

On application to the expression (H--VuE) we obtain in 
the same way 

Hz'=H~, t I /=B(H~+vE. - ) ,  H /= /~ (H,+vE. . ) ,  

or H' + v(1--/3) SH'v =B(H + vVEv). (xx.) 

10. The F ie ld  due to a uni fbrmly met ing  electron. 

The ease of the uniformly moving electric charge can he 
easily dealt with by means of equations (xvi.) and (xvii.). 

The problem is to determine the field at a point in 
system S due to a charge moving with velocity vv. If  the 
system S' moves with this velocity the charge is at rest in 
that system, and from tile point o (  view of S r observers the 
case is electrostatic. 

Consider a charge, e, at rest in S' and suppose there is a 
unit charge at a point t )7 moving with velocity uq ]Vo shall 
ultimately write u ' = - - v v ,  so that p, is at rest in S. 

The force on p, is 
t e e 

1 ~ = - ~  �9 r / =  rr ~ . r r, 

where r l  t is the unit vector in the direction from e to P'. 
Let e be situated at the origin for convenience. Also 

dw'  e 
dt I - ~ _  ~ �9 S u / r ' ,  

where r ~ means the cube of the tensor of rq 
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Quaterulons to the Theor~j of Relativitt d. 447 

Thus from (xvi.) by applying the transformation from 
S' to S~ i. e., writing - v  instead of v in the formula 

i e r 7 
- . t r '  + v ( 1  - B )  S r ' v -  vC~vSu'r' P = l ) (1  --vSu'v)  r '3 _~ 

or writing u ' =  --vv and after a simple modification 

Be ~ r '  + v ~ r ' v ( 1 - -  . i0 = ~:)~ ~ ) } .  (xxi.) 

I t  is, o[ course, natural to measure from the instantaneous 
position of the moving charge e, as it is viewed by observers 
at  rest in S. I t  is easy ~;o take ghis new point of reference. 

For let the instan~ in S '  be zero, i. e ,  t '=O. From (i.) 

r ' =  - vC~vt + r + v(1 - r Sty, 
and from (ii.) 

t ' =  r + vSrv).  

These are merely the Lorentz-Einstein formulm. 
I f  t' = 0, 

t = -- vSrv 

(x~ii.) 

If  0 is the initial position of the electron, i. e., its position 
at time t=O,  in the interval - -vSrv it will have moved to e 
where Oe is --v2vSrv. 

Fig. 1. 

0 - 2 _ 

We require our formula in terms of R and possibly the 
angle P'eQ ; OQ is the direction of motion of the electron. 

On substitution for r' in (xxi.) 

p----(r + v~vSrv )~  ----- ~,~. R, (xxiii.) 

as is easily seen from the figure. 
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448 Applications of Quaternlons to Theo*'y of Relativity. 
But 

p=E+Vull, 

and since 
u = O ,  p----E, 

E is the electrical intensity at P and the formula ~xxiii.) 
shows that it is directed along E, the line joining P to the 
instantaneous position o~ the electron. 

From (xx.) since I t ' = 0  the magnetic intensity due to the 
charge is 

H= -- vVEv = vVvE. 

This immediately shows that H is perpendicular to v and E, 
and in such a direction that a right-handed screw placed 
along the direction would rotate v into E. 

I t  is immediately seen from the figure that the magnitude 
of H is vE sin Xl. 

I t  remains to pug ~"~ in terms of R, these quantities 
denoting the magnitudes OP'  and eP'. 

:Fig. 2. 
! 

C r cosX(I-~) 

A 

denotes the angle between r and the direction v. 

r ' = r - - v r  cosX ( 1 - -  ~ ) .  

Thus 
r'  = AC. 

I t  immediately follows that 

r '~ = r ~ ( 1 -  v ~ c o s  "~ x ) .  

Again from fig. 1 

R~= r~( t - -2v ~ cos ~ X + v 4 cos 2 X) 

and R r 
sin ~, = sin ~.'" 

From these equations we derive 

Thus  

~,'2 =/3.~R~(1_ t,~ sin 2 ~,~). 
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0~ the Constitution of Atmosl~heric .Neon. 449 

Thus 
E= era 

3 ~ R ~ ( 1  - -  v ~ s in  2 X l ) ~ '  

I~i is the unit vector along eP', and 

tI  = vE sin Xl. 

These results are of course well known, but I think it will 
b e  admitted that the above is a particularly easy way of 
obtaining them. By extension of the principle described 
to quaternionie operators it is evident tlmt the whole of the 
theory of .Relativity can be very conveniently expressed in 
this notation. 

In conclusion I should like to express my thanks to 
Dr. Silberstein for reading my paper and for his interest 
in it. 

XLIV. The CoJ~stitutio, of" Atmospheri,: zVeon. 137] F. W. 
As'roz% ~LLA., D.Se., Clerk Maxwell Student cf the Uui- 
eersitj of Cambridge*. 

[Plates VIII. & IX,]  

I N periodic tables of the elements arranged in order of 
their atomic weights the part lying between Fluorine on 

the one hand and Sodium on the other is of considerable 
interest. 

Soon after the discovery of argon and while the men- 
atomic nature of its molecule was still under discussion, 
Emerson Reynolds, in a letter to 'Nature '  (March 21, 
1895), described a particular periodic diagram which he had 
used with advantage. In this letter, referring to the occur- 
rence of the groups Fe, Ni, Co: Ru, Rh, Pd: and Os, Ir, Pt, 
the  following passage occurs : - -  

. . . .  the distribution of the triplets throughout the whole 
of tlm best known elements is so nearly regular that it is 
difficult to avoid the inference that three elements should 
also be found in the symmetrical position between 19 and 
23, i. e. between F and N% . . . .  of which argon may be 
Ol18 . . . .  

In 1898 neon was isolated from the atmosphere, in which 
it occurs to the extent of "00123 per cent. by volume, by 

* Communicated by the Author. 
Phil. M~ly. Set. 6. Vol. 39. No. 232. April 1920. 2 G 
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