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ON THE DEGREE OF APPROXIMATION TO DISCONTINUOUS FUNCTIONS
BY TRIGONOMETRIC SUMS.

By Charles E. Wilder (Cambridge, Mass.).

Adunanza del 28 giugno 1914,

The object of this paper is to discuss the degree of accuracy with which functions
of real variables having simple discontinuities can be represented by means of certain
special approximating functions. The approximating functions used are the following:
the sum of the first # 4~ 1 terms of the Fourier’s expansion of the given function;
FeJER’s arithmetic mean of the first # partial sums of this expansion; and finally a
related trigonometric sum previously used by Jackson *). Occasion is taken to intro-
duce a theorem on approximation by means of polynomials of given degree.

The first part of the paper deals with functions of a single variable, while the
second part gives some similar theorems with regard to functions of two variables.
The generalization of these latter theorems to a greater number of variables is imme-
diate. The theorems here given are merely representative of a large number that might
be similarly obtained.

L.

Functions of a single variable.

By a trigonometric sum in x, of order », is meant a sum of the form

i (@, cosix -~ b, sin i x),
1=0

where, in particular, the coefficients of the terms of highest order may be zero.
THEOREM I.— Let f(x) be a function of x, of period 2=, which has in the interval

from — = to = no other discontinuities than a finite number of finite jumps, and in any

closed interval not including a point of discontinuity satisfies a Lipscuirz condition,

[f(x) = f(x)l L2 x, — x5

') See e. g. D. JacksoN, On approximation by trigonometric sums and polynomials [Transactions
of the American Mathematical Society, vol. XIII (1912), pp. 4915151, p. 492.
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where \ is a constant, and the same ) holds for all such intervals. Then there exists for
every positive integral value of n a trigonometric sum T, (x), of order n, such that at
any point x whose distance from the nearest point of discontinuity is al least 3, the func-
tion f(x) is approximately represented by means of T,(x) with an error not exceeding

I v

- (C.l + Cz_s—) )
where C, and C, are absolute constants, and v is the oscillation *) of f(x) in the inter-
val —m L x L 7.

The truth of this statement in the case that f(x) is everywhere continuous ap-
pears from a theorem of Jackson %) which will be used below; it may be assumed,
for the purposes of the proof, that f(x) has at least one discontinuity, so that 347—

Let ¢(x) be the function whose graph is obtained by joining with straight lines
the ends of each continuous part #) of the graph of f(x). Tt will first be shown that
there is a trigonometric sum t,(x) of order » such that

() — 9 () £

The arithmetic mean of the first n partial sums of the FOURIER’s expansion of ¢(x) is

2

o — X

sin n

S0 =11 [ @] —=5 |4

20T o@Q— X
sin

2

It is, of course, a trigonometric sum of order n-—1. By a simple change of variable,
with attention to the periodicity of the functions involved, this can be written

5.(0) = —f oG+ 20 SBE Jda

and if # is replaced by — # in the negative part of the interval this becomes

5,00 == f (oG + 20) + ¢x — 2] 5 |«

s u

This relation holds not merely for the particular function ¢ which we are considering,
but for all integrable functions ¢(x), and in particular for ¢(x) = r; from which 1t

follows that
sinnu
sin u

2) By oscillation is meant the difference between the upper and lower limits of f(x) in the interval.
3) D. Jackson, loc. cit. *), p. 492.
4) The definition adopted for 9(x) at the points of discontinuity of f(x) is immaterial.




ON THE DEGREE OF APPROXIMATION TO DISCONTINUOUS FUNCTIONS, ETC. 347

This identity can be multiplied through by ¢(x), whence

0= e ) e 4

So the difference S,(x) — @(x) may be written

s m—w)—-—f [rr - 20) + 5 — 20) — 29[ ]

sin &

Now in the interval — 28 < u < 3, the function ¢(x 4 24) is a linear function

of u, and so the first factor of the integrand is zero, and the above relation reduces to

S,(3) — #(x) = ﬁf;mx +20) F yx = 20) — 20 W[ st [ 4

sin u%

Taking absolate values,

S —e@l< s f'f<*+2~)+<p<x~zu>—w( | St

TR sin i

sin 4

I 5 sinnu’|*

2L [ TG 2 — sl + G — 20— g (N[ 55" | 4w
The oscillation of ¢(x) in the interval —= < x = is not greater than that of f(x),
from which it follows that

lp(x + 20) — o (D) + lp(x — 20) — (N L 2.
Moreover, for the interval o L u £ ==,

sinu X\ —u.
- W

From these inequalities, it follows that

T L

=\ [ sin’nu mv [f*du
IO P o e e
™Yy 2 2 ™y
=n(F-9)<h
If we set 7,(x)=3S,,,(x), then 7, (x) will be a trigonometric sum of order n, for
which

v
x)— 7t (X)) L L~
) =Ly Lo
The difference f(x) — 9(x) == F(x), which is a continuous function, if suitably
defined at the points of discontinuity of f(x), satisfies a Lieschrrz condition everyw here.
For if x and x, are any two points such that f(x) is continuous for x, L x L x,,
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then the inequality
f(x) = fIl LAlx, — x|

is satisfied, and from the definition of ¢(x) also the inequality

Icp(xz) - CP(.X‘)I é X lxz - xxl’
with the same value of A. Hence

IF(x) — FGIl= (%) —o(x,) — f(x) + e(*)
LI (x) = fI A+ (x) — o)

Z 2 |x, — x|

If the interval (x , x,) contains points of discontinuity of f(x), it is readily shown
by consideration of the partial intervals into which these points divide (x , x,) that
the inequality just obtained is still true.

Jackson ®) has proved that if f(x) is any continuous function of period 2=,
satisfying the LipscHITz condition

lf(xz) _f(x1)| é A |x2 - xxl’
then there exists for every positive integral value of n a trigonometric sum which we
shall call ¢ (x), of order n, such that the inequality

ooy

is satisfied for all values of x; here K is an absolute constant.
By this theorem, there exists a function ¢ (x) such that
2K 2
() — () — 8] 2 2022
and consequently
2K,

n

L) =@ =@l L75= + 5
Here ¢t (x) 4 =, (x) = T,(x) is a trigonometric sum of order », and the relation

I Ty
/) = LI o (K2 + )

establishes the theorem.

It might be pointed out that if we set & = {/E:, this theorem, supplemented by

n
a brief consideration of the behavior of the approximating functions in the neigh-
borhood of the points of discontinuity of f(x), shows that the graph of T, (x) lies
within a strip, the width of which is of the order of L_, about the curve which is
n

formed if the ends of the continuous parts of the graph of f(x) are connected by
vertical lines.

5) D. Jackson, loc. cit. '), p. 492.
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From Theorem I can also be obtained the following theorem with regard to ap-
proximation by means of polynomials of given degree.

TueoreM II. — Let f(x) be any function of x, which in a closed interval of length
I bas no other discontinuities than a finite number of finite jumps, and in any closed
sub-interval not including a point of discontinuity satisfies the LipscHITz condition

[f(e) =)l L 2, — x|
Then there exists for every positive integral value of n a polynomial N (x), of degree ®)
n, which approximates to f(x), at any point x whose distance from the nearest point of
discontinuity is at least as great as &, with an error not exceeding

1 v
= (cl A+ C, ?) :
where C_and C, are the constants of Theorem I, and v is the oscillation of f(x) in the
interval.
If the end points of the interval are d, and d,, the transformation
o (d—d)Y 4 d)
2
carries f(x) into a function g(x’) defined in the interval —1 £ x' 1, and for any

of the continuous portions of g(x')

) . d,—d)x,+d,+d (d,—d)x+d, 44| 1 , ,
G —gep | BN bEd @G md)xhdd ) 2D
The function g (cosy) = h(y) is a function of period 2= in y, and

Al Iy
Ih(Y2) - b(y|)| _4_ 71C05y1 - Cosyll é lez _—yll

Hence Theorem I can be applied to h(y), and it follows that the trigonometric sum
T, (y) of order n exists such that

) = TON £ 4 (65 +C5r)
where v' is the oscillation of h(y) and &’ is not greater than the distance from the
point y to the nearest point of discontinuity of h(y).
Since h(y) is an even function we may assume that T, (y) is also even 7). Then

T,(y) is a polynomial of degree n in cosy = x’, and so it is also a polynomial of
degree n in x, which can be called 11 (x), and

) = £ 5 (G5 + G )

The letters v' and &' refer, of course, to the function h(y), and should be replaced
by v and 3, which refer to the function f(x). Now v and v’ are the same, and §

©) This language is not intended to imply that the coefficient of x" is necessarily different from
zero.

7) See e. g. D. Jackson, loc. cit. T), p. 494. His assumption that the function represented is
continuous, is obviously unnecessary.
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may be taken so that ZT?) 8. To recognize the latter fact, let @ be the point of

discontinuity of f(x) nearest to the point x under consideration, and let 2 = cos b.

Then

!

I l
— x| = 7|cos b — cosy| L —2—|17 — 9|

la — x] = 71|a
Hence

() — () £ = (CA+C 8)

Other theorems with regard to approximation by means of polynomials of given
degree can be deduced from the theorems that follow, but this one is sufhcient to give
an idea of their nature.

A theorem similar to I, but applying to a far more general class of functions,
is the following, in which it is to be noted that since 3 is raised to the third power
in the expression for the limit of error, this theorem does not include Theorem I as
a special case.

Tueorem III. — Let f(x) be a function of x, of period 2=, finite and integrable
in the interval — w L x L = Then there exists for every positive integral value of n
a trigonometric sum T (x), of order n, such that for any point x, lying in the middle
of a closed interval of length 28 £ 2w, in which f(x) satisfies a LipscHirz condition

If(x) — fOeDl LM x, — x ),

the difference between f(x) and T,(x) is less than or at most equal to

)

where Cand C, are absolute constants, and v is the oscillation of f(x) in the interval
—nLx L.

The A may be different for different intervals, and the smaller the value of A for
the neighborhood of a point, the better is the approximation at that point. It is suffi-
cient for the proof of this theorem if the condition imposed on the function is satisfied

when one of the points x,, x,, coincides with the point x at which the approximation
is to be measured. This fact is perhaps brought out more clearly in Theorem VI,
which is based on essentially the same reasoning as this one.

To prove this theorem we use JacksoN’s approximating function *)

I (X)) = )

f [sm m u]
= Lm sin u
2

8) D. Jackson, loc. cit. ), p. 492.
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which is a trigonometric sum of order 2(m — 1). Using the same device as in the
proof of Theorem I, the difference between f(x) and I (x) can be written as a
similar quotient, in which f(x -~ 24) under the sign of integration is replaced by
[f(x+ 2u4) — f(x)]. If in the negative part of the interval u is replaced by — u, this
may be written

f UG 20 /(= 20) = 2/(9) [ore] au

msinu
sin m u
2 : du
., Lmsinu

The integral in the denominator satisfies the inequalities

L(x) —f(x) =

T

__72 J[
2 - 4 N ‘y 4
(2) [ sin m u d u > sinmi sm I sm _l_t d
oo msin u ° mu m °

and the last integral is an absolute constant, Kz.
The numerator integral can be divided up into the sum of the integrals from o

to =8 and from -8 to - m. It the first of these intervals,

[f(x 4 20) +f(x — 28) — 2f(x)| L 424,

because of the LipscHiTz condition. In the other the following holds:

(x4 20) +f(x —28) — 2f(x)] L 2v.

Consequently

3
m > Tsinmu sinmu
i, (x) —f() L 2—&[41/0' u [msm] u -+ ZVf [m sin u] ] .

The integral over the interval (o, +9) is certainly less than the integral of the same

integrand from o to —=. Moreover, in the interval o L u £ ==,

. 2
sinu N\ —u,
- T

sinmu B sinmu}
[ Lo o< () [0S To
I = \* sm‘*u 1 7 \* sint u
:W(T)fo W d“<m(7>f—us du,

and here also the last integral is an absolute constant. In the other integral the ine-

so that

(3)

qualities are somewhat different,

[l e (o) [T 2 (3 2L %
msmimu 2 s mu - 2 m s U

(4 B B

el D) - (<=6
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To sum up the result of these inequalities:
m . Ks K4
1) — 1)l £ fa| stk ]
in which the K's are absolute constants. From this is at once deduced the form used
in the statement of the theorem 9).
If the arithmetic mean of the first # partial sums of the Fourier’s expansion of

a function is used as the approximating function, the following theorem is obtained:
THEOREM IV. — Let f(x) be a finite and integrable function of x, of period 2.
Then if x is any point lying in the middle of an interval of length 28 L 2w in which
f(x) satisfies a Lipscnitz condition
G —f(x) £ A, — x,),
the difference at this point between f(x) and the arithmetic mean S, (x) of the first n
partial sums of iis FOURIERS expansion, n > 1, is not greater than *°)

log n . .y
n (CSA_{— LGSlogn) ’

where C and C, are absolute constants, and v is the oscillation of f(x) in the interval
—x L x Z =

The difference can be formulated as in the proof of Theorem I:

S, —f (x)—mf [ 20) + 70 — 20) — 2@ 0] d

It is again convenient to divide the interval of integration into two parts, the interval
from o to =8, and that from -3 to | =. By the Lipscuirz condition and the defini-

tion of v,
3 E4

5.0 —f@ 25 [ _[— du+ 2v f Bl

2"

Since the integrand is positive, we can replace the first integral by the integral from

o to -‘—71:, and for this we have
sinnu sin® nu =\* [ sin*u
[ < () [ (2) [
i du . w)’ o nw
<@Vt [ 4= (D)

< K logn (n>1),

N

9) The fact that the order of the trigonometric sum I, (x) is not m, but 2(m — 1), is obviously
inessential.

19y For the case that f(x) is everywhere continuous, see S. BERNSTEIN, Sur Pordre de la meilleure
approximation des fonctions continues par des polynomes de degré donné [Mémoires couronnés et autres
mémoires publiés par I'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique
(Bruxclles), Series 1I, Vol. IV (1912), fasc. I, pp. 1-104], pp. 88, 89.
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where K is an absolute constant. The integral from 23 to -, as in the proof of

2
. k2
Theorem I, is less than or equal to Y and therefore
2

5,0 — () £ [4u{ logn—|—2v£] (n> 1),

which proves the theorem.
The next theorem, which deals with the Fourier’s expansion itself, is restricted
to the same class of functions as are dealt with in Theorem L
THeorREM V. — Let f(x) be any function of x, of period 2w, which in the interval
— 7 L x L w is continuous except for p finite jumps, and in any closed interval not
including a point of discontinuity satisfies the LipscHITZ condition
() —fle ) LAx, — %]
At any point x whose distance from the nearest point of discontinuity is greater than or
equal to 8, the difference between f(x) and the sum of the first n -~ 1 terms of ils
Fourter’s expansion, n > 1, is not greater than
Er(cp+ e,
n dlogn
where C and Cy are absolute constants, and v is the oscillation of f(x) in the interval
—n Lx L.
If the end points of the interval are points of discontinuity, we need count only
one of them in estimating p.
Let us first consider the function ¢ (x), of period 2=, which is equal to - (m — x)
in the interval o <<x <C2=. The remainder after the first # 4 1 terms of its FOURIER’s
expansion may be written

R(x)=— —

fx sin (n -+ %)xd
o 2sintx
) sin
=m—f W ],
where
(o< x L m),

H +
and M is an absolute constant '*). Since the following is an alternating series with
terms decreasing in absolute value:

_____f smu w=u 4 u 4 -

(n+1)1 sm u
N = u,
nw

11y For proof of these statements see M. BOCHER, Introduction to the Theory of FOURIER’s Series
[Annals of Mathematics, vol. VII (1906), pp. 81-152], pp. 1231

Rend. Cire. Matem. Palermo, t. XXXIX (19 sem. 1915). — Stampato il 24 giugno 1yij. 45



354 CHARLES E. WILDER.

the remainder after k terms is less in absolute value than the (£ 4- 1)th term. If then
k is determined so that the point (n + +)x lies in the interval from k= to (k< 1)=,

we have
(’H__;‘) (k+1)70
T sin u sin u
7—[ d'—’f ————du—}—u,“—f—ukﬂ—}—--
,/”‘*”" sin P H |
—, k+1
(n+—;—)x+‘n’
sin u
é u d + Iuk-rl|
(n+——;—)x
< zf(n+%)x+nd14 < ( " )x du 27
(HL)X . /(H_) nx onx’
Hence ’ )
R, £ 27 4 2 M LT o<rLm,

where C, is an absolute constant. Because of the periodicity of ¢ (x) and the fact that
it is an odd function, a corresponding inequality holds at points of continuity outside
the interval (o, 7).

. ¢ . o .
The function —¢(x — a), where ¢ is a constant, has a finite jump of magni-
™

tude ¢ at the point a. The remainder in its FOURIER’s series, at a point x distant not

C,n
CIf
nd

F)=24(—a)+ 24G—a)+ - + Lyx—a),

less than 3 from the nearest point of discontinuity, can not exceed

the function F(x) is approximately represented with an error not exceeding the sum
of the errors corresponding to the various terms, i.e., with an crror not greater than

Cscx_}_CL"z_{_ +Cscp
nS, nsz nsp ¢

where 8, is the distance from the point x to the corresponding discontinuity. Each of
these quantities can be replaced by the smallest of them, 8; and each s can be replaced
by v, the oscillation of F(x). So the error is not greater than
CEL
*nd
Now let ¢(x) be the function whose graph is obtained by joining by straight lines
the ends of each continuous part of the graph of f(x). Then ¢(x) is except for an
additive constant a function of the type of F(x). The difference @(x)=f(x) —¢(x)
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is a continuous function satisfying the LipscHITz condition )
@(x,) — ()l L 22 x, — x|

everywhere. If then s  (x) is the sum of the first #» 4 1 terms of its Fourier’s de-

velopment *?)
C.)logn

5 () — 0 () £ T 2 > 1,
where C. is an absolute constant. Let s5,,(x) be the sum of the first n -}~ 1 terms of
the Fourier’s expansion for ¢(x). By the work just performed,

v
() — 9] < S8
n
and we can consider v to be the oscillation of f(x), since that is not less than the
oscillation of 9(x). Combining these inequalities,

L) —f 2B (G Gt ) > .
ogn
In the following theorems the constants involved are no longer absolute, but will
depend on the point x and on the function in a way not defined; the essential thing
is that they are independent of #.
TueoreM VI.— Let f(x) be any finite and integrable function of x, of period 2=.
Then there exists for every positive integral value of n a trigonometric sum T (x), of
order n, such that for any point x at which f(x) has four finite derived numbers,

f®) — L) £ -,

where ¢, is a constant independent of n.
We use the approximating function (1), and by the aid of (2) we have the relation

<% ilfoc +20) — FC [ | 4

i, (x) — f

msin ¥

Since f(x) remains finite there is some constant G such that |f(x)] £ G for all values
of x, hence |f(x 4+ 2u)] £ G, and

)f(x 4 24) —f(x)

2u

= u
for u %~ 0. Let N be the greatest of the absolute values of the derived numbers at a
particular point x. Then if a small quantity ¢ >> o is given, 3 > o can be determined

13y For proof of this fact see the corresponding passage in the proof of Theorem I.

13) See H. LEBESGUE, Sur la représentation trigonométrique approchée des fonctions satisfaisant d
une condition de Lipscuirz [Bulletin de la Société Mathématique de France, vol. XXXVIII (1910),
pp. 184-210], p. 201; D. Jackson, loc. cit. ), p. s02.
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such that when |24 £ 3,

f(x+2“)_f(x) <I\7+€.

2u

2G
3

If(x + 2u) — f(x)| L 2k, u

x

27 : 4
sin mu
lu]| =—=— {dun,
msin u

0,() — f(0)] £ 2|

- m

Let &, be the greater of the numbers N 4 ¢ and . Then for all values of 2u,

Hence

k.m
UM%ﬂdéKf

~[g

and from the relations (3)

where %, is a constant independent of m. The truth of the theorem is an immediate
consequence.

The proofs of the next three theorems are so similar to the one just given, that
the mere statement of the theorems seems all that is necessary.

TaeorEM VII.— Let f(x) be any finite and integrable function of x, of period 2.
Then there exists for every positive integral value of n a trigonometric sum T, (x), of
order n, such that if x is a point for which the guotient

St 20) + 1 —20) — 2f(%)

u

remains finite,

) — T, £ 2

nz ?
where ¢, is a conslant independent of n.

It is to be noted that in this case the function f(x) itself may be discontinuous
at the point x.

THeOREM VIIL. — Let f(x) be any finite and integrable function of x, of period 2.
Then if x is any point at which f(x) has four finite derived numbers, the order of the
approximation to f(x) given by the arithmetic mean of the first n partial sums of ils
FOURIER’s expansion is subject to the inequality

o
5,0 —f(@) £ 22,

where ¢, is a constant independent of n.

Tueorem 1X. — Let f(x) be a finite and integrable function of x, of period 2.
Then it is approximately represented by the arithmetic mean of the first n partial sums
of its FOURIER's expansion at any point x of the sori described in Theorem VII, with

c
an error not exceeding —n“—, where ¢, is a constant independent of n.
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1L

Functions of two variables.

Several of the preceding theorems, together with the simpler theorems referring
to continuous functions, can be generalized to functions of two variables. The approxi-
mating functions used are the analogues of those used with a single variable.

By a trigonometric sum of order m in x and # in v is meant a sum of the form

T, (x, y)_ZZ(a cosixcosjy--bcosixsinjy~-c sinixcosjy+d, sinixsinjy).

i=0 l—O
The partial sum of the double Fourier’s series for a function f(x, y), of period
27 in each variable, to terms of order m in x-and # in y, can be written

snn(2m+1)( —;—) §jn(2n+1)(ﬁ———z)d »

R, -
f sin ( P ) Sll'l (b > y)

S (%) y)_

The order of approximation to a given continuous function f(x, y) by means of this
function s, has been investigated by BErRNSTEIN ™).
An arithmetic mean of these partial sums, S, (x, y), is given by the formula

S =55 5,(%, )

i=0 j=0
. % pm sinm(a—:—x) sinn(ﬁ—?)
= : [l 8)
4mem f"' — sin (1—_ x) sin ((5_—}')
2 2
By a simple change of variable this can be written in the form

inmu ) [sin nv}?

2

2

()

dad?f.

This approximating function is used in Theorems XI and XIIL
The LipscHrTz condition in the case of two variables may be written

If (x5 3.) — f(xs )l L2V (e, — %)Y + (9, — 3 )

This form brings out the fact that the condition on the function at two points de-
pends merely on their distance apart. It is equivalent to the condition

(x5 32) —F (s )l L 2(0x, — x4 [y, — 2.

except possibly for a difference in the value of A

14) S. BERNSTEIN, loc. cit. 19), pp. 98-100.



358 CHARLES E. WILDER.

TueoreM X.— Let f(x, y) be any function of x and y having the period 2= in
each variable, and satisfying the Lipscurrz condition

1f(x,, 3.) —fx, 3N LM (x, — %) 4+ (3, — 3 )™

Then there exists for every pair of positive integral numbers m, n, a trigonometric sum
T, (%, 9), of order m in x and n in y, such that

G5 3) = Ty M Z C (5 + 5 )

where C9 is an absolute constant.

Form the approximating function

s sin mn*{ sin n v}
I (x,y)=h, f f Flx 420, y -+ 2v)[m L u] [n Lz v] dudv,

where
E 1
I 2 *lsinmu sin nv
}J’i:f f [ h el dud-v.
o _xLmsinu 7 sin v

- 2

ME]

If the transformation x = x 24, § =y -+ 2v is made, and the resulting expression
for T (x, y) is expanded, it will be found that it is a trigonometric sum of order

mn

2(711 - I) in x and 2(71 — I) in - The difference [mn(x, y) —f(x, y) is equal to
s sin muJ*[sin nv)*
b | [ G20y 4 20) = £ y)][ : ] [ . :Idudv.

msin u nsinv

Inasmuch as the double integral for the reciprocal of b, breaks up at once into a
product of two simple integrals, it follows from formula (2) that

mn

b < g
And from the Lipscuirz condition it {ollows that

f(x + 20, y + 20) — f(x, )| L2V (20) + (2v) L r(j24] + [29]),

so that

sin mu Y sinnv )t
() —f(x )| £ T f ] f e[| [y | 4ude

This may be treated as was the corresponding integral in the proof of Theorem III,
thus obtaining

ymnu [2 K; K6 2 K; K6
Ilmn(x’ y) _f(x7 y)l é 2K2 ( mln nzm ,
where K, is a new absolute constant; hence follows the theorem.

Tueorem XI. — Let f(x, y) be any function of period 2= in each variable, which
satisfies the LipscHITZ condition

‘f(xz’ yz) _f(xx’ yv)l é )‘V(xz - xx)z + (yz - .yl)z'
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Then if S, (x, y) is the mean of the partial sums of the FOURIER’s expansion of f(x, y)
to those of order m — 1 in x and w — 1 in y, the following inequality holds for all
values of x and y:

Sy ) — 1y P £ Cr (B2 4982,
where C,, is an absolute constant.

The proof of this theorem is deduced from the inequalities used in the proof of
Theorem IV, in precisely the same way as the proof of the preceding theorem is
deduced from those used in proving Theorem IIL

TueoreM XIL. — Let f(x, y) be any finite and integrable function of period 27
in each variable. Then there exists for every pair of positive integers m, n, a trigonometric
sum T, (%, y), of order m in x and n in y, such that if (x, y) is any point having
a neighborhood of radius 8 £ © in which f(x, y) satisfies the Lipscaitz condition

Gy y) —f (o 3 L2V, — ) 4+ (0, — 305

then for this point

v

TuuCtr ) —FC D £ (5 + 5) G F (i F 57) G

where v is the oscillation of f(x, y) in the square — = ~ x L = — = LyZL= and
C,, and C,, are absolute constants.
The same approximating function is used as in the proof of Theorem X. So we

have
llmn (= )’) — f(x, b2

<%/, e 2y + 20— 5 ) Bl

m sin u nsinv

Let this integral be expressed as the sum of the integral over a circle C of radius >3
about the origin and the integral over the rest of the square. Let us denote the square
by S, and by R the part of the square that remains after the removal of C. In the
circle the LipscHrrz condition is satisfied, and so

Csinm u]* [sinn o]

4
——— 1 dudv

| msinu | | #sinv

é»z‘/\ ff([“[‘f"l'”l) sinmu*[sinnv 4dud'u
*c

[ [ UG+ 20y 4 20) — £ )

[ msiny | | nsinu |

éz)‘ff(l”l + o)) 'sinmu"*'sinnv"‘dudv
S

| msinu ] | nsinv |

2K K, 2K1K6)

m’n n*m

ézx(
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On the other hand,
[ [+ 20 5 4 20) = £ ) ] [ore] dude
R

msin 4 nsinv

sinmu [ sinnv]
2N —— | dudv.
= m sin u nsinv
R

The last integral is increased if the circle is replaced by the inscribed square with
sides parallel to the sides of S. The resulting integral can be written as the sum

o S+ )
8 J & _ 3 Yo
2V

¥z V2

8 5
zl/z— 21/2— 1zt . n . 4
sinmu [ sinnv
+4/0‘ f_s__[m sin u] [n sin 'v] dudv=4(4,+4,+4,)
ey

Then
A ]
2 2 . .
sinmu Y [sinnv]
A < T == | dudw.
! o s Lmsinu nsinv
Zv 2

This double integral is equal to the product of two simple integrals of forms already
considered; one does not exceed an absolute constant divided by #, and the other
[cf. (4)] does not exceed an absolute constant divided by m*d*. Hence

K
4 < —

P
mtn S

where K. is an absolute constant; or, equally well, by symmetry,

4 < %,
! mutd
It is seen similarly that
. K
7 A [ .
R T ’<m4n3*

Combining these results, we have the theorem.

Tueorem XIIL — Let f(x, y) be a finite and integrable function, of period 27 in
each variable. If (x, y) is any point having a neighborhood of radius 3 L= in which f
salisfies the LipscHiTz condition

(s 3 — FFo ) L2V — %)+ (0 — 20

then for this point
! :
5y ) — G £ (B2 + Y € ht (5 ) G

where S, (x, y) is the arithmetic mean defined by (5), v is the oscillation of f, and C,
and C,, are absolute constants.

log m
m

This theorem is proved by treating the integral (5) in exactly the same way as
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I, (x, y) was treated in the proof of Theorem XII. The inequalities needed are sug-
gested in the proof of Theorem IV.

These theorems with regard to periodic functions of two variables will, of course,
give theorems analogous to Theorem III for the approximate representation of func-
tions of two variables by means of polynomials.

From the manner in which the proofs of these theorems can be referred back to
the proofs in the case of one variable, it is evident that the demonstrations of similar
theorems for any number of variables would involve no new methods.

Harvard University, Cambridge, Mass., May 1914.

CnarLEs E. WILDER.
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