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THE main idea of the following paper is that of the solution of dy-
namical problems by means of complex integrals. Such a solution was
suggested by Cauchy long ago, but I am not aware that he gave any
method by which the arbitrary constants of the solution can be directly
and immediately expressed in terms of the initial conditions.

In § 1 this problem is solved for a system free from impressed forces,
but subject to given initial disturbances: and in § 2 for given impressed
forces, the initial disturbances being zero. It is proved in § 3 that the
results so obtained are equivalent to those derived by the method of
normal coordinates, when the latter can be applied. But it must be
understood that the method of § 1 can be used in cases when there is
no recognized method of treatment by normal coordinates.

It appears that the general method of normal coordinates, as stated in
§ 3, was worked out independently by Routh and by Heaviside. Starting
from this, Heaviside subsequently developed a method to which he gave
the name of " the method of resistance-operators " : it is proved in § 4 that
this method is really equivalent to the method of § 2, for dealing with con-
stant impressed forces.

In § 5 is given a statement of the extension of the method to deal with
continuous systems; and it is verified that in certain simple problems
the results agree with those found by known methods (such as Fourier's
series). In § 6 is given an independent process for the interpretation of
the complex integrals of § 5 ; it appears that for a vibrating uniform
string (and allied problems) this method leads to the same conclusions as
the superposition of positive and negative waves.

In § 7 it is shewn that we can apply the general methods of §§ 5, 6
very easily to deal with problems of advancing waves with a wave-front.
The problems solved here refer to waves of sound: but similar methods
are equally effective for electromagnetic waves. This would be antici-
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pated from the fact that such electromagnetic problems were solved first
by Heaviside, using his operational methods.

In § 8 an outline is given (for one special type of continuous systems)
of a proof of the accuracy of the general method of § 5 : and in § 9 the
general method is compared with the method of normal functions, and it
is proved that the results obtained are identical. In § 9 certain general
results on normal functions are proved which I have not met with pre-
viously, although they are natural extensions of known results.

On account of the great generality of the method, I have thought it
desirable to include a number of illustrative examples : most of them are
taken from well-known sources, but the methods of treatment are novel.

I hope to indicate in another paper how the present method can be
applied to prpblems in Conduction of Heat and other types of diffusion:
examples of this kind have accordingly been excluded from the present
paper.

1. Solutions when Impressed Forces are absent.

We begin by considering the solution of a system of simultaneous
differential equations with constant coefficients, represented by

enx1-\-e12x2-\-...-\-einXn = 0'

2n xn = 0

enlX1-\-en2X2-\-...-\-ennXn = 0 .

where ers denotes the differential operator

ers = arsD
2+brSD+crs, (2)

following the notation used by Lord Rayleigh (Theory of Sound, Vol. I,
§ 82). Here the symbol D denotes differentiation with respect to the
time t, and the coefficients ar81 brs, crs are constants.

In the ordinary dynamical interpretation the coefficients arx are those
of the kinetic energy, brs those of the dissipation function, and crs those
of the potential energy : but in what 'follows we shall have no occasion to
assume that the symmetrical relations

a?s —~ &sr> VT8 ^~ Usr> Crs — ^sr

hold good, and accordingly the solution obtained can be applied to gyro-
static systems and also to systems in which the forces are not derived
from a potential energy function.
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The solution is found by substituting the contour integrals

in the equations (1), where £lt i2, ..., in are certain functions of X to be
found, and the path of integration is a closed path in the X-plane which
encloses the poles of these functions £.. The result of the substitution is

IX = 0, (4)

(5)

where px =

Pi =

p,< = Xul£1+Xn2£J+-

and \rt = an X2+bn X + crt. (6)

If the equations (4) hold, the path of integration must contain no poles
of the functions pi, p^, ...,pn' and, in virtue of the equations (5). it is
clear that the functions pr have no poles other than those of the functions
£r. Consequently, since the path contains the poles of £r, it follows that
the functions pr can have no poles : and the simplest assumption to make
is that the functions pT are simple polynomials. We have now to see that
we can adjust the choice of these polynomials so as to correspond to any
given initial displacements (ur) and velocities (ur).

On putting t = 0, in the integrals (3), and in their differential co-
efficients, we find the equations for the initial displacements and velocities

irdX, (7)

where now the path of integration may be supposed to be a large circle in
the X-plane; for, by taking a sufficiently large radius, we can certainly
enclose all the poles of the functions £v £2> •••> in, since these functions
are simply rational fractions in X. Now, when | X | is sufficiently large,
any rational fraction in X can be expanded in descending powers of X ;
and if we have the expansion*

• It is unnecessary to include any positive powers of K in {,.: for such terms will con-
tribute zero to our original solutions (3).

2 D 2
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it follows from equations (7) that

Ur = Xr, Vr = Yr.

Thus equations (7) lead to the inference that, when j X | is large,

Accordingly we can now determine the p o l y n o m i a l s ^ , ^ , ...,pn by sub-
stituting for £. from (8) in (5), and retaining only the positive powers of
A. This gives at once

{ } ( 9 )

with similar formulae for ]h> 2h, •••> Pn-

In actual calculations it is generally easier to remember the rule to
substitute from (8) in (5), and to retain only positive powers of X, than
to quote the formulae (9).

We have still to prove that the formulae (9) do as a matter of fact lead to
the equations (7): for this purpose we write the solution of (5) in the form

where Frs(X) denotes the minor* of Xsr in the determinant

A (A) = An, A12, ...,

^ 2 1 > A 2 2 , . . . ,

(10)

(ID

Now, if we observe that (9) can be written in the form

where qx is another expression of the first degree (at most) in A, and that

* In accordance with recent practice, the symbol 0(1/A3) is used to denote a function of
A, which is of order I/A3, when | A | is large ; more precisely, if the function is multiplied by
A3, the product remains finite, when | A | tends to infinity.

t Note that the order of the suffixes is reversed, intentionally, in Frs and A,r: in problems
for which Ar, = A,r, the order of the two suffixes is immaterial.
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p 2 , P& •••,pn can be written similarly, we see that (10) leads to the result

£ ^ § ^ \ } . (13)

Now consider the expression in the last bracket of (13); its degree
in A is at most (2>i— 1), since each minor Frs is of degree 2(n— 1) at
most. Also the degree of A (A) is 2?i, provided that the determinant

A = aiV al2 ain , (14)

n l > ^ n 2 > • • • > a n n

is not zero. Consequently the formula (13) leads back to the equations
(8), provided that the determinant A is not zero.

When the determinant A is zero, we can deduce from equations (1) at least one equation
which contains no term in D". Since this equation holds for t — 0, there must be at least one
relation amongst the initial displacements (u,) and velocities («,.); and accordingly it is no
longer possible to solve equations (1) with a perfectly arbitrary set of displacements and
velocities. This fact may suffice to indicate that the restriction that A is not to be zero does
correspond to a real difficulty in the process of solution.

The question may now be naturally asked :—If A is zero, and the corresponding relations
are satisfied by the u's and v's, will the general method given here still prove successful ?

To this question I cannot give a complete answer ; there are certain algebraic complica-
tions which havs hitherto baffled me and have prevented me from constructing a general proof.
But an examination of a number of special examples has convinced me that the general
method is still adequate, even when A = 0. One of these examples is given below (Ex. 4,
p. 409).

Accordingly, the solution of equations (1) subject to assigned initial
values of the velocities and displacements is given by the integrals (3),
combined with equations (5), (9) and (10).

To obtain the final solution in an explicit form, it is necessary to know
the roots of the equation A (A) = 0; and this is the way in which the
period-equation of the problem presents itself here. Knowing these roots,
we have simply to calculate the sum of the residues of ext£r at the roots
of A (A) = 0, in order to have the formula for xr. Thus, if A = a is any
non-repeated root of A (A) = 0, we see from (10) that the corresponding
contribution to xx will be

ATTT \Fn(a)p1+F12(a)p2-\-...+Flnpn}, (15)

where plf p2> ...,pn denote the results of inserting the value A = a in the
expressions for plt p2, ...,pn.

There is no difficulty in carrying out the corresponding calculations
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for a repeated root: but it is hardly worth while to write out a general
formula corresponding to (15): The method of procedure will be easily
seen from the examples given below (Exs. 2 and 8): and in many of the
ordinary dynamical problems where repeated roots occur, it will be found
that the corresponding roots only give simple* poles in & (see Ex. 3).

It may, however, be well to point out explicitly that the present method
is not affected by the complications which are introduced by the presence
of repeated roots in A(X) = 0, when we are dealing with the closely asso-
ciated problem of reducing two quadratic forms to sums of the same
squares. +

It is easy to see how to modify the method of solution when the equa-
tions (1) are of the first degree only in D : it will suffice to state the corre-
sponding, results without fresh investigation.

Suppose, then, that in (1) the differential operators are given by

ers = araD+brs. (2')

Then the equations (8), (5) remain unchanged in form, but we write

Xr, = ars\ + brs. (6')

We shall now need only the initial values of xx, x.2, ..., xn; and these will
lie denoted, as before, by uv v^, ..., un. Then, in place of (9), we find

p1 = allu1+al2u2+...+alnun, . (9')

with similar forms for p2,p3, ...,pn- This solution will satisfy the re-
quired conditions, provided that A, the determinant defined in (14), is
not zero.

When A is zero, we find that at least one relation must exist amongst the initial dis-
placements.

Here also (provided that the requisite relations hold), I have found that the general
method leads to correct conclusions in all special examples which I have examined : but I
have failed to construct a general proof of the property.

Examples of the Process of § 1.

The following examples have been selected to illustrate the method; they are not of types
likely to occur in actual dynamical or physical examples, but are easy to work out in detail.

* Because the corresponding invariant-factors of A (A) are linear ; so that if (\—a)' is a
factor of A (A), then (A — a)r~l is a factor of every first minor Fr, (A). Thus (A — a) appears only
to the first degree in the denominator of f,.

| For the algebraio side of this problem, reference may be made to my tract on Quadratic
Forms (No. 3 of the Cambridge University Press series).
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Ex. 1.—[Routh's Rigid Dynamics, Vol. 2, 1892, Art. 367]

\ y = -^ [vextd\,

where (A2—4A){ — (A — 1 ) T J = 2 ) , )

We solve by taking

2TTJ

corresponding to (5) above.
Assuming that the initial values of x, y, and Dx, Dy, are represented by ar,,, j/,,, and a;,, yu

the expansions corresponding to (8) will be

A A-

On substituting and rejecting negative powers of A, we find that

p = (A-4)xo + Xi-y0, )

q = xo+ (A. — l)2/o+2/i- i

Then, on solving, we see that

p(K: — \) + q (A —1) _ l 2
]Ai"-l)(A-2)(A-3) ~ (A + 1)(A-2)(A-3) '

and „ =
It is now an easy matter to evaluate x and y completely by writing down the sum of the

residues of |ext and of 7jex' at all the poles. We shall content ourselves with writing out
the value of x only.

Corresponding to A = — 1, we have the residue

and corresponding to A = + 2, we have

Corresponding to A = 3, we find

The complete formula for x is then the sum of these three residues; it is easy to verify that as
a matter of fact the initial values of x and Dx are then x0 and xx. It will be seen also that
the first and second terms agree with those found by Routh (I.e.),using the "method of
isolation".

Ex. 2.—To illustrate the effect of a multiple root in the determinant A (A), consider the
equations (D2-2D)x- y = 0

' " I [Routh, I.e., Art. 373].
(2D-l)x + D*y = 0
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Proceeding as in Ex. 1 above, we find the equations

( A 2 - 2 A ) { - v =p = (A-2)xo + x,, |

( 2A- l ) | + A2i7 = 2 = 2XO + AJ/, + I/1. J

Hence, on solving, we have

(A-1) 3 (A + 1 ) | = \*p + q = (A3-2A2 + 2)T0 + A2X, + AJ/0 + #,,

with a similar formula for 77.
To obtain the residue corresponding to the multiple root A = 1, we write A = 1 + M» »nd

arrange fin the form M N
*" + • + —. + — *

M3 fi" M 2 + M

Thus on multiplying up by fi3 (2 + ft), we find the identity

2M,

Hence 2if2 = x0 + x, + y0 + yu 2MQ + M, = x0 + x,,

Then the residue for x, corresponding to A = 1, is found from the coefficient of l/p in the
expansion of

\ /i3 ^ : /a 2 + / i /

in powers of p. This coefficient is seen to be

agreeing with Routh's result {I.e.).
The complete expression for x is seen to be

Ex. 3.—Another example of repeated roots in A (A) is given by

(D2- l )x + t/ + s = 0, X + ( D 2 - 1 ) T / + S = 0,

[Routh, I.e., Art. 89G].

Proceeding as above we use three symmetric equations, of which the first is

Hence (A2 +

and so, finally, 3{ = - ^ ( p + g + r) + —L-(2p-q-r).

On calculating the residues of |ext, we find

3x = (x0 + yn + z0) cost + (xi + yl + 21)sin t + (2x0—y0—20) cosh (< A/2) + (2x, — yx — z,)sinh(<V2)/v^2.

The result may be verified at once by noticing that the given equations lead to

=0, {Di-2)(x-y)=Q, (D'—2)(x-s) = 0.

This example illustrates the effect of linear invariant factors : the value of ( has only simple
poles, and consequently the value of x is of a simpler character than in such a problem as
Ex. 2 above.
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Ex. 4.—To illustrate the effect of supposing the determinant A to be
zero, let us consider the equations

(D2+D)x+ Dhj = 0. J

Here A = ! 1, 1 | = 0 ;

and there must accordingly be a relation connecting the initial displace-
ments and velocities. If we subtract the first equation from the second,
we see that / r .

Hence x1—x0-{-^y1 = 0

is the required relation, since the last equation is true for t = 0, as well
as for all other values of t.

We shall now shew that (subject to this relation amongst the initial
values) our general process leads to a correct conclusion. In fact the
auxiliary equations are seen to be

(\2+l)f-KA2-2A)>/ = X

(X2+X)£+ X9* ={\ + l)xQ+x1+\y0+y1.)

Hence X(X+3) $ = (X+2)zo+2z1+2y1,

X2(X+3)>/ = (\ + l)xo-(\-l)xl+\(\+3)yo-(\-l)yl.

Thus, when | X | is large, we obtain the expansions

At first sight, these expressions do not appear to agree with (8); but
nevertheless, on writing x0 — xx-\-^yx (in accordance with the relation
already found amongst the initial values), we find that

so that as a matter of fact they do agree with (8).
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The final solution is found to be

where the relation x0 = xl-{-'2y1 must be remembered.

2. Effect of Impressed Forces.

We pass next to the consideration of cases in which the equations
contain impressed forces: in practically all physical problems these forces
are either constants or simple harmonic functions of t, with or without
damping factors. Any force of this type is expressible as the sum of
terms of the type Pe*\ where P and /J. are real or complex constants.
We consider, therefore, instead of (1), the equations

1̂1 *̂ 1 I 1̂2 ^2 I • • • "T^ln^n — P\&

21 1 »̂  22 *'2T • • • l̂  O2H ^ii ^^ -*• 2

/, r J. /) r - L -\-P r — P p ^ .e n l •t'l i cn2 «• 2 ~ • • • I e «n ^n — -t n c

(16)

As in § 1, we substitute the complex integrals (3), and we obtain the
results

* j eMprd\ = Pre^, (17)

which replace (4); the values of pv p^ ..., pn being denned by (5) as
before.

In order to satisfy (17), the functions plf p.2, ..., pn must have X = /J.
as a pole, and the path must surround this point. The simplest hypo-
thesis accordingly is to write simply,

pr = P,./(X-M). (18)

If the path of integration encloses only the pole X = n and none of
the roots of A(X) = 0, the solution (18) simply represents the forced
oscillation. Of course this solution may be obtained almost at a glance
by more elementary methods. But another solution which is often of
more physical interest is the solution corresponding to zero initial dis-
placements and velocities; the forces being applied at t = 0.

This solution is given by the same algebraic formulae (5) and (18):
but now the path of integration must enclose all the roots of A(X) = 0,
as well as X = /x.
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For, if the path is so chosen, the initial displacements and velocities
are again given by the integrals (7), and the path of integration can be
taken to be a large circle in the X-plane.* If we now consider the result
of substituting from (18) in the solution (10), and apply reasoning similar
to that used on p. 405 above, we see that, when | X | is large, the expression
for gr takes the form

A _ _ -txr | •*- T | " r |

*>r — ^ ' X 4 ~ X ^ I ••• '

provided that the determinant A is not zero. Thus

f £,.d\ = 0, f \£rd\ = 0,

and accordingly the initial displacements and velocities, given by (7), are
zero as stated.

The special case of constant impressed forces is of interest (see also
$ 4 below): the solution is then found by putting /u. = 0, or

pv = p,/X, (18a)

where the path of integration must now enclose X = 0, as well as the
roots of A(X) = 0.

In dealing with problems which involve impressed forces, it is often
more convenient to replace the closed paths hitherto used by a straight
line: this line will be parallel to the imaginary axis and on the positive
side of the origin, so that the limits of integration can be written as
c—too to C + JOO, where c is any positive constant.

Q

* Because all the poles of the integrands lie within this path of integration : and so the
path can be extended as far out as we please, in virtue of Cauchy's theorem.
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To prove that this straight path is equivalent to the closed paths, we
start from a circle, with its centre at X = 0, as in the figure ; by taking a
sufficiently large circle, we can ensure that all the poles to be considered*
lie within the region PAQBP; and so we can replace the circle PC QBP
by the path PA QBP. Now when t is positive, it is easy to prove that

any integral of the type \£re
Md\, taken along the arc QBP, will tend to

zero as the radius tends to infinity, t Accordingly we are left with the
limit of the path PA Q, and the solution takes the form

^ P " eMird\ (c > 0). (3')

The form (3') can also be applied to the problem of § 1, except when
t = 0; for, if £r is of the type (8), it is easy to see that

5 - ird\ = %ur,
J QBP

and that the integral z— \grd\ is divergent. Thus, to get the correct
ATTI JQBP

values of ur, vr, we must not write t = 0 in (3'); but we must take the
limit of (3') as t tends to zero through positive values.

By using (3') we can extend our method, so as to include impressed
forces which are not expressed explicitly in the forms assumed in (16)
above. Suppose that they are given as functions of t, say $>r(t), and that
they are applied from t = 0 to t = T ; then Fourier's theorem enables
us to write!

1 fc + iac

8 X 1 J ~ f . (19)
where pr = [ e~M$r(0)dd J

Thus the value ofpr defined by (19), used in connexion with the form (3'),
enables us to solve the equations with the impressed forces $>r(t), by
exactly the same algebraic process as in the simpler cases given in (16).

* In practically all cases of interest, the poles have real parts which are either zero or
negative, corresponding to undamped or to damped simple harmonic vibrations.

t Because fr is at most of order I/A3, when | A | is large.
X The formulae (19) may be deduced, as a matter of simple formal transformation, from

the ordinary form of Fourier's theorem. Formulae substantially equivalent were obtained, in
this way, by Kiemann in his paper on the distribution of primes (Oes. Werke, p. 140): and the
actual formula (19) were deduced similarly by Macdonald (these Proceedings, Vol. xxxv, 1902,
p. 428). From the point of view of the Theory of Functions of the Complex Variable, more
complete discussions have been given by Pincherle and Mellin ; see, for instance, a paper by
the latter in the Math. Annalen, Bd. 68, p. 305, where references to earlier investigations
will be found.
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Examples of the Effect of Impressed Forces.

To avoid unnecessary algebra, we take two examples involving only a single coordinate.
In more complicated problems, the method of procedure is precisely similar.

Ex. 5.—A dynamical system with one degree of freedom is acted on by a force having the
same damping and free period as the system.

We can represent the equation of motion by

J^E. + 2V2* + („• + ft«) x = Fe-* cos (nt + «),
at2 at

where 2w/n is the period, and e~*i is the damping factor. The force is supposed applied at
t = 0, when the system is at rest in an undisturbed position. Then the solution is

where {(* + »)' + «'}{ = — ( e>" + '*"" \ ,

FUK +1») cosa>—n sin a)}
or f = - i : -.

The residues of fex* have to be calculated at the points \ = —v±cn, and on addition we obtain

x = —— {nt sin (nt + o>) + cos (nt + w)—cos nt cos u}

= —— - {nt sin (nt + w)—sin o> sin nt}.

When this formula has been obtained, it is easy to verify the result by elementary
methods: but a direct determination of the arbitrary constants is somewhat tedious, although
perfectly straightforward. The result for the special case a> = 0 was given by Bjerknes
(Annalen der Physik, Bd. 55, 1892, p. 132).

Ex. 6.—The system is acted on by a force having the same period; but the force is appl%4d
for a half period only.

Here we omit the damping factors (for brevity merely), and take the equation

—^ + n*x = F sin nt,
dt*

which holds from t = 0 to irjn. If we apply (19), with T = ir/n, we find that

p = F\ e~Mswn6d0 = - — - ( l + e~x"in).

Calculating the residues of £ex' at A = ± in, we obtain the result

x — — -—- cos nt (t > w/n).

This conclusion is easily verified by observing that Ex. 5 (with v = 0, a = — £ir) gives the
solution up to t = tr/n, and that x and dx/dt are continuous at t = njn.

3. Comparison with the Solution in Terms of Normal Functions.

The customary method of solving the problem proposed in § 1 above,
is to use normal functions. That is, corresponding to each root X = a of
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the determinantal equation A (A) = 0, a solution l^ 1%, ..., In is found for
the equations .

n̂ = 0
(20)

where X = a.

It is then evident that if the initial displacements (u) and velocities
(vr) are adjusted so that

h h '" k . (21)

and S & « j
a possible solution of the problem in § 1 is given by

1, ..., xn = Alne
at.

But it will be observed that this does not prove that no other solution
exists under the given initial conditions: although it may be possible to
infer, from general considerations of a physical kind, that the solution (if
any) is unique.

This special type of solution gives a normal mode of motion (or
principal mode) in the customary terminology.

It is then usual to assume that every motion possible can be obtained
by the superposition of normal modes: that is, that we can satisfy the
equations (1) of § 1 by taking

xr = ^Alre
a\ (22)

where the summation is extended to all roots a of A (A) = 0. To deter-
mine the 2n. constants A we have the 2w equations

ur = 2Aln vr = 2Aalr. (23)

But it is by no means obvious that these 2?i equations (23) are always
algebraically capable of solution: it is conceivable that the 2n normal
modes might not be algebraically independent.* The most direct proof

• As a matter of fact, it can be proved that they are algebraically independent when the
roots of A (A) = 0 are all different (provided that the determinant A of §1 is not zero). But
failure may occur with equal roots : consider, for example, the equations

(2D--Z)x-y = 0. x + (2D2-l)2/= 0.

Here the determinantal equation reduces to (A.2—I)2 = 0, so that o = ± 1 ; and for all these
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that the constants A can be found is to obtain formulae giving them
explicitly in terms of the initial values, ur, vr. Such formulae have been
given only, as far as I know, in certain special cases ; and of these, the
only simple case is that of symmetry for which

so that \rs = \sr.

Under these conditions Routh* and Heaviside t have shewn that there
is a conjugate relation between the normal solutions (lr), (??&r) correspond-
ing to any two unequal roots a, /3 of the determinantal equation A (\) = 0.

Following the notation used by Heaviside in the second paper quoted,
the conjugate relation may be written!

where Tl2 = au(aZ1)08rn1)+a12j {al^{^m^-\-{al^(/3;%) [ + . . . ,

so that T12 is what may be called the relative kinetic energy of the two
normal solutions, while U12 is their relative potential energy.

From this property it is easy to deduce that the value of the coefficient
A is given by Heaviside's formula

A=^-%-\ (24)

where T10, U10 are constructed similarly to T12, Un, but with the initial
velocities and displacements taking the place of those belonging to the

roots the relations analogous to (20) reduce to I + m = 0. Thus the corresponding normal
modes are subject to the relation x + y = 0, but the solution given by

corresponds to the initial values z0 =0, x, = 1, y0 = 4, i/, = 3 ; and clearly this solution is
not expressible as a sum of normal modes.

• Routh, Rigid Dynamics, Vol. 2, 1892, Arts. 383, 384 ; Routh published his method first
in 1883.

t Heaviside, Electrical Papers, Vol. 1, pp. 520-531 ; and Vol. 2, p. 202 ; these papers
were published in 1885 and 1886 respectively. It is clear that Heaviside was unaware of
Routh's work ; and his results are easier to state than Routh's.

X When there are no frictional terms (6,., = 0), the conjugate property takes the form

TIS = 0, Un = 0,
whioh ie a familiar result.
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second normal solution. Thus

' vi ~r* *i21 (a î) V2 4" (a4) vi \

(25)
and Tu = an (al^-i- 2a12 (al^ (al^) + • • •

We proceed now to identify (24) with our former results. As a pre-
liminary we note that in virtue of equations (20) we can write

n) — a(bnll+b,2l2+... + binln), (26)

with similar results for the suffixes 2, 3, ..., n.
If we multiply equations (26) by uv %, ..., un in order, and add, we

= — «2 \an liUi

— a {blll1u1+b12(l1u2^-l2ui)-]-...].

Thus the coefficient of Zx in Tl0—U1Q can. be written

a (au ©i+Oia v2+ • •. +ai» »J
2 . . . +alnun)

which is equal to apv by equations (9), where, as in (15), pt denotes the
result of writing X = a in px.

Consequently we can write

T10-U10 = a(l1p1+l2P2+--- + ln£n). (27)

Again, if we take equations (26) and multiply them in order by llt Z2, ...,ln

and add, we see that

JJn =—

Thus we have the result
2 . f . (28)

Again using equations (20), we see that, in the notation of § 1, we can
write (for any suffix r)

fi t2 ^n

FiM ~ FM ~ "' ~ Fnr(a)'
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It follows that the minor Frt(a) is proportional to the product lrls: and
so we can write „ , . , , , / n m

Fri(a) = kirk (29)
where h is the same for all pairs of suffixes r, s.

Now from the ordinary rule for differentiating a determinant, we see
t h a t A'(X) = (2a

because now the determinant A(X) is symmetrical.
Consequently, using (28) and (29), we have

i-^u). (30)

Also, from (27) and (29), we find that

^(ri0-Z710) = a {Fn(a)pl+Fn(a)p2+...+Fln(a)pn\. (81)

Combining (30) and (31), we see that Heaviside's formula (24) gives

Ah = llo~Z1%=^\Fn(a)p1+F12(a)p2+...+Fln(a)pn\,
-L 11 ^ 1 1 *•* \a)

or, comparing with (15), we now infer that Al^ is equal to the residue
at X = a, calculated in § 1.

In other words, we have identified Heaviside's formula (24) with the
solution found in § 1. But it should be borne in mind that (unless the
determination of the normal modes is extremely easy) it is usually quicker
to apply the process of § 1, rather than (24).*

There is only one other class of problems for which a rule similar to
(24) has been devised; this is Routh's case of a dynamical system with
gyrostatic forces, but no resistances. Thus we have the relations

ars — asrt Ors — Osr> Crs — Csr.

It is not easy to translate Routh's rule (I.e., p. 415, Art. 890) into a form
similar to (24); and I have not constructed a general proof to shew that this
rule is included in the general process given in § 1. I have, however, verified
that in a special numerical example, worked out by Routh (I.e., Art. 891),
the equations given for finding the coefficients can be derived from the
results given by the general process of § 1. But it should be noticed that
Routh's equations are left in an unsolved form ; one of the equations is a
quadratic, and so the process of solution would be tedious. On the other
hand, § 1 gives the coefficients at once (see Ex. 7 below).

* This fact will be observed in Heaviside's later writings, where the method of §4
is used as a rule in preference to (24).

SER. 2. VOL. 15. NO. 1277. 2 B
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To Bum up, it has been proved that the method of § 1 includes all the
results which can be derived by the use of normal coordinates : and, in
general, it will give these results in a more convenient form.

Ex. l.—Boutli's Example of a Gyrostatic System (I.e., Art. 391),

(D:-8)x + «/6Dy = 0,

- A/6 DX + (D2 + 2) y = 0.

Here (A2-8){ + A/6AIJ =p = \xo + Xi + */6y0,

- A / 6 A £ + ( A 2 + 2)T? = g =-V6xo + \yo + y1.

Thus (\4-16)£=,(A2 + 2 ) p - V6\q = (A'-' + 2)(AXO + :CI) + 6AXO + \'6 (2yo-Aj/,),

with a similar formula for T;.
The results given by Routh correspond to finding the residues of £ex' for A = — 2 and for

A = ±2t. Take first the former, which gives

agreeing with one of Routh's results.

With regard to the residues for ±2i, suppose that they are expressed in the forms

£ (X, - ,Xa) e2-' + J (X, + .X.) e- «.

Then their sum is Xx cos 2< + X3 sin 2t, which is Routh's form.
Now J (X\ — «Xj) is the residue of { at A = + 2«, and so we find

-16< (X^rXj) = - 2 (2JXO +

The Ia8t equation gives Xx and X*. by direct inspection.
Routh's equations can be derived by multiplying up by Xx + iX2, and then equating real

and imaginary parts ; clearly these equations must (in the long run) lead to the same results.
But it is equally certain that the labour involved in deriving Xu Z3 from Routh's equations
is very great.

The final formula for x can be written

| ( -4a;0+ */6yl)cos2t +£( x, - A'6 y0) sin It

+1 ( 12x0- A/6 t/i) cosh It + £ (3xi + A/6 y0) sinh 2£.

4. Comparison with Heaviside's Method of Resistance Operators.

Heaviside's method is specially adapted for handling problems in
which the impressed forces are steady, and are applied at t = 0, to a
system which is then entirely free from disturbance. Heaviside has
used his method particularly in the theory of currents set up in a net-
work of linear conductors* (allowing for inductances and capacities, as
well as for resistances). The original equations of the network can then
be reduced to a system of the type (16), given in § 2 above, with fx = 0 ;
and with the special feature of symmetry. The coefficients ars involve

• Bee, in particular, Electrical Papers, Vol. 1, p. 412, and Vol. 2, p. 259.
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the inductances, br8 the resistances, and crs the reciprocals of capacities
of condensers. Heaviside replaces the operator D{= djdt) by a symbol
p, which is regarded as subject to the ordinary laws of algebra: and he
then solves the resulting equations, as a system of linear algebraic equa-
tions in xr. Following the notation adopted in § 1, we see that the re-
sult so obtained is*

A(p) xr = Frl(p)Pl+Fr2(p)Pz+...+Frn(p) Pn;

or, supposing that one force only (Ps) is applied, we can write our result as

A(p)xr = Frs(p)Ps. (32)

Up to this stage the work is much the same as may be found in almost
any elementary discussion of simultaneous linear differential equations ;
but we now encounter the essential novelty of Heaviside's process, which
lies in the interpretation of the symbolic equation (32), or rather of the
algebraically equivalent one

Xr~ A(p) F" ( 3 3 )

The result of Heaviside's interpretation is

?M ) (34>

where a is any root of A (p) = 0, and the summation extends to all such
roots. The investigations leading up to the formula (34) are most in-
structive and will repay careful study :t but I am not sure that they have
been sufficiently appreciated in the past. It is almost certain that few
readers have fully grasped the complete and general character of the
solution : and it is for this reason that I wish to call attention to it here.

To compare the results of § 2 with those of Heaviside's method, we
note in the first place, that in (18a) all the P's are zero except Ps: and
accordingly equation (10) gives

& ~ A(X) X "

Then, using the complex integrals of §§ 1, 2, the value of xr is given by

* Heaviside, Electrical Papers, Vol. 2, p. 259 ; his symbol F(p) corresponds to A
and/r,(jp) to Fr.(p).

t Ibid., p. 226 (where the method in the footnote supersedes the text); and p. 373.
2 E 2
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where the path is to enclose X = 0 and all points X = a, where a is a
root of A (X) = 0. It will be remembered that (as proved in § 2) the
integral (86) then solves the problem for zero initial disturbances in all
the coordinates xlt x2, ..., xn.

On forming the sum of the residues of (36), it will be seen that the
result agrees precisely with Heaviside's formula (34); and accordingly we
have now provided an independent proof of the latter formula.

Ex. 8.—To discuss the effect of switching a steady electromotive force E into a primary
coil in the presence of a secondary coil.

This is a familiar problem, but gives a simple illustration of Heaviside's method : to
shorten the algebra, suppose the coils equal in all respects, having inductances L, and re-
sistances R; and let their mutual inductance be M.

Then, if x, y denote the currents, we have the equations

at at at at

According to Heaviside's process we take the auxiliary equations

(Lp + R) x + Mpy = E,

Mpx + (Lp + R) y = 0.

Hence r (L

Let a, £ denote the roots of the denominator, so that

a = -R/(L + M), 0 =-R/(L-M).

Then (34) gives the results

E E(La + R)e'f E(LB + R)eet

if a(L*-M*)(a-fi) /S^-M'JdS-o

- 0 - EMe"' _ EMeBt
V " ( L s A P ) ( / 3 ) (L2-M2)(|8-a)'

which simplify down to

x = (EIR) {1 - £ (e-' + «")}, y = -k (ElR)(e"'-e<«).

5. Continuous Systems.

When the equations of motion of a vibrating continuous system are
formed, the equations corresponding to those of § 1 above will usually be
differential equations (one or more in number) combined with certain
boundary conditions. There is usually no particular difficulty in applying
the same rules as have been given in §§ 1, 2 to such systems.

For instance, suppose that the differential equation takes the form

d2u . du A _ ,Q7^

" 5 ? + < r e F - A * = 0 > (37)

where A denotes a differential operator (with respect to the coordinates
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employed), and p, a- will in general be functions of the coordinates appear-
ing in A.

Then our general process suggests the following method :—

Write u = ^ \vextd\,

and then the equation for v will be
2 (38)

where «0 and ux are the initial values of u and du/dt.
The boundary conditions may or may not involve differential coefficients

with respect to the time: when they do, care must be taken to modify
them (by introducing terms containing uQ and uj in the same way as (88)
is a modified form of (37).* This point may easily be overlooked; but
unless the appropriate terms are inserted, errors will be found in the final
solution which may not be easy to detect.

The determination of the path of integration is perhaps less obvious ;
with a continuous system, the number of poles of the integrand v will, as
a rule, be infinite ; and these poles usually tend towards infinity (in the
X-plane) in two directions. Very often these directions correspond to the
two ends of the imaginary axis. Further, in all problems which have any
physical interest, the poles are distributed either on the imaginary axis or
on the negative side of that axis. The former arrangement represents un-
damped simple harmonic normal modes of oscillation: and the latter
corresponds to damped oscillations.

It is evident, therefore, that the closed paths of integration used in
§§ 1, 2 must now be replaced by an unclosed path. But we have seen in
§ 2 that the path from c—too to c+too (see Fig., p. 411) is equivalent to
the paths of §§ 1, 2, and so will be the natural path to adopt here. For,
just as in § 2, the poles of v all lie on the negative side of the path; and
this is the property corresponding to the statement of § 1, that all the
poles are to be inside the closed path. Accordingly the formula for u will

\ (c > 0), (39)

where v is obtained from (38) and from the boundary conditions.
It will be observed that the foregoing does not profess to give a com-

plete proof of (39): all that we have done is to establish an analogy be-

* The reason is, of course, that the boundary conditions really form part of the equations
of motion: and they must accordingly be put on the same footing as the other equations.
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tween (89) and the formulae which we have proved for discrete systems.
Anything approaching a complete proof for a continuous system would
necessarily be very long, on account of the great variety of geometrical
figures to be considered : and it would further require very careful hand-
ling as a matter of pure mathematics.

Fortunately, in the problems involving only one geometrical coordi-
nate, we can appeal to the results of a paper by Prof. A. C. Dixon ;* we
shall trace the connexion between his paper and the present method in § 8
below. His results justify the use of our method in almost all the
problems which are capable of easy solution : and I feel no doubt that, in
other problems, the final justification of our process will be found fairly
simple "when the solution v can be actually worked out.

We have spoken so far of the determination of u in terms of uQ and ut:
but it is easy to see that a similar modification of the method of § 2 will
enable us to deal with problems involving impressed forces. Thus, if the
given equation is ™ ^

! (40>

the auxiliary equation for v becomes

(/oX2+crX) v-Av = P/(X-/*). (41)

The form (41) corresponds to the case in which the initial disturbance is
zero, and the impressed force is applied at t = 0.

When the integral (39) has been determined, the expression of u by
means of a sum of residues will lead to the expansion of u in a series of
normal functions.

To illustrate the process, three examples are worked out below, taken
from various problems in the Theory of Sound.

Ex. 9.—A uniform string is plucked aside at its centre and let go from rest, with the ends
fixed.

If we choose the unit of velocity to be the velocity of transverse vibrations (u), the differ-
ential equation for u is ->.. -^,

1¥ ~ dx* = °"

Thus, from x = 0 to x = §Z, we have the auxiliary equation for v,

because u0 = kx, itj = 0; and the boundary conditions are

v = 0 at x = 0, dv = 0 at x = $Z.
ox

* These Proceedings, Ser. 2, Vol. 3, 1905, p. 83.
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It ia easily verified that the solution v (from x = 0 to x = |Z) is given by

_ kx _ k sinhXx

In order to obtain a series of normal functions for u, we note that \ = 0 is not a pole of v:
and that the poles are given by \l = (2n +1) vt, where n is an integer, positive or negative.
The corresponding residue of vext is

and so, on combining corresponding positive and negative terms, we find that

which is the formula derived by applying Fourier's theorem.*
For another method of treatment see below (§ 6, p. 429).
The problem of a string plucked at any point offers no fresh difficulty in calculation;

but the results are rather longer to state, because two formulae are needed for v, one for each
of the two parts into which the string is divided by the plucking.

Ex. 10.—A pipe, open at one end, and closed at the other, is suddenly brought to rest at
time t = 0, after having been for some time in motion, with uniform velocity ux parallel to
the length of the pipe.t

Let u denote the displacement along the length of the tube ; then taking the velocity of
sound as unity (as in Ex. 9), we have

subject to u = 0 at x = 0, du/dx = 0 at x = I. Thus the equation for v is

, , 1li / , COSh A (I — X))
because «0 = 0 ; and so v = -4-11— .v

 7 ' \.
. • x* I cosh Kl )

As in Ex. 9, A. = 0 is not a pole ; the poles are given by \l = ±(n + 3) m, or say \
if k = (tt + 5) W- The residue at the positive pole of vext is then found to be

Combining the positive and negative poles, and summing, we find the formula

u = *h 2 . 1 sin (kx) sin (kt).
I fc

To identify this with Lord Rayleigh's result for the velocity-potential <f>, we note that

dt ~ dx'

* Rayleigh, Tfieory of Sound, Vol. 1, § 127; to get the required formula, put b = 5J,
and 7 = kb.

t Ibid., Vol. 2, Art. 258.
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Ex. 11.—As an example of a slightly more difficult type, suppose that a uniform force P
per unit area is applied to the surface of a uniform circular membrane, which is initially un-
disturbed.

The differential equation for the displacement u is then*

where r is the distance from the centre. Thus the equation for v becomes

because v => 0 at »• = a. Here Io is the modified Bessel function, defined by

The residue of veu at A = 0 is thus

U° p (4c2 4c2)'

which represents the statical displacement produced by the application of the force P.
The other poles of v are given by the roots of Io (\a/c) = 0 ; these roots are all purely

imaginary, and we can write them in the form

where a>,, is the nth root of Jo (w) = 0.

The corresponding residue of veu is then

p(o.c/a)3 (o/c) J", (a.)

And so, combining the positive and negative poles, we find

Accordingly the complete displacement produced is

u - 5 {*(tf-^-* % J-°)¥rcos

p C * y or J\ (a>)
This result agrees with one given by Lord Rayleight for the associated problem of the mem-
brane held at rest in the statical position u = u0, and then released. Thus Lord Rayleigh's
formula will give the value of uo—u, in the present problem.

To identify the formulae, we note that in Lord Rayleigh's notation

ProO = fcmOC = uc/d

in the above formula. Thus kmOpll0pa = o?pcyar;

also we have Jo (a>) = — Ji (»),

and the identification becomes evident.

* Eayleigh, Theory of Sound, Vol. 1, Art. 200 : the vibration is clearly symmetrical about
the centre, and so is independent of 8.

t Ibid., Art. 204, (9)-(ll).i
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It may seem, at a casual glance, that the present solution i3 longer than Lord Rayleigh's
(who uses the method of normal coordinates): but to obtain a fair comparison of the two,
account must be taken of the preliminary analysis, carried out by Lord Bayleigh in Art. 203.
In the present solution, no such analysis is needed.

6. Alternative method for interpreting the formulce obtained as in § 5.
It is often possible to replace the expression for v (found by the method

of § 5) by a series of terms such as

where x is real and n is an integer.
The corresponding contribution to the value of the integral

1 f Kt^
~— I ve aX
2x* J

(f ,r\n
is then K f' (t > x),

n\
or 0 (t < x).

To prove the accuracy of these statements we need only notice that
when t > x (so that the index in the exponential is a 'positive multiple
of X), the path PAQ of the diagram on p. 411 can be completed by the
additional piece QBP, which then contributes zero. Thus the value of
the integral along PAQ is equal to the residue at X = 0, which may be
calculated in the usual way and gives the result just stated.

But, when t < x, we may add on the additional piece QCP ; and since
no pole of the integrand is contained within PAQCP, the result is zero.

When constructing the series to represent a given function, care must
be taken to remember that the real part of X is positive on the funda-
mental path PAQ ; and this enables us to settle questions of convergence
without trouble, as a rule. For example,

eK—e *

and this function can accordingly be expanded as

since | e~x | is less than unity.

In order to bring out the points of this method of interpretation, we
shall work out in some detail the solution of a known problem (Ex. 12) in
the theory of extensional vibrations of a thin rod. The problems already
treated in § 5 (Exs. 9, 10) will then be solved, more briefly, below ; it will
be noticed that in these cases, the results obtained by the present process



426 DR. T. J. I'A. BROMWICH [March 12,

are equivalent to those derived by the familiar process of superposing
positive and negative waves.*

Ex. 12;—Bar with one end fixed, struck at the other end by a particle
moving in the direction of the length of the bar A

IVithout loss of generality we may suppose the velocity of propagation
of extensional waves in the bar to be the unit of velocity; and the length
of the bar to be the unit of length: thus the unit of time is the interval
occupied by a wave in travelling along the bar.

Then if u denotes the displacement along the bar, and if y is the dis-
placement of the particle, the equations of motion Tvill reduce to I

and the end-conditions become

u = 0 at x = 0, u = y at x = 1.

The first steps in the solution are precisely similar to those adopted in Exs. 9-11 in § 5,
And need only brief indications. We assume the solutions

where v,-q are functions of x to be determined. The equations for v, tjare found to be

A V - ^ 2 = 0, A=n + fe(^) = - 7 ,
3x2 \dx/x.i

because the initial conditions are

« = 0, ^ = 0, and y = 0, | f = - V.
at ot

Then using the end conditions

v=0 at x = 0, v = r) at * = 1,

•we have v = y (sinh \x)/(sinh \),

which leads to the result (\2 + k\ coth A) tj = — V.

Thus the values of v, y are now completely known; and we proceed to obtain the interpreta-

• Bayleigh, Theory of Sound, Vol. 1, Art. 145 ; of coarse this simple process oannot easily
be extended to harder problems, such as Ex. 12.

f The problem was considered first by Bousainesq and Saint-Venant; see Love's Elasticity
(Art. 281, 2nd edition; Arts. 275-277, lBt edition).

J These equations follow at once from those given by Love, on -writing a = 1, 1 = 1; it
should be noticed that here fc denotes the ratio of the mass of the bar to the mass of the
particle, so that k = 1/m in Love's notation.
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tion of u by means of the method described above. For the sake of comparison with the
results given by Love, we shall write u in the form

2iri J sinh \ 2ir< j 2 sinh A

Thus we can express our solution by the equation

u=f{t-x)-f(t+x)t

1 f — rieK9dX 1 f Vex9dX
where

2X(X sinh X+k cosh X)'

In accordance with our general process we now proceed to expand the
integrand according to powers of e~K, using the identity*

2(XsinhX+&coshX) (X+k) — (X—k)e~'2K

X—k _2X (X—ky _4X

(x+i)
Thus our formula for f(0) takes the shape

Now, as explained in our general remarks on p. 425, it is only necessary
to retain the exponentials with positive indices : those with negative indices
simply contribute zero to the result.

It is therefore clear that

1 f Ve dXand that w = £ J * _ * <!<<,< 3).

Now, calculating the residues at X = 0 and X = — k, we see at once that

f{6) = (V/k) {l-e-k 9-1>} ( 1 < 6 < 3).

Similarly, when 3 < 6 < 5, we take

_ J _ f Ve^-^dX ( X-k 2
- ^ ) X{X+k) \1+X + k6

* Convergence is assured because the real part of A is positive, and so
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and here the residue for X = 0 is zero, and so, calculating the residue for
X = — k, we find

f(6) = -(F/A)«-*»-1>+(F/*) {l+2^«9—8)} e-w-v (3 < 6 < 5).

As a last example, suppose that 5 < 6 < 7, so that

= X f
e I
6 J '

Then, on calculating the residues for X = 0 and X = — k, we find the result

f(d) = (V/k) {i-e-*<«-i>} +(7/*) {l + 2&(0-3)| e"fc(fl-3>

-(V/k) {l+2k*(d-5)2\ e-
fc(fl-5) (5 < 0 < 7).

These three formulae will be seen to agree with those given by Love.*
It is sometimes of special interest, in problems of this type, to deter-

mine the displacement of one particular point: for instance, here we
might wish to find the value of y (the displacement of the particle).
When we have already found the forms of f(&), this displacement is given

y y =f(t-l)-

But supposing that f(6) has not been already worked out, we can find y
by expanding */ in the same way, and writing

_ _ FsinhX
X(X sinh \-\-k cosh X)

\+k (\+kfX(X+ifc) 1 \+k (\+kf '") '

From this series the values of y can be determined in exactly the way in
which we found the values oif(&) : but instead of writing out the results,,
we shall deal similarly with the problem of finding (Bujdx)x=it from which
the duration of the impact may be found.

It will be seen that

™t) = - L f
O»J x=l 27Tt J

* See the table on p. 414 of the second edition: the corresponding table in the first
edition is arranged a little differently, and gives the values of / ( I + 0). It should be remem-
bered that, in the units used here, a = 1, 1 = 1, and that k = 1/m.
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and so we write
. ,, . F cosh X

. — A>/COth A = Xsinh X-f-fccosh X

_ V f 2X 2 2X(X-fc)

We have now to write down the residues for X = — k, and it will be
found that

x=i

— k(t-2)\

{ * - 4 ) 2 [ erfc<'-4> (4 < * < 6).

The first and second of these results agree with those given by Love; the
third is not actually given by Love, but can be verified from results given
there.

Before leaving this problem it may be useful to remark that any of
the results can be expanded in terms of normal functions, if desired ;
suppose, for instance, that we want a series for y. The poles of n are
given by X = + iv, where v is a positive root of

v—k cot v = 0.

The residue of i/e*' at X = iv is then seen to be

and so we find that y = — 2F2 ... , 7—-—«—. ,y i/(l+A;cosec2 v)

where v—k cot v = 0.

This result may be confirmed by Lord Rayleigh's process.*

We pass now to a brief consideration of Exs. 9, 10 of § 5.
Ex. 9 (bis).—It was proved above that, when 0 ^ x ^ \l,

the convergence being assured because le~/x| < l s on account of the real part of A. being
positive.

In applying the formulae given above to find the residues of veM, it may be noticed that
each successive result is derived from the preceding by adding on an extra term—correspond-
ing to a new index of the exponential which becomes positive as t increases.

* Theory of Sowid, Vol. 1, Arts. 93, 94.
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Thus we find

(i) u = kx (0 < t < \l-x).

(ii) u = kx -k(t-$l + x) = k(hl-t) (%l-x<l< £Z + x).

(iii) u = k(%l — t) + k(t—|Z—x) = — kx (s^ + x < t < fZ—x).

(iv) u =-kx +k(t—fZ + x) = k(t — |Z) (|Z—x < t < |Z + x).

(v) u = &( i - |Z ) - f t ( f - |Z -x ) = fcc (|Z + x < t < |Z-x) ,

and so on.

These results are calculated for a given value of x, corresponding to different values of t:
but it is rather easier to appreciate the motion of the string by classifying the results accord-
ing to the values of x, for a given t. We then arrive at the formulae :—

(a) 0 < < < £ Z , u = kx, if x<\l-t,

u = k(gl—t), if x>-%l — t.

(b) %l<t<l, u=—kx, if x < t—\l,

(c) l<t<%l, u=—kx, if x < |Z — t,

n = —k(%l—t), if x > |Z—t.

(d) %l<t< 21, u = kx, if x < t-ll,

u = k (t—§Z), if x > t—§Z.

(e) 21 < t < §Z, M = fca;, if x < %l—t,

u = lc(%l — t), if x > §Z—£,

and so on ; where it must be borne in mind that 0 ̂  x ̂  ^l. It is not necessary to write
out the formulae which refer to the second half of the string ; for the shape of the string is
always symmetrical about its centre.

From these formulae it is easy to construct a diagram to shew the motion of the string :
the string in fact consists always of three straight pieces.*

Ex. 10 (bis).—We found that

- 5 l1-0-2^^?'} = 5 n-{«-«-"'-'}a-e--•«-«-...».
Proceeding, as before, we find for the displacements

(i) uxt (0<t<x).

(ii) uxt — Ui(t—x) = uxx (x < t < 21—x).

(iii) uxx —nx(t—2l + x) =ux(2l — t) (21—x <t< 2l + x).

(iv) ux(2l-t)+ux(t-2l-x) =-uxx (2Z + x < t < il-x).

(v) — uxx +ux(t—4Z + x) =ux (t — U) (&l—x < t < 4Z + »),

and so on.
These conclusions may be summed up as follows :—A wave-front may be regarded as

travelling to and fro, along the tube. The velocity of the air is zero in the part between the
fixed end and the wave-front; and in the part between the wave-front and the open end, the
velocity is ±ux. The latter changes sign when the wave-front is reflected at the open end.

* See Helmholtz's diagram for the plucked string: Rayleigh's Theory of Sound, Vol. 1,
Art. 146. In the special problem considered here, however, the central portion is always
parallel to the line joining the ends.
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7. Waves with an Advancing Wave-Front.

As another group of problems which can be readily solved by the
method of § 6, we may refer to those given by Prof. Love* on wave-
systems with an advancing wave-front. To illustrate the process we
shall work out the simplest case : some of the other problems are rather
more interesting, but the algebra involved is heavier.

We consider, then, the problem of waves communicated to air by a
sphere which vibrates radially under the action of some internal
mechanism. Let $ denote the radial displacement of the surface of the
sphere, and <f> the velocity-potential in the air, while 27r/w is the period
of oscillation of the sphere under the action of the mechanism alone.
Then the equations of motion aret

, at r = b, (42)

dt dr J

a2 a2

and ^ (rd>) = 5-3 (r0), if r > b, (48)>

where the velocity of sound is taken as unity, and <r is the surface-density
of the sphere, p the density of air, and b the mean radius of the
sphere.

In the problem considered the air is supposed initially undisturbed,
while the sphere may have both displacement and velocity initially, say
ft and iv

If we solve by writing

•I fc+ioo -I fc+tc

2xi Jc_ia)
 r 27Tt Jc_to

the previous methods lead to the equations, derived from (42), (48),

., at r = b, (44)-

and X2(n/r)-JJjtn/r) = O, r > b. (45)

• These Proceedings, Ser. 2, Vol. 2, 1904, p.
1 L.c, p. 94, equations (9) and (10).
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Since the real part of X is positive, and the last equation (45) is to hold
f̂or all values of r greater than b, we must take

n/r = Ae~kr.

Then, substituting in the previous equations, we find that

{(A2+rc2)(A&+l)+(/°M X26f A = &Wfir-Xfi). (46)

Hence the value of <p at any point is given by the integral

r<p - 2TH Jc_iro (

By what has been explained in § 6, the value of <j> is zero so long as
b-\-t < r ; and when b-\-t > r, the value is

itl<
where Xls X2, X3 are the roots of the denominator in (47). This result (48)
agrees with Prof. Love's formula (19) for the special case £0 = 0.

If we neglect the effect of the term in p/<r in the denominator of (47),
the roots are X = + in and 1/6. It is easy to calculate the residues, and
we obtain the formula

, ) [ ] . (49)

"The formula (49) agrees with that given on p. 97 of Prof. Love's paper,
except that in the latter the sign of <f> is left ambiguous. It is easy to
confirm the sign of (49) by observing that, when t = 0 and r = b, it leads
to the correct result d<f>ldr = £ ; moreover, in the special case £0 = 0,
(49) reduces to Prof. Love's formula (20).

As remarked by Sir Joseph Larmor (see Prof. Love's footnote on p. 97),
the exponential pulse in (49) disappears if

= 0. (60)

and can only disappear under this special condition. This conclusion can
be foreseen from the integral (47) for <f>: for the exponential term dis-
appears if (and only if) the factor X&+1 cancels out of the numerator
-and denominator in (47); which gives the same condition (50) again.
The harmonic wave is then given by

r <p = b*n£0 sin n {b+1—r),

agreeing with Prof. Love's formula (21a).
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It is now an easy matter to deal with the problem of the waves sent
out by the sphere when acted on by a periodic force for a definite time.
Prof. Love has given materials for the solution of this problem (I.e.,
pp. 98-100), but has not completed the details.

To obtain a definite result, suppose that the force applied is repre-
sented by <rF einpt, and acts for the half period t = 0 to t = ir/p. Then
(see Ex. 6, p. 413 above) we replace equations (44) by

at r = b. (51)

From (45) and (51) we deduce the formulae

where \(\*+n*)(kb+l)+(pl<r)\2b\ A, = - ^ s q ^ r (H-*"***). (52)

Hence the value of 0 is given by

, _ _ _ 1 _ fc+lc0 ^b+t-rm+e-Kw!p) pF\b2d\

from which the residues can be written down as before. It should be
noticed that (as remarked by Prof. Love) the waves of period 2-jr/p dis-
appear as soon as b+t— r exceeds ir/p; for then both exponentials in the
numerator of (53) must be used in forming the residues, and their contri-
bution at the points X = + ip will cancel each other.*

One further point may be noticed : since the numerator in (58) cannot
be made to vanish for a real value of X (other than X = 0), it follows that
the exponential pulse can never disappear; this, of course, is in contrast
to the special case represented by (50) above.

Ex. 13.—The corresponding problem for a rigid sphere set moving in a straight line has
been proposed by Prof. Love, and the solution was completed by Prof. Lamb.f

It may suffice to state the results obtained by the present method, supposing the initial
velocity of the sphere to be U. It will be found that the velocity potential is given by

<t> = | £ cos f,
or

* Because (1 + e-x»/>) is zero for these values of A.
f Love, I.e., pp. 100-102: Lamb, Hydrodynamics, 1906, p. 497.

SER. 2. VOL 15. NO. 1278. 2 F
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where y = i£*l

where 0 is the ratio of the mass of air displaced to the mass of the sphere.
It will be seen at a glance that this leads to a formula of the type given in Lamb's equa-

tion (22) : on taking £ = 0 and completing the calculation of the residues, it will be found that
we obtain Lamb's result (25), except for some small numerical discrepancies.*

8. Further Details of the Theory for One Type of Continuous Systems.

We confine the following to problems in which one geometrical coor-
dinate only is required to specify both the dependent and the independent
variables. We denote the dependent variable by u, and the independent
by x. We shall suppose the system to be a dynamical one specified by a
system of energy functions

and a dissipation function

where p, <r, p may be functions of x, but will be supposed to be essentially
positive. Thus the system will correspond to the type of symmetrical
systems considered in § 1.

With regard to the mechanism at the ends x = 0, x = I, the most
natural assumption is to include terms representing the ends in each of
the functions T, V, F. Thus, if the end-displacements are denoted by yQ,
y1 respectively, t we might include the terms

in 2T, 2F, and F, respectively. The first and third of these can, however,
be regarded as included in the corresponding integrals by supposing that
p and <T tend to infinity at the ends x = 0, x=l: and, to avoid com-
plicated statements in reference to the end-conditions, we shall make this
hypothesis in our general theory, instead of using the terms containing
m0, mv k0, &!• Of course we cannot use this device for the solution of

• It appears to me that these have arisen in the course of Lamb's work, as I have checked
the results obtained from the complex integral, by using the older method.

t Note that the symbols uQ, ux are used below to deuote the initial values of u and du/dt
<asin §5).
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practical problems ; instead, we should first write down the actual end-con-
ditions and then modify them according to our regular process; for an
illustration, see Ex. 12 in § 6 (in particular, the small type on p. 426).

Thus in future we shall adopt the specification

(54)

Forming the variational equation of motion in the usual way from
{54), we deduce the equation

{ ) 0 (55)

with the end-conditions Qoyo~\P-%~) — 0, (56)

Proceeding as in § 5, we obtain, as a conjectural solution of (55),

u = - L veKtd\, (58)
&7TI Jc-too

where* {p)^-\-a\)v— ~- \P o~) = (/oX+o")w0-f p^i, (59)

and v is to satisfy conditions of the same formt as (56), (57).
In practical work it is usually easiest to solve the equation (59) directly,

just as we have done in the various examples considered above : because
the functions selected for the initial values u0, ux are ordinarily of a
simple character. But in theory it is better to reduce the solution of (59)
to a quadrature. Suppose, then, that we consider the associated equation

0, (60)

* Here u0, «, denote the initial values of u and dufbt.
| When inertia and frictional terms occur in the end-conditions, care must be taken to

introduce the proper terms on the right in forming the equations for v.
2 F 2
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and let w = <f>(x) be a solution of (60) which satisfies the end-condition
corresponding to (56), while w = yjs{x) is a second solution satisfying the
end-condition corresponding to (57).

Then we can solve (59) by the method of " variation of parameters,"
assuming that

v = A<j>(x)+Brl,(x), (61)

where A, B are functions of x. If we assume further that*

0 = A'<p{x)+Br\(,(x), (62)

it is easy to see that (59) becomes

-p {A'<t>'(x)+B'yl,'(x)\ = (/>X+<r)tto+p«i. (63)

Now, since <j>(x), \fs(x) both satisfy the same equation (60), we have

p {<f>' (x) \{s (x)—\fr' (x) <p(x)\ = const. = A (A), (64)

say.t Using (62), (63) and (64), we now find

A' _ _B^ _ (/>A+O-)K.0+/OMI

—y\r{x) <f>{x) A (A)

"We have next to consider the effect of the end-conditions : aince~.<p(x) satis-
fies the condition at x = 0, which is also to be satisfied bylv, it follows+
that B must vanish at x = 0; and similarly A must vanish at x = I.
Thus, in consequence of (65), we can write

A =

and B =

Hence we can reduce v to the form

v = f {(p\+<r)uo(£)+pUi(£) !• G(x, &di, (66)
Jo

* Accents denote differentiation with regard to x.
f Since A occurs in both <p (x) and \p (x), it is clear that (64) is a function of A. The nota-

tion A (A.) is used because this function now plays a part corresponding to the determinant (11)
used in §§ 1 and 3 (for details see § 9).

J Note that v! = A<p' (x) + B<|/ (x), in consequence of (62).
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"where we have written

\ (67)

and 4 « f i ^ j

The function G{x, £) is equivalent to the function often called the
Green's function* of the equation (60); this function is continuous as x
varies from 0 to I, but its first differential coefficient has a discontinuity
at x = (-, given by

Further G (x, {•) is symmetrical in the two arguments x, £; and satisfies
equation (60) with the end-conditions analogous to (56), (57).

It may be worth while to call attention to the fact that equation (66) is
really analogous to equation (10) of § 1, which gives the solution of a set
of linear equations by means of a sum: here we get an integral as the
solution of a differential equation.

It may be convenient to mention some of the applications of the func-
tion G(x, g) which present themselves naturally in the present theory:—

1. If an impulse J is applied at the point x = £, the solution is
g i v e n b y v =

For then u0 is everywhere zero, and ux is zero except near x = £: further
we have the relation

\ pux d£ = the total momentum of the blow = / ;
Jo

and accordingly (66) gives the required result.

2. For a constant force P steadily maintained at the point x = £,

we may take v = P.G(x, £)/\.

This follows at once from the last result, using the method by which the
solution of § 2 is derived from that of § 1.

* Picard, TraiU d'Analyse, t. 3 ; Burkhardt, Bull. Soc. Math, de France, t. 22, 1894;
Hilbert, Integralgleichungen, 1912, pp. 40-42.
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3. For a force Pe^ applied at x = g, we take similarly

EXAMPLES.—It will perhaps tend to clear ideas if the forms taken by G(x, {) are stated in
a few simple cases (corresponding to a = 0, p = pa1).

1. A string with fixed ends (x = 0, x = I):

sinh (Ax/a)sinh {A (I — £;/a}

pa\ sinh (AZ/a)

2. A pipe with two open ends (a: = 0, x = I):

cosh(A2:/Q)cosh{A(l-{)/ffl}
' paA sinh (AZ/a)

3. A pipe with one end closed (s = 0) and one end open (x = I):

sinh (Ax/a) cosh {A (I—£)/a}
G (*.*) = paA cosh (AZ/a)

4. A string with both ends attached to springs (contributing potential energy but not
kinetic energy):

_ {M m M* x / a ) + X c o s h (A a ; / a )}[*i s i n h {MJ-|)M+Acosh{A(Z-f)/a}]
Or (x, £) — : )

paX. {(Mi + AJ) sinh (\l/a) + (0o + fl,) A cosh (AZ/a)}
where paQ0 = $„, pad, = 2i denote the strengths of the springs.

In each of these examples one only of the two forms for G (x, f) has been written out
(corresponding to 0 < x < £ < I). The other form is obtained by interchanging x and £.

5. To illustrate the application of these forms to physical cases, we might consider the
effect of an impulse J applied to a string with fixed ends.

We have here to use the first of the foregoing functions, and we multiply by J in accord-
ance with (1) of the previous page. Thus we take

_ j sinh(Aa;/a) sinh {A (I—£)/a}
paA sinh (AZ/a)

I t is obvious that A = 0 is not a pole of veu ; and that the poles correspond to

AZ/a = niri

where n is a positive or negative integer. The residue of veH is thus

sin
g i n i n

pa\ Ija lp I I nwai/l
Thus, on combining together the positive and negative terms, we obtain

— 2 sin — sin -""* sin (nratjl)^
lp I I nna/l

as in Rayleigh^s Theory of Sound, Vol. 1, Art. 129.

We have still to examine the question as to whether the solution
derived from (58) and (66) really does satisfy the prescribed initial condi-
tions. As we have already remarked, anything approaching a complete
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proof is out of the question here ;* but, by reference to some of the results
contained in Prof. A. C. Dixon's paper on expansions in series of oscil-
lating functions,! we can at least sketch some outlines of a proof.

In the first place it must be remembered that in calculating the initial
values of u and of du/dt from the integrals

u = 7T— I veKtdX, KT = 7;— 1 XvextdX,
2i7Tl J VI Z7TI J

we must (as explained on p. 412) regard the initial values as obtained by
making t tend to zero through positive values. We can accordingly (for
this purpose) replace our standard path by the limit of a closed path such
as PAQBP (in the figure, p. 411) : and so the initial values are given by

du I f . , .

each being evaluated for a closed path such as PAQBP, which afterwards
must be supposed to extend to infinity.

It will appear from the formulae to be obtained for v that these in-
tegrals remain convergent when taken round the arc PCQ ; I and so by
Cauchy's theorem (since v has no poles inside the space PGQAP), we can
regard the integrals (69) as taken round the path which is the limit of
the circular path PCQBP.

The advantage of this preliminary transformation of the path of in-
tegration lies in the fact that we can now restrict our discussion of v to
those values of X, for which | X \ is large. And, for such values of X, Prof.
Dixon has proved that (at least when cr = 0) the order of magnitude of
the functions can be estimated by treating p, p as having constant values
(averaged over their actual range of values).§ It is not very easy to quote
conveniently Prof. Dixon's actual estimates, on account of differences of

* To indicate the nature of the difficulties, it is perhaps enough to remark that the
simplest case of all (with p, p constant, and <r = 0) leads to Fourier's theorem.

t These Proceedings, Ser. 2, Vol. 3, 1905, p. 83.

$ It should be carefully noticed that this statement is not true as long as the factor ext

forms part of the integrand.

§ As will be seen from Prof. Dixon's work, the proof of the sufficiency of this estimate is
one of the chief difficulties of the discussion.
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notation:* but it is easy to apply the same principle to our pro-
blem. +

Now, if p, <r, p are constants, the two functions <p(x), \^{x) will satisfy
the differential equation

where M2 = (p\2+o-\)/p.

Thus, when I X | is large, we can express fi in the form

where a is positive ; and the functions <p{x), yfr{x) will be of the form

A cosh fix-\-B sinh fix,

the values of the coefficients depending on the end conditions of the
problem. A reference to the examples on p. 488 will show the various
forms of G{x, f) ; it is only necessary to replace Xx/a by fix, and so on.

Now when the real part of fi is large and positive (so that the same is
true of the real part of X), the most important term both in cosh fix and
in sinh fix will be

because x is positive. If we make this and corresponding substitutions in
the formulae of p. 438 for G(x, £), we readily see that the leading term in

* Prof. Dixon's value of A is equivalent to our —A" : and his differential equation is ex-
pressed in a more precise standard form than our (60), involving changes of both dependent
and independent variables.

f To indicate (as far as we can) the corresponding functions, the following table may be
useful:—

T. J. I'A. B.

+ (*>
O (x, t)

A. C. D .

60<t> + \ji, w i th 0O = 20/p0

fliX — °>> w i t h 0i = qi/pi

ft (x, {, A) (see p . 89),

with E = 000,, G = 6U H-6Q, K = 1, L = 0
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G(x, g) is given by*

frMi^-» 1

when the real part of m is positive, and 0 < x < £ < I

When the real part of u is negative, the sign of the exponential in the
last formula must be reversed ; and similarly when g < x. Now, differ-
entiating, and remembering the relation between fx and X, we see that the
leading term in dG/dg is

Hence our final estimate of the order of magnitude, when | X | is
large, is expressed by the equation

(70)

where A = K \ g—x \,

and K is the real part of X, taken with a positive sign.

Again, since G(x, g) is a solution of equation (60), it follows thatt

and if we take the integral between limits a, b, such that

0<a<x<6<Z,

we find /oX2+<rX G ^ = p - ^ + LP ^ 7

where we have made use of (68) in the form obtained by interchanging
x and g.

Now, referring to (70), it is clear that the terms given by g = at

* A little consideration will shew that this conclusion remains correct whatever combina-
tion of end-conditions is required.

t Since G(x, {) is symmetrical in the two variables, the parts played by x and ( may be
interchanged.
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i = b in the last equation must tend to zero exponentially as K tends
to infinity; we shall indicate this by writing the equation in the form

(p\2+<r\) Gdi=l + O (e"A), (71)'

where A denotes any positive multiple of K, such as K(X — a) or K(&—X).

Similarly we prove that

, F (P\2+<r\)Gdi = 0
Jb

(72).

We can now estimate the order of v as derived from (66): assuming
that the functions uo{£) and %(£) satisfy Dirichlet's conditions (as laid
down for Fourier's theorem), we can apply the second theorem of the
mean* (first dividing the range of integration at the point g = x). The
result is

v = ^(O) f (pX+er) Gd£+uo(x) (*
JO Jffl

r& a
+«o(a;) 0BX+<r)Gdf+«o(O

Jx J&

-+• similar terms arising from ux.

Applying (71) and (72), we deduce that

v = y f«o(*H-0(e-A)H-^- {^(^4-0(6-^ + 0 (y )} . (73)'

If we substitute from (73) in (69), and then integrate round a circle
whose radius afterwards tends to infinity, we now see that the initial
values of u and duldt are respectively equal to uQ(x) and u^x). This
justifies the claims made for the solution given by (58) and (66).

One further point should be mentioned in which this discussion is not
quite complete. The terms which have been written as 0(e~A) tend to
zero when K tends to infinity: but there are certain minor arcst of the circle
on which these terms need not tend to zero : these arcs are (comparatively
speaking) short, but their effect ought not to be overlooked. Prof. Dixon
{Lc, §§14-19) has shewn that in his problem the contributions of the minor
arcs tend to zero : and I anticipate that a similar proof could be made here,

* Strictly speaking the functions u0 and u, must be monotonic from x = 0 to x = I, to
allow the use of the second mean value theorem ; but under Dirichlet's conditions u0 and w,
can each be expressed as the difference of two monotonic functions. Accordingly the final
conclusion (73) will remain valid.

| In the figure of p. 411, these arcs surround the points P and Q.
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but I have not actually gone into the details of a general proof—although
in special examples the discussion of the minor arcs can always be carried
out by reasoning of a type which is of constant occurrence in elementary
work with complex integrals.*

9. Comparison of the Results obtained in § 8 with those of the Method
of Normal Functions.

In view of what has been proved already (in § 8) for the case of dis-
crete systems, it is natural to expect that the formulae of § 8 will again
lead to the same results as are found by the use of normal functions. It
will be instructive, however, to trace the corresponding steps in the
proof.

We begin then with the roots alt a2, a3, ... of the equation A(X) = 0,
where A(X) is defined by equation (64). For each such root we have
special values of the functions <f>, \Js : denote them in order by fa, fa, fa> •••
and fa, fa, fa6, . . . . Then, in virtue of equation (64), we have

fa/fa = const. = clf falfa = const. =?c2, &c. (74)

Accordingly the special functions fa, fa, fa, ... (or fa, fa, fa, ...)
satisfy equation (60) with X = alt 0%, a3, ..., and moreover satisfy both
the end-conditions (56) and (57). These functions are the normal func-
tions of the problem.

We shall now obtain the conjugate property of the normal functions.
In fact we have

d ( dfa\ Afa — ^- ( / > " ] } ) = 0,

a
and so (aj—<$ pfafa+i^ — a2)<rfa fa =

Now integrate from 0 to I, and we have

(«i — «2> pfafadx + (flx—a2) a-fafadx = \p (fa j£ —fa~x:) •
Jo Jo L \ c**' *-'•*'' -*o

f * S i l l iK f PK"

* Such as the deduction of dx from the complex integral dz; the minor
Jo •" J z

arcs here would be two arcs of the circle close to the real axis.
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In virtue of the fact that fa, fa satisfy both the conditions (56), (57), at
x = 0 and x = I, it follows that

both at x = 0 and at x = I. Using this fact, we see (after division by
aj—ct2) t h a t

n n
(04+02) \ pfa^<f>%ax~\~I (T^>i(f>^dx — 0, (75)

Jo Jo

•care being taken to include contributions from the terminal mechanism,

if any.
The equation (75) constitutes the conjugate property of normal func-

tions in the form most convenient for our present purpose; it can also
be transformed into the form

which corresponds to Heaviside's relation T12 = Ul2, given in § 8 above.
In the special case a- = 0, (75) reduces to Lord Rayleigh's form*

pfafadx = 0. (76)

The equation (76) also holds when or/p is constant: but care must be taken
to notice that the same constant must apply to the terminal mechanism
as to the main parts of the system. Various examples of the type
(75) will be found amongst Heaviside's earlier investigations on cables ;t a
simple example is given by supposing a constant resistance in the cable,
with an inductance coil at an end. Here p = 0 in general, and o- is
constant: but to get the correct result, the terminal inductance must be

allowed for, and thus the equation I fafadx = 0 is no longer correct.
Jo

Suppose next that alf a2 are conjugate complex roots of A (X) = 0 :
n ri

then I p fafadx and 1 a-fafadx are essentially positive; I and so (75)
Jo Jo

shews that 04+03 is negative. Thus the real part of any complex root
of A(X) = 0 is negative : this is a property which has been constantly

* Theory of Sound, Vol. 1, Arts. 93, 94.
t See, for instance, Electrical Papers, Vol. 1, pp. 71 (see p. 81); p. 123; p. 141, &c.
I Because p, a are positive, and <pu <j>2 are conjugate complexes.
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assumed in the foregoing work, and may, perhaps, be regarded as obvious.
Of course, lohen <r = 0, the real parts are all zero, a well-known result.

"We shall need one more general formula to complete our preliminary
work. We have denned <f>(x) by the equation (60),

along with the end-condition (56). Differentiate with regard to X, and
write ^ J

then we have (2/oX+<r)<f>+(p\2+<r\)w— y - (p ~pj = 0.

Thus, since y<- also satisfies (60), we have

or (2PX+o-UV^* = J ) U r v - » ^ . (77)

Now since <f> satisfies (56) for all values of X, the same condi-
tion will be satisfied by w; and for the special values X = av a2, ... this
condition is also satisfied by \fs. Accordingly we find that, for these

special values of X, yfs J^- —ot>^ = 0 at x = 0 ; and so (77) yields

Now we have, from (64),

and so, if we differentiate with respect to X, and then put X = ax, we get*

* Observe that since $ satisfies (57) for all values of A, the same is true of d^/d\ : and so-

dx d\ Yibx\dK I
when A. = oj and x = I.
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Combining (78) and (79), we have the result

01^1daj = A'(a i) ; (80)f
Jo

it will be noticed that equation (80) corresponds to equations (28) and (80)
•of §3 .

It is now easy to find formulae for the residues of v, as defined in § 8 ;
"in fact, from (66) and (67), we deduce that the residue of v corresponding
to A = a2 is «

where cx has the value given in (74). Now, substituting from (80), we
•obtain the residue of v, namely,

f

Thus, finally, the solution u corresponding to the given initial values can
be written in the form

J 2t

•where

Ax \ (2pa1+<r){^1(aj)(Vx = f \{pax+*) uo(x)+pUl(x)\ ^(ajjdte. (81)
Jo Jo

It is now to be proved that the solution (81) agrees with that
would be obtained by the method of normal functions. According to that
method we assume that the solution must take the form (81), and then
find the constants A from the two initial conditions

If we thus assume the possibility of expanding uo(x), u^ix), in terms of
normal functions, we can obtain the coefficients fairly quickly, as follows.
Multiply the first of equations (82) by (pctj+cr), and the second by />, and
Add : this gives

(83)

Now multiply (83) by <f>i{x) and integrate: then, in virtue of (75), all the
•coefficients A2, A3, Aif ... disappear from the equation : and so we obtain
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the formula

)(/>a1+(r)«o(aj)+/)M1(a;)[01(a;)(faj = ii1
Jo Jo

which is the same result as we obtained in (81) by the method of residues.
We have accordingly verified the conclusion that the method of normal

functions is equivalent to the method of §8, as regards results. But,
from the point of view of theory, the method of § 8 gives some indication
as to the necessary restrictions on the functions uo{x), ux(x), in order that
the results shall be correct; whereas the method of normal functions gives
no such indication. Moreover, as we have seen in some special examples,
it may be possible to obtain more precise information from the complex
integrals than is possible from the series of normal functions ; and the
problems solved in §§ 6 and 7 indicate that our general process is successful
in cases which have hitherto proved insoluble by the usual forms of the
method of normal functions.

[Added November 14th, 1916.

While the preceding pages were in the press, I have been reminded
that various authors have applied complex integrals, as a means for the
summation of series of normal functions: the'whole problem being re-
garded mainly from the point of view of Pure Mathematics. This method
goes back to Cauchy; * it was afterwards applied to series of more general
types of normal functions by Dini,t and Dini's work has been carried
further by W. B. Ford. I

In all these discussions, it will be seen tfrat the complex integrals are
developed from the other end of the problem. Thus, starting from a
series such as (81) above, a complex integral is devised which yields the
terms of the series as its residues; but the series is found first, and not
the integral. I believe that it will be found that the integrals so invented
are more complicated than those derived directly from the formulae (58),
(66), (67), and (69), of § 8 above.

When the functions uQ(x), ux(x) do not satisfy Dirichlet's conditions,

* (Emrres Computes, t. 7 (2 Ber.), p. 393 ; see also Picard, Traitt d'Analyse, t. 2,
pp. 167-183.

t Serie di Fourier, &c, §§ 61-64, 90-109.
X Studies on Divergent Series and Summability, New York, 1916, pp. 123-183. It was

through the study of this monograph that I was reminded of the earlier use of complex in-
tegrals as a means of summation.
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it is possihle (at least in certain special series) to establish the fact that
the corresponding series are summable (instead of convergent), provided
that the functions do satisfy certain less restrictive conditions; and Prof.
Ford has shewn (I.e., pp. 134-183) that his complex integrals can be used
for this purpose. It seems likely that a corresponding investigation
could be carried out, starting from the complex integrals of § 8 above;
but I have made no attempt to consider this problem—which is mainly
of interest from the side of Pure Mathematics, because Dirichlet's condi-
tions are satisfied by almost all functions which are used in Applied
Mathematics.—T. J. I'A. B.]


