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XXXI. The Attraction of Ellipsoidal Shells and of Solid
Ellipsoids at Eaxternal and Internal Points, with some
Historical Notes. By Axprew GRray, LL.D., F.R.S.,
Professor of Natural Plilosophy in the University of
Glasgow*.

1. I WROTE out the greater part of the following paper
while on a holiday this summer, and was not aware

until my return home that the method given below
(88 24, 28 to 30) for the determination of the potential
ot a homothetic ellipsoidal shell had been anticipated by
passage in Thomson and Tait’s ‘ Natural Phllosophy
(Part ii., §525). That also, I have since found, had been
antlclpated in § 24 of the beauliful memoir by Chasles,
“ Sur Pattraction d’une couche ellipsoidale,” in the Journal
de UEcole Polytechnique (t. xv., 1835). The investigation
contained in §§ 14 to 18 below is, however, quite distinct,
and I think new. It gives a complete Solution of the
problem of the shell and the ellipsoid, and leads naturally to
the other discussion already referred to, which differs in some
respects from the solution of Chasles. I have, moreover,
worked out in detail some particular problems. With all
due acknowledgment, therefore, I venture to allow my notes
to stand. I am aware of course of the recent discussions of
the problem, for various laws of density, by Ferrers, Dyson

* From the ‘ Proceedings of the Royal Philosophical Society of Glasgow,’
1906. Communicated by the Author.

Phil. Mag. S. 6. Vol. 13. No. 76. April 1907. 2 E
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and others ; but perhaps this solution of the older and simpler
problem may not be without interest.

2. No problem in the Theory of Attractions has received
more attention than that of the attraction of a solid ellipsoid
on an external particle. The subject engaged the attention
of Newton and Maclaurin*, who dealt with it by a combination
of the geometrical methods of which these mathematicians
had such a perfect mastery, and the results of Newton’s own
calculus of fluxions and fluents (differential and integral
calculus) ; and all the celebrated analysts of the end of the
eighteenth century and the beginning of the nineteenth,
Laplace, Lagrange, Ivory, (auss, Poisson, Chasles, wrote
memoirs on the subject which have become classical. To
find the attraction of the ellipsoid at an internal point had
been soon found to be a comparatively easy matter. The
process adopted was to take the altracted point as origin of
polar coordinates by which the positions of the particles of the
ellipsoid (supposed of uniform density) were specified, to
express the volume of an element of the attracting bodv by
these coordinates, and then the components of attraction
on the particle as triple integrals with respect to the radius-
vector and the two angular coordinates. As Poisson puts it
in the introduction to the very remarkable memoir + read to
the. Académie des Sciences on October 3, 1833 :—“ The
integration with reference to the radius-vector can be carried
out without any ditficulty, and in the case of an internal
point a second integration is easily effected, so that the three
components of attraction are expressed by single integrals,
reducible to elliptic integrals of the first and second kinds.
These integrals are obtainable in a finite form when the
ellipsoid is one of revolution. When, however, the attricted
particle lies outside the ellipsoid, the double integrals contain
a radical, and have limits which render them much more
complicated, so that, instead of carrying out the second
integration directly, we have to turn the difficulty by reducing
the problem for the external point to that for an internal
point, which leaves the problem of the direct integration
unsolved. For this reduction the theorem of Ivory leaves
nothing to be desired.”

3. Ivory’s theorem depends on his notion of corresponding
points on two ellipsoidal surfaces, the axes of which are
coincident. Let a, b, ¢ be the lengths of the semi-nxes of
one, say the smaller, ellipsoid, @, y, # the coordinates of a

* See Newton's Principia, Lib. 1., ss. xii. and xiii.,, and Maclaurin’s
¢ Treatise on Fluxions,” vol. ii.
t Mémoires de U Académie Royale des Sciences de I' Institut, t. xiii., 1835,
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point P on the surface, and similarly o', &', ¢/, &', y/, 2’ the
lengths of the semi-axes of the larger ellipsoid, and the co-
ordinates of a point Q upon it. If the coordinates fulfil
the relations afa=uz'la', y/b=y'/l/, zje=Z[c’, the points P,
Q ave corresponding points. It is easy to show that if
P, P’ be two points on the first ellipsoid, Q, Q" the corre-
sponding points on the other, and the ecllipsoids be confocal,
the distances PQ’, P'Q are equal.

Now considering attractions in the direction of the principal
axcs, and taking first the axes a, a/, it can be proved that the
attraction X of the first ellipsoid, A say, on a particle of unit
mass at Q on the surface of the other ellipsoid, B, is to the
attraction X’ of the ellipsoid B on a unit particle at the
corresponding point P on the surface of A, in the ratio be/b'¢’.
Similarly Y/Y'=ca/c'a’, Z/Z'=abfa’l’. The ellipsoids are
here supposed to be solid and of uniform density, p sayv, and
confocal. If we call the masses of the ellipsoids M, M, then
since M/M'=abefa'l’c’, we may express the theorem in the
form (not given by Ivory)

X_«M Y_WUM 4 _¢M

= v o woows W

When expressed in this form the theorem is evidently
true whether the two ellipsoids have the same density or not,
provided that each is homogeneous. For the components of
force on a unit particle evidently vary with the masses of
the ellipsoids, when their dimensions remain unchanged,
and therefore a change in the ratio M/M’, caused by varying
the density of either ellipsoid, is represented by a correspond-
ing change in each of the ratios X/X', Y/Y', Z/Z'.

In the particular case of M=M, the theorem takes the
form

X _« X _¥ o n_e .
X" YT 0 LT e Y

Tt was first pointed out by Poisson that Ivory’s theorem is
true for every law of attraction, provided the law is a function
of the distance only.

4. Let us now suppose that the problem of finding the
attraction of a homogencous ellipsoid at an internal point has
been solved, and that it is required to find the asttraction at
an external point, Q say. It is only necessary to find for
the corresponding point P on the surface of the given ellip-
soid the attraction exerted on a unit particle by the confocal

ellipsoid, the surface of which contains the point Q. The
2E2
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components are given by (1), and thus the so-called external
problem is reduced to the intcrnal problem of which the
solution is known.

5. The external problem was, however, solved directly by
Poisson in the memoir above referred to, by the device, whicls
he appears to have been the first to adopt, of imagining the
ellipsoid divided into infinitely thin similar and similarly
situated ellipsoidal shells, or “elliptic homeeoids ” as they
have been called by Thomson and Tait¥, then finding by
direct integration the attraction exerted by such a shell on
a unit particle at the given external point, and finally passing,
by another integration from shell to shell, to the attraction
exerted by the solid ellipsoid.

[The term homothetic ellipsoidal shell is used by many
writers for the “ couche elliptique ”” on which Poisson based
bis solution, and is perhaps less open than the term elliptic
homaeoid to objection on the ground of derivation ; but we
shall adopt the pame elliptic homeeoid, or simply homeeoid,
where there is no risk of ambiguity. Thomson and Tait also
give the name ¢ focaloid *” to a shell bounded by two confocal
ellipsoidal surfaces.]

6. On Ivory’s notion of corresponding points Chasles based
a very important and elegant theorem of the attraction of
confocal homoids, Imagine two elliptic homeeoids, A, B,
of infinitesimal thickness, and each of uniform (not necessarily
the same) density, the two outer surfaces and the two inner
surfaces of which are confocal. Let ¢, 6, ¢ be the lengths of
the semi-axes of A, and &/, ¥, ¢/ the same quantities for B.
Also let P and Q be corresponding points on the two shells.
The theorem of Chasles affirins that the potential ut the point
Q due to the homeeoid A is to the potential at P due to the
homeeoid B, as the mass of A is to the mass of B.

For let ds be an element of A and ds’ the corresponding
element of B, and p, p’ the length of the perpendiculars from
the centre on the tangent plane at the clements. It is easy
to prove that

plds’ _a'b'e

WS—_ abe - T 7 (:'))

The masses of corresponding clements of tiie shell are Spds.
B'p'ds’, where B8, B’ are constants depending on the density and
scale of thickness in the two cases. The total magses are 47mBabe,
4mBu'l¢' respectively. Hence it follows that the masses of
corresponding elements are in the ratio of the total masses in
the two cases. [See § 13 below for the value of 8, 8'.]

* Nat. Phil. Part IL. § 404 g,
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Now, if » be the distance of @ from any element of the
shell A, it is also the distance of P from the corresponding
element of B. If B, 8’ be constant multipliers, as already
explained, the potential at Q due to the matter at ds is
Bpdsjr, and the potential at P due to the matter at ds'is
Bplds'/r*. The former bears to the latter the ratio 8abe/B'a't/d.
Since this is true of every element the total potentials have
the ratio just stated, that is the ratio of the masses of the
shells,

It follows from this theorem that if the potential at an
internal point is known for a thin elliptic homaoid, the
potential at an external point can be found, and vice versa, by
considering a confocal shell.

7. These results are true whatever the law of attraction
may be, if only it is a function of the distance, as may be seen
by substituting /(») for 1/» in the expression for the potential
of an element. In the case of ordinary matter the law of
attraction is that of the inverse square of the distance, and
the potential determined is commonly called the Newtonian
potential.

It is well known (and it will be referred Lo again presently)
that the Newtonian potential of a homeeoid is the same at
every internal point, and therefore also at every point of the
shell, since the potential is not discontinuous at points within
attracting matter of finite volume density, or even at passage
across a surface of finite density. Thus in order to find the
potential at an external point P, due to a given elliptic
homeeoid, it is only necessary to imagine a confocal homceoid
of equal mass constructed so as to have P on its surface, and
find the uniform potential which it produces at every internal
point. This is the potential required.

8. It follows from this result that the external confocal
ellipsoidal surfaces are the equipotential surfaces of a uniform
homeeoid, and that such a shell is itself at uniform potential.

* We take here as the specification of the potential

. dm
V= 21_'

where 7 is the distance of the point for which the potential is defined
from an element dm of the attracting matter, and 3 denotes summation
for all elements. Here the unit of mass is that which concentrated at
unit distance from an equal mass, also concentrated at a point, is attracted
with unit force. When the ordinary unit of mass, the gramme, say, is
used, the right-hand side of the equation for V must be multiplied by the
value of the force of attraction which exists between two such units
placed at unit distance, a centimetre, say, apart. This multiplier is
called the “ gravitation constant.” Ttis generally omitted (that is taken
as unity) in what follows: where it is inserted if is denoted by «.
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The resultant attraction due to such a shell exerted on a
particle at an external point is along the normal through the
point to the confocal surface on which the point lies.

Tt can be seen at once without analysis that an elliptic
homeeoid exerts no force al any point in the internal hollow,
that is, that the potential has there a uniform value. For
the shell may be imagined constructed by homogeneously
straining a uniform thin spherical shell, within which, of
course, the potential is uniform. Such strain is that which
elongates all parallel dimensions of the shell in the same ratio,
and therefore leaves it of uniform density, though of varying
thickness, proportional to the length of the perpendicular
from the centre on the tangent plune at each point. 1t then
a cone of.small solid angle be drawn with its vertex at any
point in the hollow of the spherical shell, so as to intercept
two clements of the surface, these two elements exert equal
and opposite forces on a particle at the vertex, By the strain
the masses of these two elements are not altered, nor the ratio
of their distances from the vertex of the new cone into
which the former one is changed. The elements, therefore,
still exert equal and opposite forces on a particle at the vertex.
Hence, as cones can be thus drawn so as to exhaunst the shell
by pairs of elements, the shell as a whole exeris no force at
the common vertex.

9. The same idea of division of a solid ellipsoid into
homeeoids had, however, occurred to 0. Rodrigues, and been
used by him in a “ Mémoire sur Pattraction des Sphéroides,”
published in the Correspondance sur PEcole Polytechnique
(. iii., 1816). The method adopted for the solution of the
problem of the attraction of a solid ellipsoid seems to have
Leen suggested by a previous paper by Gauss, and consists
in finding the variation, §W, say, in the ratio of the
potential of the ellipsoid at the given point, 4, £, I, say, to
the mass of the solid, when the squares of the semi-axes
a?, 1%, ¢ ave altered by the same small amount, 8¢, say, that is
by the passage from the given cllipsoid to an adjacent confocal
ellipsoid. It is shown that for an external point §W=0,
and for an internal point

3dp (0 KL )

W=gmdlaterta—l

()
From these results Rodrigues deduced the attraction of
the ellipsoid at the given point. It is easy to find from them
an expression for the potential. (See § 18 below.)
The determination of 8W depends on the evaluation of a
certain integral taken throughout the volume of the ellipsoid
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in which the element of volume is expressed in ordinary polar
coordinates. The integral is transformed by considering a
homotbhetic shell within the ellipsoid, and taking as the element
of volume that intercepted between the two surfaces at an
element ds of one of them. Then the integration is effected
for the whole shell to which ds belongs, and then carried from
shell to shell for the whole ellipsoid.

It is to be noticed that Rodrigues did not determine the
attraction or the potential due to a single homothetic shell,
but merely imagined the solid ellipsoid divided into such shells
in his process of integration.

10. In the volume of the Mémoires de UlInstitut (t. xv.,
1835) already referred to and immediately preceding the
memoir cited, is a “ Mémoire sur Uattraction des Ellipsoides,”
also by Chasles, in which the mode of division into homothetic
shells is used, and is attributed to Poisson. There can be no
doubt that Poisson was the first to calculate explicitly the
attraction of such a shell at an external point, and to apply
it to the problem of the solid ellipsoid ; but it is equally clear
that the 1dea of this mode of division is of earlier date. Over
this point arose in 1837 a curious reclamation. Another
memoir by Chasles, in which the same method was used, was
referred by the Académie des Sciences to Libri and Poinsot.
The latter reported without mentioning Poisson’s memoir of
1835, and thereupon Poisson in the Compies Rendus (t, vi.,
Pp. 83 -840) called attention to this mode of decomposition
of a solid ellipsoid, and affirmed that it offered the only means
of reducing the double integrals of the problem to single
integrals. ~ Poinsot rejoined re-affirming the priority of
Rodrigues in this matter, and the discussion was closed by
some further remarks by Poisson, and a second rejoinder from
Poinsot. These are to be found at the beginning of the next
volume of the Comptes Rendus : a fairly full account of the
controversy is given also by Todhunter in his ¢ History.’

11. In Poisson’s memoir of 1835 it is proved that the
resultant attraction of an elliptic homoeoid at an external
point f, g, h, is directed along the internal axis of the cone
drawn from the external point as vertex to touch the homeoid.
This is a very remarkable theorem, and attracted very con-
siderable attention. For that axis of the cone is the normal
to the confocal ellipsoidal surface through 7, ¢, £; and the
theorem at once gives the family of external confocal ellip-
soidal surfaces as the equipotential surfaces of the homeeoid.
The importance of these surfaces was not perceived until later,
when the researches of Green, (Gtauss, Chasles, and others
had become known, and had led to new methods of treating
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problems of attraction—methods which had become essential
for the progress of the theory of eleciricity.

Poisson resolved the force due to each element of the
homeeoid along the axis of the cone, and by expressing the
component in terms of polar coordinates referred tof, g, A
as origin, was able to obtain the resultant force in an integrable
form. His process is onme of direct integration of the
expressions obtained, and involves some troublesome con-
siderations as to the limits of the integration with respect to
0, the angle between the axis of the cone and the line drawn
to the element considered, and therefore runs to considerable
Iength.

12. A very different process of calculating this integral is
followed by Chasles in his memoir already cited, © Sur attrac-
tion d’une couche ellipsoidale.” There the theorem of Lamé
(given for the steady motion of heat in a uniform solid),
that Laplace’s differential equation of the potential is
integrable when the equipotential surfaces are known, is
employed for the family of equipotential surfaces revealed
by Poisson’s theorem, and the attraction is reduced to the
evaluation of a constant left undetermined by the integration
of the specialized form of the differential equation for thig
case. This is effected by considering the particular case of
the attracted point on the surface, evaluating the integral for
this case, and comparing with the expression obtained from
the integration of the differential equation.

13. Ishallnow show how the integral for the resultant force
atf, g, h, expressed in terms of the element ds, its coordinates
&, y, 2, the perpendicular p from the centre on the tangent
plane at ds, the distance » from the point f, ¢, & to ds, and
the angle 8 between this line and the axis of the cone, can,
by means of a simple geometrical theorem of confocal surfaces,
which I have not before seen remarked, be transformed to an
immediately integrable form, so that the whole calculation
can be set forth very briefly.

In order that the result may be at once applicable to the
calculation of the potential of a solid ellipsoid, I take as the
equation of the outer surface

a? oyt 2
a® b ¢t

or in the usual abridged notation

2

| &

D N ),

P4

I~y
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where £ is less than 1. The equation of the inner sarface is

SC=k—dk, . . . . . . {6

a

as k must diminish from the value unity, for the surface
which has the equation

to zero when the axes are of infinitesimal length. Further,
I shall take as the equation of the confocal surface

oAy S ()

The thickness of the homoeeoid at the point A, of co-
ordinates @, y, z, on its outer surface is }pdk/k, and the
mass of an element of area ds at the same point of the shell is
Lppdsdk/k, where p is the length of the perpendicular from the
centre on the tangent plane at @, y. 2, and p is the volume
density of the matter of the shell. For the thickness of the
shell is clearly 3 (adz/a?)/\/3(2%a*), that is p2(wda/a?)/k,
and by differentiation of (5) this is at once seen to be
1pdk/k. Thus Lpdk/k is the constant B of § 6 above, and
similarly 8’ is found.

14. I'shall now establish the geometrical lemma referred to
in § 13 above, on which will be based a proof of Poisson’s
theorem that the resultant force exerted by the homeeoid on a
unit particle at the external point P of coordinates f, g, &
acts along the normal to the confocal through P: then I
shall give a very simple and direct calculation of the amount
of this resultant force, and finally obtain the potential of the
homeeoid, and of a solid ellipsoid, at any external point.

Let the enveloping cone be drawn from P as vertex to the
external surface (5) of the homwwoid. The points of contact
lie in the polar plane of P ; and the internal axis of the
cone, the normal at P to the confocal, meets this plane in a

oint Q. Now let a line drawn from P at any angle 8, to
PQ meet the homeeoid in the two points A, B (see fig. 1).
Consider for the present only one of these, A, and let @, y, 2
be its coordinates, and r denote its distance from P. P is on
the confocal represented by (7) : let P, (coordinates f1, g15 k1)
be the corresponding point on the surface (5) of the homeeoid,
and A’ (coordinates 2’, 3/, 2’) be the point on the confocal
corresponding to A. The distance of A’ from P, is also » by
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the property of pan‘s of corresponduw pomts Alsofl, g
'—/a/a, ghjV', he)d and &, ', & =wd'ja, y' /b, 2¢/c, where

a, b, =" +u, Mt us NE+u.
Fig. 1.

Now let pg, o/, be the lengths of the perpendicular from the
centre on the tangent plane at P, and the tangent plane at A’
respectively, and €' denote the angle between the latter per-
pendicular drawn outwards and the line PiA’. The lemma
to be established is expressed by the equation

' cos By=pycos .

In order to express cos 8, we have the direction cosines of
QP and AP. These are {f/(a®+u), g/(b*+u), h/(¢* +u)}p [k
and (f—z, g—y, h—2)/r. Hence

f—a __&(J__ »ﬁn
cos Gy=22 02(a+u , )—Tk k EEF—2+”>,. (8)

or as we may write it

Do s S '
coseo——m(/ Zag_i_u) e . (8)
Similarly we obtain

cos@’:?"(k—?‘f]'” ) N €)

i » a4

so that

pleosp=pocost, . . . . . (10)
which was to be proved. A similar relation of courso holds
also for the points P;, A on the homeeoid.
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This theorem, it is to be remarked, is not confined to con-
focal ellipsoidal surfaces.

15. Now, imagine drawn from P as vertex a cone of small
solid angle dew, intercepting two clements of the homeeoid at
A and B: let ds be the area of that at A, The length of the
perpendicular from the centre on the tangent plane at A
being p, the mass of the element is podkds/k ; and if ds’ be
the element at A’ of the sarface of the confocal corresponding
to ds, that is, containing the points corresponding to those
contained in ds, we know that

ahe
Ao (@@ ) (674 ) (P )

The: attraction at right angles to the axis PQ exerted by
the element on a unit particle at P is when «#=1 (see foot-
note § 6)

pds. .. (11)

pds=

dk pds .
Lp T/)T'*m A,
which by (11) and (10) may be written
< A S
dk abe COS 6 ds tan 6,

R128 .
- k \/ (@) +u)(F 4wy T
In this the only factor which varies from element to element is

cos @' dy’
—— tan .

Now cos ' ds'[r? is the solid angle dw subtended at P; by the
element ds' at A’.  We can exhaust the whole of the homeeoid
by means of elements intercepted by small cones drawn from
P as vertex ; and to this corresponds precisely an exhaustion
of the confocal by small cones radiating from the internal
point Py as vertex. And clearly for every elemeuntary cone
of solid angle dw, there exists another in the same plane
through PQ, for which the factor just referred to has the
same value with opposite sign. Hence in no plane through PQ
is there any force perpendicular to PQ on a unit particle at
P; that is the resultant is along PQ. This is” Poisson’s
theorem.

16. The total force F along PQ (in the direction from P to

is given by
Wisg ) . dk ( cosO,ds

1‘==%_;pT P s - e .. (12)

I

in which the expression to be integrated over the homeeoid is
the component of attraction along PQ due to the single
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element ds. If now we use the transformation already
employed above, that is, express the coordinates of A and P
in terms of the coordinates of their corresponding points A’
and Py, A" on the confocal, P; on the given shell, and sub-
stitute for ds its proper value in terms of the area ds’ of the
corresponding element on the confocal as given by (11), and
use the theorem (10), the transformed equation is

dk abe cos @' |,
— s

L ’\/’((l"'—i-?l») (02+'11)(cz+,,)130 72

in which the integral is now taken over the confocal. The
only variable factor is mow ds’cos 8'/72, and it is well known
that for the complete confocal shell

ds' cos @'
——— =47

72

F=1ip (13)

since the point P, is within it. Hence, if 'V be the potential
at P, (13) becomes

AV N dk abe

Fe=— =2mp-,

e - (14)
\/(u'~'+u)|\l/'-’+u)(c2+1!)[U ()

where dn is an infinitesimal step outward along the normal at
P to the confocal. But by the equation of the confocal [see
also § 29]

dn

dn= %/L du
Po

and (14) becomes
dkdu

N (@ +u) (Frw) (F+u)

The potential V of the homeoid at P, and at any other
point of the confocal surface, is thus given by
du

‘T= T [) Y Z/C )
Tpanee J‘)\, V)P4 w)(E ey’ (16)

where u is now supposed to vary in value as we go from con-
focal to confocal outward from P in the integration : the
confocal from which the integration starts is that on which P
Hes, and A is the positive root of (7) regarded as a cubic
in u. The value of the expression on the rightis —V _ +V;
and as V=0, we have (16).

17. We may proceed in precisely the same way when P
is within the homeeoid. A confocal ellipsoidal surface of

—dV =mpabe

(15)

o
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equation

T _r LD

3 =
@ —u
is described through P and the corresponding point P; on the
shell is taken as before. P is joined to the point A on the
shell and P, to the corresponding point A’ on the confocal.
The angle 6, is as before between AP and the normal at P,
and ¢’ between P A’ and the normal at A’; also AP=A'P,=7r.
If py, p’ be the lengths of the perpendiculars from the centre
on the tangent planes at P and A’, we have as before

' cos @y=p,cos 6.
Precisely as in the former case we get for the attraction on a
unit particle at P

Ik abe cos &'
b‘ =.L, i— — > o . 1 O
% N (@ =) (0 —w) (¢ —u) Poj r? ds’y . (18)

where the integral is to be taken over the confocal. The
integral is the total solid angle at P, subtended by the con-
focal, and as P, is outside that surface, the solid angle is
zero. Hence the force is zero at every point within the
shell, and the potential is there uniform. Thus the problem
of the attraction of a homeoid is completely solved.

We have, in the result stated in (13), the curious theorem
that the value of I at P is, to a constant factor, equal to the
potential produced, at any point internal to itself, by a
uniform magnetic shell coinciding with the confocal surface.
The strength of this shell is proportional to the length of the
perpendicular from the centre on the tangent plane to the
confocal at the point P, and therefore varies with the position
of P on the surface, as does the length of that perpendicular.

A similar theorem holds for a distribution wpon any surface
whatever, which maintains that surface at uniform potential.
The potential which that distribution produces at an external
point P is equal to the potential which a magnetic shell,
coinciding with the equipotential surface through P for the
same distribution, produces at any point internal to itself.
The strength of the shell varies with the position of P, and
is inversely proportional to the distance, dn, of P measured
along the normal to a chosen neighbouring equipotential
surface.  This expresses, in fact, the relation (32) below,
namely,

This shows that o is inversely proportional to dn for a constant

dV. [See § 27.]
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18. For a solid homogeneous ellipsoid, which has

s2 9

a?

for the equation of its surtace, (15) becomes

T dudl:
\7=77pLL//c ; 2 : |
VA LSl V(@) (6 Fu) (et 4 1)

where A [the positive root of the equation in «

(19)

2

A
it
is the lower limit of the integration with respect to u, and
f(®) is the value of % that fulfils equation (7) for any one
particular value that » may have in the range of integration.
This value of & is given by

Thus

o f?
” ( 1-2 2+ >du
Y :Wp(t/»cfj @ Tu .
a A ()P u) ()

There is no difficulty in the application of this method of
integration by shells to the formal determination of the
potential of solid ellipsoids or of thick shells of varying density,
if each homeeoidal film is of uniform density throughout. If
the density p vary from shell to shell then for the ellipsoid

by (16)

(20)

.
® du

n -
a A () (B2 ) (e w)
where A’ is again the positive root of (7) for any given value

of k. But
S?

__Is_ S
dk=— 12(a2+u')‘~’ | du

and when k=0, u=o0 ; likewise when A=1 u=}, where A
is the positive root of

1
V=mube s‘ pdk
20

s /2

4w
regarded as a cubic in v. Therefore
* di

_ m‘v_fg___llf 20°
V—wctfi«j\ P]A“’(az—i-u)gj ‘ uv,u V(@ )0+ ) (P 4u) =0
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19. The result stated in (20) seems to have been first
dM

given by Plana in a ¢ Note sur I'intégrale - =V ?” which

appeared in Crelle’s Journal, vol. xx. (1840). It was given
also by Lejeune Dirichlet in the same journal in 1846,  His
process of demonstration is, however, indirect. The result
in (20) is first assumed, and then verified by showing that
this value of 'V satisfies Lapluce’s differential equation of the
potential

BV VLV 0

ax,'l B'//l :‘3 *
at every point external to the ellipsoid, and that V vanishes
at infinity. This latter fact is hinportant. It is fairly obvious
for both the homoeoid and the solid ellipsoid.  The integral
(16) for the homeeoid, for example, may be compared with
the greater integral obtained by putting for each of a?, %, ¢?
the value of the smallest. This integral is then evaluated,
and it is seen that it vanishes at infintty ; o fortiori so does
the integral for the homemoid.

20. If the point f, g, I be on the surface of the ellipsoid
the value of A is zero in (16) and (20). In the former case
the modified equation gives the potential at every internal
point for the homoeoid ; 1n the lutter case

. (1—2 f? )du

a*+u .
vEmel) oo ere o

for a surface point on the solid ellipsoid. The case of an
internal point requires examination in the latter case.

It is easy to show that equation (22) is applicable without
change of form to the case in which the point f, ¢, A lies
within the surface of the solid ellipsoid. For let the point be
on the homaoidal surface given by

(21)

[ :
2&;—;0.......(23)

then the potential is made up of two parts, V, due to the
ellipsoid internal to the surface (23), and V, due to the
homeeoid of finite thickness external to the point. By (22)

© ( 1— 2 _ZL—) du
V.= wpabcﬂ»%j Lrts
' o/ (@ptu) B+ u) (Fu+u)

2
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which, if we write ' for «/u and substitute, becomes (accents
omitted)

, . '/12
o p—23 —)du

Vlzwpalfcj ( ¢ +“/> .. (29

o \/(((2+’I,l)(])2--}— (e +u)

Again, as may easily be verified,

v i f l/r du

=apabe| dk

=P “ 0 \/((.L2+ Wy (B u) (e 4 u)
=mpabe(l—p) clu . (25)

o AV ([@F )Pt (Eta)
Hence
2\,
w© (1 —2 622 +¥’ZL) dw ,
Y CED G
The value of V given by (20) and (26) was verified by

Dirichlet by showing that it satisfies Poisson’s differential
equation

V=V, +Vy,=mpabe

BV VTV ‘
Y + o0 + Ey A dmp . . . . (27)
within the attracting matter, and Laplace’s equaticn elsewhere,

ives continuous values of the force-componcats —dV/dz,
—dV|dy, —dV|dz at the surface, and vanicues for u=co.
Thus (20) and (26) give the solution of the differential
equation of the potential for the given distribution of matter,
and the known family of equipotential surfaces possessed by
cach homoeoidal part. As has already been remarked, it was
shown by Lamé that the differential equation could be inte-
grated in these circumstances. It would, however, be outside
the scope of. the present paper to enter into a discussion of
the process. Suftice it to say that any solution which fulfils
the conditions indicated above can be proved to be the only
one.

21. The lemma stated in § 14 above enables the whole
problem of the ellipsoid to be disposed of very simply ; but,
so far as merely proving Poisson’s theorem of the direction
of the attracticn of a thin homeeoid is concerned, nothing more
elegant bas ever been invented than the demonstration
published in Crelle’s Journal (Bd. 12, 1834) by Steiner,
immediately after the theorem was announced by Poisson in
the memoir of 1833, to which reference has already been made.
Steiner’s construction is shown in the adjoining diagram.
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P is the external point and PQ is the normal to the confocal
through P to the homoeoid of which a section through PQ is
given in fig. 2. A, Bare two of the points in which the
-enveloping’cone touches the homeeoid, and therefore the line

Fig. 2.

PEanp AB
MEET N R

AB is the polar of P with respect to the elliptic section made by
the plane BPA.  The line PQ meets the curve in G and pro-
duced again meets it in F. &, F are points in which the line
PQ, starting from P and ending in F, is divided harmonically.
Similarly, it PE be drawn at right angles to PG and meet
AQB produced in R, the line RQ is also harmonically divided
in B and A. It follows that if EQ meet the curve in C
and D, IiQ is divided harmonically in (! and D. Thus PQ
not only bisects the angle APB, but also the angle CPD.
Hence DQ/QC=PD/PC.

Now let a cone of small vertical angle be drawn from Q as
vertex with its axis along CD. It will intercept two elements
of the homoesid at C and D, the masses of which are directly
as the squares of their distances from Q, while their
attractions, per unit of their mass in each case, are inversely
as the squares of these distances. Hence the total attractions
on a unit particle at Q are equal and opposite. But it has
been seen that PD/PC=DQ/QC ; hence the attractions of
the same pair of elements on a particle at P must be of equal
amount, and being along PD and PC are equally inclined to
PQ, and have therefore a resultant along that line. The
same thing is true for any other pair of elements intercepted
by a cone with vertex at Q, and the whole homeoid may be
exhausted by pairs of elements in this way. Any plane through
PQ thus divides the homeeoid into two portions which exert
attractions at P equal in amount and equally inclined to PQ.

Phil. Mag. 8. 6. Vol. 13. No. 76. April 1907. 2 F
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22. Returning now to the results expressed by equations
(16), (20), with lower limit A or 0, as the case may be, it is
obvious that we can change the lower limit of the integral.
Thus, taking (16) we write

v+ N =u N

where A/, is positive as well as \.  Then when u is equal to N,
u' is equal to A}, and the equation becomes

du’

(@ +u YO+ uH(E+u)’ ” (28)

V =mpabedk ‘ "
(v )‘(1

which is of the same form as (16) and the accents on the w’s
may be omitted. This proves that two confocal homaeoids of
equal mass produce the same potential at any point P external
to both, that is, that their external fields are identical. If
the masses are different, the potentials (and therefore also the
field-intensities) at the different points are proportional to
the masses.

This of course is a particular case of the very general
theorem of the potentials of distributions which was given by
George Green, of Nottingham, in his celebrated * Essay on
the Application of Mathematical Analysis to the Theories of
Electricity and Magnetism,” published by subscription at
Nottingham in 1828.

The substitution used above is also applicable to (20), and
proves that any two confocal solid ellipsoids of equal mass pro-
duce the same potential at every point external to both.  If the
masses are different in the two ellipsoids, the potentials at the
same external point are proportional to the masses. This is
what is usually called Maclaurin’s* theorem; but it was
only given in its full generality by Laplace many years after
Maclaurin’s death. It is stated in Maclaurin’s ¢Treatise of
Fluxions’ (Edinburgh, 1742), § 653, that the attractions of
two confocal ellipsoids are the same at all external points
which are on the prolongation of the axes. This was a very
remarkable result for the time, and though the theorem was
only fully generalised by Laplace in his book entitled ‘ Théorie
du Mouvement et de la Figure Elliptique des Planétes’

* (Colin Maclaurin, 1698-1746, Professor of Mathematics in the Uni-
versity of Edinburgh, appointed as assistant and (apparently) successor
to James Gregory in 1725. There being a difficulty, through want of
funds, in making this arrangement, Newton offered to pay £20 a year if
Maclaurin were appointed. Thus Maclawrin was appointed, Newtono
suadente, as stated in the inscription on his monument.
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(Paris, 1784)*, there is some justification for continuing, as
has been very generally done, to associate it, even in ifs
extended form, with the name of Maclaurin.

23. From (14) in § 16 above we obtain the components of
attraction at the point P. The cosine of the angle which the
normal at P to the confocal makes with the semi-axis, of
which the length is a, is pyff(a?+u)k. [See (7) §13.]
Hence for the component X of force in the direction of
increasing on a unit particle at P (14) gives
X:—QWPZ—ZC Vo ‘af)%f e P

V(@ u) (P u) ()
Y and Z are obtained by substituting g/(0? + w), h/(¢*+w) for
/(¢ +w) in this equation, The same results are deducible
from (16) by differentiating with respect to v, and multiplying
the result by the value of du/df drawn from the equation

(29)

2 _.7”2 _]C

4w

of the confocal.
In the same way (20) gives

. ” du
X= —prabcfy)\ V(@ + )PP Fu) (@ +u) (30)

and similar expressions for Y, Z, which may be written down
by symmetry. In the case of A=0, the factors which
multiply f, ¢, b in these expressions for X, Y, Z are inde-
pendent of the values of these coordinates. Hence for an
internal point 7, ¢, & of a solid ellipsoid

X=Af, Y=Bg, Z=Ch . . . . (31)

where A, B, C are constants, the values of -which are given
by (30) and the other two similar equations

24. T shall now indicate the method which the theory of
equivalent distributions affords for the solution of the
problem of the ellipsoid. It was shown by Coulomb, for the
case of an electrical distribution, that the normal force just
outside a closed conductor is proportional to the surface

# This hool is referred to by Todhunter in his ¢ History of Attractions,’
and he quotes Professor de Morgan as to its rarity. T have not seen if,
and give the reference above only at second hand. The University
Library has no copy, and though the magnificent edition of Laplace’s
works, which is now being published in Paris, has reached vol. xiii., this
book has not been ineluded, though much of later date and on similar
subjects has already appeared.

2F2
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density (amount of attracting or repelling matter per unit
area) in the neighbourhood. In the language of the potential
this is expressed by the equation

dV .

— =47z . . . . . . (32
where o is the surface-density, and dV/dn denotes the rate
of variation of potential per unit of distance outwards along
the normal. This equation is at once transferable to gravi-
tational attraction, and o becomes the density of a thin
stratum of ordinary matter. Here o of course denotes the
surface-density of ordinary matter; e. g. the mass $ppdk/k of
a homeoid taken per unit area at an element just outside
which the normal force —dV/dr is taken.

25. 1 shall not discuss the properties of level surfaces
here; but merely apply some of the properties 1 have
mentioned to the problem of the ellipsoid. DBut a theorem
of Bertrand may be referred to of which our process will
afford an illustration. Let there be a family of surfaces
represented by the equation

Az, y, D=a . . . . . . (33)
where « is a variable parameter ; and let them be such that
if a distribution of matter be placed on the surface, S say,
characterized by any chesen value of «, and be made of
surface-density inversely proportional to the distance from
that surface to an adjacent one of the family, the whole space
within the surface is at uniform potential. Then the surfaces
external to S are level surfaces for the distribution specified.

The truth of this theorem may be seen as follows. Let
the distribution specified be made on an inner surface, S,
say, of the family : the space within is at uniform potential,
and therefore so also are all points of the surface. Butif o
be the density at any point of the surface, then just outside

_ (fo. =4d7ec . . . . . . (34}

dn

Now the step from the surface S; to an adjacent one S,
may be taken as dn, and being inversely proportional to &
gives a constant difference of potential between S; and S,.
Hence S, is a level surface for the distribution on 8;. Let
now the distribution be transferred to S, and be made
according to the law set forth in (32) for the values of dV/dn
which exist at 8, with the distribution on 8,. Since S, is a
level surface for the distribution on S, the transference thus
offected will bring the whole space within S; to uniform
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potential equal to that which existed at S, before the
transference. But the surface S, is by hypothesis one over
which a distribution can be made of density inversely pro-
portional at the different points to the normal step to an
adjacent -surface 8,, and producing uniform potential in the
interior. If the mass in this latter distribution be made the
same as that which has been transferred from 8,, the potentials
at S; and within it produced in the two cases will be the
same. For it can be proved * that there cannot be two
distributions of a given charge of matter over a surface so
as to produce uniform potential at all parts on or within the
surface.

- The distribution therefore transferred from S; must have
the same density as in the other case supposed, that is o
must be inversely proportional to the step from S, to 8.
8; is a level surface and the charge can now be transferred
to S;, when 8, will be found to be a level surface and so on.
Hence Bertrand’s theorem is proved. It is easy to construct
(see Picard, Traité d’ Analyse, tome 1.) an analytical proof of
the theorem, founding on Lamé’s theorem of the integration
of Laplace’s equation for a given system of level surfaces.

26. In the transference of matter imagined in the last
article the paiticles may be regarded as carried out along
trajectories, cutting the successive surfaces at right angles.
Thus, if we draw these trajectories from points in the peri-
phery of ds;, they will mark out elements ds,, dss, etc., on
the successive surfaces. The matter first on ds; will be
carried to ds,, then to dss, and so on; and this law will hold
bowever small ds,, ds,, etc. may be made.

Let now this process be applied to the elliptic homeeoid
discussed above, It is plain that we may take as o the
value 3ppdk/k, which gives us the result

av . dk "
—:i—?;—?wpp%—. N 6 11))

But if m denote the total mass of the homeeoid
m=53p %f j‘pdsr—%rpabck%dk, ... (36)
since /pds is three times the solume of the homeeoid, that is,
4rabekt. Thus we obtain dk/k=m/2mpabek? and
av _m p_
— = Hae - 37)

# This is one of a set of theorems as to the uniqueness of solutions of
potential problems. The proof will be found in treatises on Electricity
or on Gravitational Attraction.
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From (37) it follows that the work done against attraction
in carrying a unit particle outwards through a small distance

dn along the normal is
1 m

——(ZV: B—%Epdn . . . . . (38)

27. If then dn be taken for different points of the surface
so that pdn is constant, there will be the same step of
potential at every point, and the surface on which lie the
extremities of these elements, dn, of the normals will be,
like the surface of the homceoid, an equipotential or level
surface. The distance between this surface and that of the
homeeoid is inversely proportional to p. It can in fact be
shown very easily that the shell of space between the surfaces
is a focalowd, to use the name given by Thomson and Tait to
a space bounded by confocal ellipsoidal surfaces. For the
equation of an ellipsoidal surface external to and near to the
external surface of the homaoid Z(a%/a®) =k, is

at -
a?t+du ’

where du is small, and «, y, = are the coordinates of a point
on the new surface. If for @, y, ¢ in the last equation we
write x+dz, y+dy, z+dz, and subtract from the result
S(a?/a®)=k, we obtain for the thickness dn at «, y, 2 of the
shell of space

%2(%)=dn=§§du. e e . (39

Thus the equipotential surface given by dn thus chosen is
confocal with the surface of the homeeoid.

28. Let us now imagine the mass of the homeeoidal shell
carried out along the normal at each point, and distributed
on the near confocal surface, so that the mass on any element
ds of the shell is placed on the element ds' which 1s marked
off by normals drawn from the periphery of ds. The shell
thus formed will, by Green’s principle of equivalent distri-
butions, be a new homoeoid which will give the same field
external to itself as was produced by the original shell.
For, take the tubular space marked out by normals drawn
from the periphery of ds, and terminated by two caps, one
just inside ds, but otherwise coinciding with it, the other
outside ds', and fitting closely to that element. The surface
of this portion of space is the lateral surface, the inner cap,
and the outer. Now take the integral of normal force /Nds
over the whole surface of this space. The inmer cap contri-
butes nothing to it since there is no force within the homeeoid,
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the lateral surface also contributes nothing, the outer cap
gives F'ds’ if ¥/ be the field-intensity there. The matter
within the space is ods, and therefore by Green’s (or Gauss’s)
theorem of the surface integral of normal force over a closed
surface I/ds'= —4wods. But if matter were distributed
over ds', and similarly over the rest of the surface of the
confocal, so that the field remained unaltered, the surface
integral over the short tube just described would still be
F'ds/, and the matter on ds” would now be ods. This
distribution is unique for the given level surface, and the
given field external to it. Since the surface 8 is ellipsoidal,
and the potential is constant within it, the distribution upon
it effected as described, by carrying the matter out from the
initial homeeoid, is also homeeoidal ; otherwise the distribution
over the surface producing uniformity of potential would not
be, as it can be proved to be, unique.

It is easy to verify this latter point as to the nature of the
distribution. The matter on ds’ is now ods, and for o we
may write Bp where B is a constant. Hence the new
surface-density ¢'=Bpds/ds’. But if p' be the length of the
perpendicular from the centre for ds',and o', V', J=s/a*+du,
\/7)2+du, A/ E+du, we have p'ds’ =pds . o'V Jabe, so that
o'=Bplabe/a’lt'd, thus ¢’ varies as p', that is, the distribution
is homoeoidal.

We can now imagine a further step of potential taken
from the surface 8’ to a succeeding confocal and so on, until
we have carried the whole distribution of matter to a surface,
every point of which is at an infinite distance from the
original surface. There the surface-density will be zero,
and the potential at infinity, which has not been altered by
the transference, will be zero. It is thus seen that the equi-
potential surfaces of the external field of the original
homeoid are ellipsoids confocal with the original homeeoid,
a well-known result which has been otherwise established
above.

The matter in the transference passes from confocal to
confocal, so that the matter on an element of one is carried
to the corresponding element on the next, and so on. Thus
at any stage of the transference when the distribution is on
a given confocal the matter which was originally on the
element ds of the original homeoid is situated on the element
of the confocal which corresponds to ds. The transference
is along the hyperbolas which are the orthogonal trajectories
of the confocals, or, as they are often called, the lines of
force of the field. )

29. Another way of dealing with this problem of equivalent
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distributions is to apply the theorem of Bertrand discussed
in § 27. The initial distribution is an elliptic homeeoid, and
we know that the family of confocal surfaces surrounding it
fulfil the condition stated in Bertrand’s theorem. Fer upon
any one of them a homeoidal distribution can be placed so
as to produce a constant potential throughout its interior.
Hence the confocals are the level surfaces of the field ot the
original homeeoid. Hence also we can suppose the whole
distribution carried out from confocal to confocal, so that at
each instant the distribution is homeoidal on one of the
level surfaces, and the path of each particle is along the
line of force at the inner extremity of which it was originally
situated.

30. We have found [§28, equation (38)] the step of
potential from the initial surface to an adjacent one of which
the equation is
d}'2
a+4du

and it is proved in § 29 that dn=1%4du/p. Thus (38) becomes

—du

1
—dvV= i)—:/z abe

In the same way the step of potential from the level

surface
2

&
2a2+u =

to the adjoining surface for which u» has been increased
by du is

_dV 1 mdu

T /E M@t )@ ruEtu)
Integrating from u=0 to u=9w, and observing that the
integral must vanish at infinity, we have
ve=_m ' . du -
2ﬁj0 V(@ +u) (6 +u)(+u)
If in this we insert the value of m stated in (36) it becomes
* du
o VE@EF)E+u)(E+u)
If in (42) we change u to u—u' we obtain
© du
" »\/(&72:}_—u——u')(b2+zt—u")(c2+u?d/> (43)

. (40)

. (41)

V =mpabedk (42)

V =mpabedk
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which is to be interpreted as the total step of potentiul
involved in carrying the matter, supposed initially in a thin
homeeoid (mass m) of which the equation is Z{«*/(a®—u') [ =k
from the level surface Za?/a*=# to_infinity in the manner
described. Thus matter m distributed in a homwoid on the
latter surface has the same potential at the surface and at all
external points as the same matter bad when in the original
homoeoid. This is for confocal homeeoids what Maclaurin’s
theorem is for solid ellipsoids, and indeed Maclaurin’s theorem
flows from it at once since a solid ellipsoid may be supposed
built up of a succession of homeoids. It is to be observed,
however, that this theorem of equivalence of homeeoids on
confocal surfaces is only a particular case of Green’s very
general theorem of equivalence. Maclaurin’s theorem and
the analogous theorems for shells have been explained in
§ 22, and 1t is not necessary to pursue the subject here. In
§ 18 the extension for a shell to a solid ellipsoid has alse been
fully discussed. '

31. The potential of a thin homeoid at a point on its
surface or anywhere in the interior is given in (42). Krom
this we can obtain the potential of a thick homeoid at a point
within the interior hollow. We shall suppose that the
equations of the outer and inner surfaces are respectively

P 1, and popun—y
a a?

We have therefore only to integrate (42) with regard to %

from k=h {o k=1. Thus for the thick homeoid

® du
V=mpabe(1-~1 .
mpabe(1—1) jo NV (a2 +u) (6 +u)(* + )

The potential produced by this homeeoid at an external
point may be found as follows: The squares of the semi-axes
of the interior ellipsoidal hollow are a®h, 5L, ¢*h, where h < I.

The potential V’ at the external point 7, ¢, & (here 4 is a co-
ordinate), due to an ellipsoid of density p filling the hollow is

LAY
> (1—2a2h+u,)du‘
n A (@@h+u)(BPh+u ) (Eh+u,)

where A, is the positive root of the equation

f‘l

ah -+

(44)

(45)

V= 'n'pabch%j
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If in (45) we write uh for u;, we get

2
- (hhz / ) du
Vi=mpabe | — wtu : ]
a (@ Hu) (Pt u) (Pt u)

where M’=X,/h. The potential at the external point f, ¢, %
due to the complete ellipsoid is given by (20) [§ 18]. Sub-
tracting (46) from (20) we obtain for the thick homeeoid

2
’ 1—2—:f )(]LL
V=mpabe [ f)\ ( @u
¢ A

M(a2+u) (0 +u)(® +u)

(46)

* du
1— . (4
=0, \/(a2+u)(l)2+u)(02+u):| ()
‘When the internal hollow is contracted to zero, that is when
L=0, A" becomes @, and the second integral on the right
Varziishes. The equation then coincides with (20} as it ought
to do.

32. We can now find the potential produced by a thick
focaloid at an external or internal point. First for an external
point : let two confocal ellipsoids have the same density, and
let the shell between their surfaces be the focaloid to be con-
sidered. The potentials which they produce at a point external
to both are in the ratio of the masses of the ellipsoids. For
the potential of that which has E(a?/«®)==1 for the equation
of its surface the equation is (20) [§ 18 above], and for the
potential of the other which has, let us say, 3{2%/(a?—s)}=1
tor the equation of surface, the equation is the same with as
multiplier of the integral wpy/(a®—s)(6°— s)(c*—s) instead
of wpabe. Thus for the potential of the focaloid at an external
point £, g, & we obtain

s I
V=4m (w (1 EaQ‘H‘)du
Jy V(@ +u)(OHu)(Hu)

where m’ is put for the mass of the focaloid, that is

tarpiabe—./(a®—35)(B*—s)(*—s) t.

This equation is precisely the same as (20) which gives the
potential at an external point for a solid ellipsoid : and just
as in the case of ellipsoids it follows that :—any two uniform
focaloids which are confocal with the same ellipsoid produce,
at any point external to both, potentials which are in the
ratio of the masses of the focaloids.

(48)
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This theorem was practically given for points in the axes
of an ellipsoid of revolution by Maclaurin. For he states
[Flugions, Art. 650], with the same limitations, the remark-
able result that an ellipsoid made up of confocal shells each
of uniform density, differing from shell to shell, and an
ellipsoid of the same size and of uniform density, exert
attractions on an external particle which are in the same
direction, and have values in the same ratio as the masses of
the ellipsoids.

The theorem becomes generalized by the extension of
Maclaurin’s theorem by Laplace to any form of ellipsoid and
any external point. Obviously in the theorem just stated
for a heterogeneous ellipsoid, the ellipsoids compared need not
be of the same size but only confocal.

33. If the point £, g, & cousidered be in the hollow within
the focaloid, the potential can be found by subtracting from
the expression for the potential at the point due to the
complete ellipsoid, the potential at the same point due to the
solid ellipsoid of the same density bounded by the surface
S{a*/(a®=~s)}=1, the internal surface of the focaloid.
Making this caleulation by (22), and putting in the result
m' (see § 32) for the mass of the focaloid, we get

. (1_2 f )dn

@ 4u

0 '\/((I/2+u)<bz;f—’t;) (¢ +u)

—s L )d
"0 (1 z a +u “
Jo (@) (P tu) (e tu)
where m is the mass of the complete ellipsoid.
In the remaining case, that in which the point f, ¢, % is

within the mass of the focaloid, the procedure is exactly the
same as that just described. The form of the result is slightly

different : it is
2 .fz d
L
o M (@+u)(t®+u)(+u)
s/
0 (1 E '&E.I;)dug
a-s V(@2 +u) (B +u) (S +u)’
where A" is the positive root of Z{f?/(a®~—s+u)} =1, regarded

— 3/
V=3im

—3(m—m')

(49)

V:%m'

—3(m—m")

(50)
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as an equation in w. When A'=0, the point £, g, & lies on
the internal surface of the focaloid. Then (50) agrees
with (49).

34. It is interesting to compare equations (42) and (49).
The first gives the potential produced at any internal point
by a thin elliptic homoeoid of mass m, and (49) gives
that of a focaloid of mass m at an intermal poiut £,
g, h. If we put f=¢g=h=0, we get the potentials at the
centre in the two cases. Let it be supposed that both shells
are thin, and that both have the same external surface. The
thickness of the homoeoid being directly, and that of the
focaloid inversely, as the length of the perpendicular let fall
from the centre on the tangent plane at the point considered,
the potential at the centre must be greater for the focaloid
than for the homaeoid. The first term on the right of (49)
involves for the centre the same integral as does (41) for the
homeeoid, but this integral is multiplied by Fm'in (49) as
against {m in (41). The excess is diminished by the second
term in (49) which varies with the deviation of the surface
from sphericity ; and also with the thickness of the focaloid
on the whole.

In the particular case in which the surface is spherical the
second term just makes the potential at the centre the same
for a thin focaloid as for a thin homeeoid, as the reader may
verify by evaluation. If we take the case of a solid ellipsoid
the second term in (49) vanishes, and the potential at the
centre is § of that which would be produced in the interior
of a thin homeoid of the same mass and coincident with the
surface of the ellipsoid.

35. From the expression given in (44) for the potential in
the interior of a homeeoid of any thickness, we can readily
calculate the work done by gravitational attraction in bringing
together from infinite dispersion in space the matter com-
posing an ellipsoid, or a homeeoid of finite thickness, whether
uniform or made up of homaoidal shells of different densities.
For the case of uniform density, let mass of amount
2arpabelidh, be brought from infinity to the homeeoid to which
(44) refers, and be placed as an additional thin homoeoid
on the interior surface. The work done by gravitational
attraction in bringing this matter into position is Vm. Hence

(51)

* Tu
Vm=2n202a28%c*13(1 —h dh(‘ g
P (I=hydh y T CEICED)

If then W denote the whole work done in building up the
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homeeoid by adding to the interior until % is changed from 1
to H,

1 ®©
W=— 27r2p2a21)2025‘ E(1=1) clhf du

n , V@@

; du
= 9mpta?b?? ] — 2HE(1 — 2H f 52
A S S N ey R

If H=0, this becomes the result for a solid ellipsoid.
For this case

® du
W=_572 2a2b2c2y . (b3
GrEee), Veroerawers - Y
In the particular case of a uniform sphere this becomes
5 M2
W=% .
if the unit of mass is grvavitational (see § 6, footnote), or
2
W= ?,"K 1!';
@

if the ordinary unit of mass is used and « is the proper value

of the gravitational constant. This is the result given by

Helmholtz, from which the rate of shrinking of the sun

necessary to supply the energy radiated may be calculated.
If the density vary from shell to shell (53) becomes

'L dh du
=omtatpel o 4
W= 05 P /\f y (@ +u)(b* +u)( —|—u)( )

as the reader may verify by finding the work done in building
up a thick homeeoid by adding shells of varying density p,
and then varying the constant . of this homeeoid from
0to 1.

XXXIL. On a New Principle of Relativity in Electro-
magnetism. By A. H. BucHERER, D.Sc., Privatdocent
in the Bonn University ™,

§ 1. IT is needless to dwell on the serious difficulties which

the Maxwellian theory has encountered by the
well established experimental fact that terrestrial optics is
not influenced by the earth’s motion. The endeavours of
some distinguished physicists, notably of H. A. Lorentz, to

* (ommunicated by the Author. A short note on the same subject
was published in the Physik. Zeitschr. vii. p. 556 (1906).



