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Stokes' law to liquid spheres of diameters varying from 30 
to 50 times the mean free path of air molecules. 

3. The results obtained by this method taken in connexion 
with Rutherford's experiments seem to constitute experi- 
mental verification of Stokes' law for these drops. 

4. Positively charged drops of water and alcohol are found 
by direct measurement to carry charges which are multiples 
of 4"65 x 10 -1~ and all of the multiples from 2 to 6 inclusive 
have been obtained. 

5. The mean of the five most reliable determinations of e 
is 4"69 x 10 -1~ The corresponding value of n (the number 
of molecules in I cubic cm. of gas at 0 ~ C., 76 cm. pressure) 
is 2"76 • 10 x9 : that of N (the number of molecules in a gram- 

molecule) is 6"18• 10 ~-  that of e (-----3/2 RT �9 - ~ ,  the kinetic 

energy of agitation in ergs of a molecule at 0 ~ C., 76 em. 
pressure) is 2"01 x 10 -16 ; {hat of m (the mass in grams of an 
atom of hydrogen) is 1"62 x 10 -',4. 

l~yerson LaboratolT, 
University of Chicago, 

October 9, 1909. 

X X I I I .  The Asymptotic Expansions of .Bessel _Functions. By  
J .  W. ~IC~O,.SO~, M.A., D.Sc., Isaac _]Vewton Student in 
the University of Cambridge ~. 

M ANY physical problems depend, for their final solution, 
upon a knowledge of the approximate ~alues of 

Legendre and Bessel functions tbr a large range of their 
argument  and order. In  the case of the-Bessel functions, 
investigatorst  have almost entirely confined their attention 
to those special types in which the order n is small, though 
the argument z may be large or small�9 

A treatment of the more general problem presented when 
n is al~o large has been given by Lorenz ++, but only when n is 
half an odd integer. The immediate object of Lorenz was 
to obtain some expansions necessary for his investigation of 
the scattering of light by a glass sphere, in which, as in most 
problems of this type, only Bessel functions expressible in 
finite form are required. His results were first approximations 

* Communicated by the Author. Read before the British Association, 
Dublin, 1908. 

t Poiss.n, Jou~'nal de l'JEcole, 1823 ; Stokes, Ca~b. Phil. Trans. 1856 ; 
Hanl~el, Math. Ann. i. 1869 ; Lipschitz, Crelle, 1859 ; and others. 

$ (Euvres 8cient~fi~ues, vol. i. p. 435 et se~. 
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only, and include three cases : (1) z and ~t very large, but 
z - -n  not of low order in comparison; (2) z and n very 
large, and n - z  not of low order; and (3) z and n nearly 
equal. The limits of validity were left very doubtful in each 
case, and especially in (3), there were many points in the 
investigation which cannot bear examination. In a paper 
by the author*, the defect in this case was indicated, and 
expansions deduced when n and z do not differ by an amount 
of higher order than ~, whether n be greater or less than z. 
These results are general, and hold fo r  all large real values 
of n. They were subseqnentlyt applied to the calculation 
of a table for the function J ,  (z) in this case, based upon 
Airy's~: tabulation of a type of integral occurring in physical 
optics. 

The Bessel functions of nearly equal argument and order 
may be reduced to an approximate dependence on this and 
an associated integral, and thence also to Bessel functions 
of small argument and fractional order ~, whose tabulation 
is readily effected. In another paperw the special case of 
restricted order of Lorenz has been further investigated when 
the order is less than the argument, and a type of expansion 
obtained which can be used to a degree of accuracy determined 
only by its convergence. 

The consideration of corresponding expansions for the 
remaining cases of large real argument or order is the object 
of this paper. A scheme is developed which will furnish 
the approximate values of the functions in all cases in which 
one or both of the magnitudes n and z is large, and both are 
real. The order is not restricted in any other way. Some 
interesting analytical results appear in the course of the 
work, and a general theory is indicated, applicable to all 
solutions of differential equations of the second order 
which can be expressed in series whose general term is 
known. 

The Assodated Equation of  the Third Order. 

If  (Yl, Y~) are two independent solutions of a differential 
equation of the second order with invariant 1, so that 

�9 ( 12  

+ (,j,, y..) =o ,  . . . . .  

:* Phil. 3Iag. Aug'. 1908. 
af Phil. ~Iag. July 1909. 

Airy, Camb. Phil. Trans. vi. p. 379 ; viii. p. 595. 
~ Phil. Mag. Dec. 1907. 
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we shall give the name "asymptotic substitution" to any 
one of the following pairs of equations : ~  

(1) y l=R~ sin p y2=R'~ cos p 
(2) Yl = 8~ sinh o- Y2 = S~ cosh ~r 

�9 x t 
( 3 )  ~ I = T - ~  e ~ ~ / 2 = T ' ~ e  - ,  . . . ( 2 )  

where (R S T p o" t) are functions of z. 
I t  appears at once from (1) that if dashes denote differ- 

entiations with respect to z, 

y~l'--yly~' = C, . . . . . .  (3) 

where C depends on the two solutions chosen. 
Thus by the first asymptotic summation, 

r ~ , 'R 'cosp  �9 t �9 " CR'sine +R p cos,)-  s,n )=C R ~ c o s p \  2Ra 

or dp C 
d ;  = R . . . . . . . .  (4) 

In a similar manner it may be proved that 

da C dt C 
dz -- S '  d z - -  2T (5) 

Asymptotic expansions for yl and y~ of any  type may, 
therefore, be obtained when R, S, and T have been found. 

But writing, in the equation 

~ +Iv=O, 
dz ~ 

dv C 
Y=u~e~" dz " u '  

then on reduction 

, , u " - ~ ' ~  + 2 I ~ = c  ~- . . . . . .  (6) 
The possiom vames of u are (tp, a, t), corresponding to 

do .~ O 
the values (R, S, T) of u, and making d~ =( t ,  1, ~)u 
respectively. 

A solution of (6) is therefore S. Moreover, R and T 
satisfy similar equations with *C and ~C written for C. But 
C disappears on differentiation, and the equation becomes 
linear, yielding 

u"' + 4Iu r + 2 u Y =  O, . . . . .  (7) 

and (R, S, T) are three independent solutions of this equation, 
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which will be referred to as the associated equation of 
the third order. I t  will be recognized as the equation 
whose solution is a quadratic function of any two solutions 
of (1). 

Definition of the Bessel Functions. 
We shall choose, when n is not an integer, 

~rz 

7rZ "~ 

where, in accordance with the usual notation, 
Z2 Z 4 ) 

~" 1 - ~  1 + ~ . 4 : .  . ,~ +-~... ,(lO) J"(~) = 2 - r ( n + l )  . n +  ~ + l  

sin n~r 2nF(n) z 2 z 4 " 
J _ , ( z ) =  ~z" (1  + 22 42 - n ' " ) '  22.]~--n . . 1 - - n . 2  

( l l )  

with the ordinary semiconvergent expansions* when z, and 
not n, is large, 

( ) ) -~ J - ( 4  = U . ( ~ ) s i n  z - n ~  ~ r ~ ~ ( i s )  + ~  + V . , z ) c o s  - - Y + - 4  

( ~rz'j_,(~)~ =U~(z)c~ z§ 4)-V"(z)sin( z-bnZ§ 4) (13) 

where 

U,(z)----1-- 4he-- 1~" 4n~--3" 4n~'--l~"4n~'--3"4n~--52"4n~--7~ . . .(14) 
'2 ! (8z) ~ + 41 (8z) 4 

4n2 - -  1 u 4 n  ~ _ 1 ~. 4 n  ~ - -  3~. 4 n  : -  5 ~ 
W ( ~ ' ) = - ~ V .  8:~ - 3 1  ( 8 z )  ~ + . . . . . . . . .  0 5 )  

Those values make 
Y~Yl' -Yl.Y.~' = 1, . . . . .  (16) 

do 1 so that, for these standard solutions, C---l, ~ =. ~ .  

This definition also makes J_,~ (z) ---- ( - ) ,  J ,  (z) when n is 
integral. Bv comparison with Hankel 's expansions the 
formulae (8, 9) are obviously the most suitable for the ex- 
pansion of (Yl Y~) in the forms R'~ (sin p. cos p) in general, 

* ttankel, 1. c. 
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when n ceases to be small. As defined above, J= (z) admits 
the integral formula ~ 

~ J .  (z)= cos (z sin O--nO)dO--sinn~" dO. e -"~176 (17) 
j o  

z being positive, whilst ~rJ_~ (z) is represented by the same 
expression with the sign of n changed. 

If  n be an integer we select, as standard solutions, 

y , = ~ - )  J, (z), . . . . . .  (18) 

_ ( ~ y . ( ~ ) .  . . . . .  (10) 
Y~= \2~r l 

where Y. (z) is Hankel's second solution of Bessel's equation, 
defined by 

B y  proceeding to the limit when n is integral in the 
former case, it is at once obvious that this substitution is 
the natural continuation of the first. Thus it is again true 
that 

, I 1 (21)  Y~Yl --YlY2 ---- , . . . . . .  

and, therefore, when n is integral, the expansions deduced 
for (J_~ (z) -- cos n~r J~ (z)) cosec n~" will remain valid for 

_ 1 y~ (z). This is an obvious property of Hankel's expan- 
lw 

sions when n is small. When z is small, Y~ (z) may be 
written 

(1)'+ .--) 
_p_ys~ (~ ~-+,s,+s~+~ (~) 

k2] . !  + \ F ]  n - ~ i ~  . . . .  

w h e r e  
1 

7 = - - ' 5 7 7  ..., S ~ = l + ~ + � 8 9  ... + n 

and negative factorials are to be taken as zero. 
The asymptotic expansion when z is large is'f 

('T~) Y ' ( z ) = - - U ' ( z ) c ~  7 § ~:)+V,(z)s in  ( z - - - ~ - + ~ ) , ( 2 3 )  

where U,, V~ are as before. 

* e.g. vide Whittaker, Modern Analysis, p. '281. 
J" Hankel, Math. Ann. i. p. 494. 
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Solutions of  the Associated Equation. Values of R,  p. 

I f  y denote Yl or y~ ill the substitutions for Bessel functions, 

(yzi)"+ (1  n ' ~ � 8 8  yz.~=O. 

Thus I = 1 -- -n2 -- �88 (24) 
Z 2  '~ . . . . .  

and the associated equation becomes 

z3u"' +(4z~--4n~z+z)u '  + ( 4 n : - - l ) u = O .  (25) 

Writing u =  Z, a,z', 

the relation between successive coefficients becomes 

+ 1 .  r -!: 2 -- 2n .  r + 2 + 2n .  af+2-- -- 4rat, 

with an indieial equation 

s - l . s - l T 2 n . s - - l - - 2 n - - 0 .  

The following series solutions therefore exist~ 

4n ~ -- 1: 1 . 3  4n 2 - 1  :. 4n ~ -  3 ~ 
u , = l + ~ .  ~ + 2.4:" (4z2) 2 + . . . . . . .  (26) 

z ~ 1 . 3  z 5 
u ~ - - z + ~  +-2 .~ n~--12.n2--22 ~" . . . . . . . . .  (27) 

u - - z2J '+l[1-2n+l -  z2 2 n + l . 2 n + 3  z' ) 
S-- ~, n + l  2 . 2 n + 1  + n + l . n + 2  2 . 4 . 2 n + l . 2 n + 2 " ' "  ' 

�9 . ( 2 8 )  

where if n be an integer, us must be multiplied by the 
evanescent factor of the denominators, thereby ceasing to be 
distinct from u~. For positive real values of n, u~ and us 
are convergent for all finite values of z, but ul is ultimately 
divergent except when 2n is an odd integer, in which ease it 
terminates. 

Proceeding to an examination of ul, it is seen that when 
z is infinite in comparison with n, uj = 1. 

But comparing (8, 9) and (12, 23), in this case, yl~+y~2= 1, 
or R---1 from the first ~symptotic substitution. Thus u, = R  
when z is very great, and being always a linear combination 
of R, S, and T, which are of similar magnitudes, it must 
always be 1~ either identically or in an asymptotic seas% not 
necessarily that of Poincar~. 
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When n and z are both great, a first approximation to R 
is obviously 

.n ~ 1 . 3 n 4 R=I+�89 + ~--~. 4 ~ + . . . ,  

Z 
or R = v / z ~  u z > n, 

which leads to one of Lorenz's expansions, when n is half an 
odd integer. But  the error involved would be very doubtful.  

Now writing as in usual notation for Bessel functions of 
imaginary argument, 

Ko(k)=i i*- -  e-Xeosh~d(~, . . . .  (29) 

then it may be shown * that when the series terminates 

ut = R = ~ ~'|~ Ko (2z sinh t) cosh 2at dr, (30) 
~rJ  o 

or~ as a reversible double integral, 

R = 4 Z f  " ~o | e-2zsinhtcoshC, cosh2ntdtd~. (31) 
~rJo 

But  this expression remains finite and determinate wheu 
n is not half an odd integer, and it may, moreover, be proved 
by direct substitution that it is stiU a solution of the same 
differential equation. Accordingly, it is still the value of R,  
as it also takes the correct value when z = z r  Thus for all 
real values of n and z, 

R=4Zf |  cosh2ntdt, (32) 
~rJo 

and when 2n is not an odd integer, the series ul, though 
divergent ultimately, may be used for the computation of  
the integral. 

Expressing the value of R in terms of the Bessel functions, 
we deduce, when n is not an integer, 

8 ~ '  | 
J~(z) + J _ ~  (z) --  2J~(z)J_, (z)  cosnv = ~2sin 2 n ~ l "  K0(2z sinh t) cosh 2at dr, 

. . . .  (33) 

and when n is an integer, 

2 2 2 ~ i '~ Y~(z) + ~r J d z) = 8 ,  Ko(2z sinh t) cosh 2at dt. (34) 
, ] 0  

�9 ]Phil. Mag. Dec. 1907. 



Expansions of Bessel _Functions. 235 

Some of the special cases in which 2n is an odd integer 
are very interesting, as the integral can then be expressed in 
terms of trigonometric functions. 

Since by (4, 16) 
dp 1 

dz -- R 

and when z is very great in comparison with n, the usual 
expansions yield 

it follows that in general 

p = : - - ~ + ~ .  - : (35) 

Second Solutions. Values of T, t when n is not integral. 

The second series solution, when n is not integral, is of 
the absolutely convergent form 

+ ! ~ .  1 . 3  ~ 
us  = z 2 n'~--  13 + 2 . 4  n 2 - 1 " .  n ~ -  3 2 + . . . .  

Now if 

f v,~= sin 2nx sin~"x dx, 

where n is not, and m is an integer, then it is readily shown 
that 

- 2m.  2m-- 1 
V m ~  4 .  n ~ - - ~  ~ Vm-l~ 

(-)"~ 2m ! f "  = 2~'n "0- m ~. n ~ -  m-- 12 . . . .  n 2 - 1  ~,jo sin 2nx dx, 

whence 

~o'(  (2z sin x)" (2z sin x) 4 ) s in2nxdx  2nz I - -  2. ~ - -}. 22r ... 
ua-- 1-- cos 2n~r 

-- l _ ~ - 2 n ~ r j n  sin 2nx.J0(2zsin x) dx. (36) 

I t  remains to identify u.. Now making a substitution 
(a modification of the third asymptotic substitution), 

Yx-- ~ z , y3= eosecnTr.J_,, z , ylya-'Tl. 7 
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Then, by direct multiplication, an ascending series is 
obtained whose leading terms are 

1 5 3 

Yly~ = 2 n  -b 2 2 n .  n u -  1 ~0''" 

and which, moreover, must satisfy the associated equation. 
Thus by comparison of series 

u2 -- 2nT1, 
and 

Tl= l _  cos 2n~r ~i~sin 2nxJo(2z sin x) dx. . (38) 

This result was known to Lorenz for the case in which 2n 
is an odd integer. The substitution (36) is more convenient 
than (9) when u is non-integral and greater than z. Thus 
for all real values of z and n, the latter not being an integer, 

J,(z)J_~(z)~-Trs~n~ " s in2nx.Jo(2zsinx)dx.  (39) 

When n is an integer, evaluating the form then presented, by 
an obviously legitimate process, 

(--)~J~ (z) = ~ ~ sin 2nx. Jo(2Z sin x) d x +  sin ~ r  

(--),, 
- -  ~-~ ~ 2 cos 2nxJo(2z sin x) dx, 

or J~(z)---- ~r sin2nx.Jo(2zsinx) dx, u=integer.  (~0) 

This follows otherwise from a result given by Neumann e. 
The determination of T (TI being infinite) when n is integral 
is somewhat difficult, for u~ and ua cease to be distinct. ]2'or 
this determination a more direct method is useful I". 

I t  was shown that if t be defined by the third asymptotic 
substitution, 

~t 1 
~}z -- 2T" 

~* Cf. Gray and ~Iatthews, 1). 28. 
t ~- the formula for Jn(z)Yn(z), infra. 
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Z 2 n q l  . 

Wow near z=0 ,  e 2t ---- Y_x becomes zero like 
s , - r ( . ) r ( .  + 1)' 

o r  n e a r  z---~O, 

t = n l o g  �89 + 1 210gnP2(n), 

and therefore in general 

1 ~r n d .  t = ~ l o g ~ F ~ ( n ) n l o g 2 + n l o g z + ~ f ( 1 - z ) ~  , (41) 

this being the only possible function satisfying all the con- 
ditions. In  a similar way, if tt corresponds to T1 as t to T, 

1 rr + " i 
t l=  ~ l o g ~  - - n l o g 2 + n l o g :  fo ( 2 T 1 -  z) dz" (42) 

These two relations cease to be distinct when n is very 
great in comparison with z, for it will appear that Tt and T 
only differ by an amount which is exponentially evanescent 
when n tends to infinity. 

The third series satisfying the associated equation is 

us=z~,,+X(l_2n+ l ~" 2n+ l .2n+ 3 z' ) 
n + 1 2 . 2 n + l  "1- n+l .n+2-  2 . 4 . 2 n + l . 2 . n + 2 - - " "  

f T r i s  z' sin'"+20 z4sin2"+'O ) f Z  
_ .~ .+t  in~ 1 ! 2n + 1 + 9~. 2n + 1 . 2 n  + 2 ... d O §  sin g" 0 dO 
- - ~  L I O  

F ( n +  1) r ( 2 n + l )  I ; j~ , (2  z sin 0) dO. 
+ 

But 
2 ~ ' Z T 2 /  , .  "11" . Z 2a+ l  [1 

. . . . . . . .  ( 4 3 )  

z~ ) 
2 . n + ~  + "'" ' 

and therefore by comparison, and by the differential equation, 

~u8 =�89 J2. (2z sin O) dO, Y12= 22"+tF2(n+ 1) Jo 

by the use of a well-known property of gamma functions. 
Here 2n must be greater than - 1 ,  in order that the 

integral may be finite. Thus for all real values of z, and 
values of n greater than --�89 

f/ rrJ~(z) = J2~ (2z sin O) dO, (44) 

which is a known result for integral values of n. 
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The value of S, in the second asymptotic substitution, may 

now be expressed, but this substitution is of small importance, 
as it is identical with the third in all useful cases. 

Again, by (44), if n < �89 

�9 -o_. (~) = J_~. (2~ sin o) dO. .  (~5) 

Thus, if the argument of the functions be constantly z 
when not expressed, 

2:rJ~J" = y :  ~nJ2~ (2z sin O) 

2~ra ~J'-" i ' 'r-~ J_~,, (2z sin O) dO. 
- "  5-g - Jo 3" 

Thus 

or, when n is made integral, its only possible value being 
zero, 

~rJo(z)Y o (z) -~ ~o 't Y0 (2z sin 0) dO. (46) 

A more general result is proved in the next section. 

The Formut~ fo; J .(z)  Y.(z) .  

An expression for the product of two Bessel functions of 
different types, when n is integral, has been given by 
Neumann *~. But it is somewhat unsuitabl~ for our purpose, 
and an alternative is now devel.ped which can, however, be 
formally identified with that of Neumann. 

By (43), the argument being z unless otherwise specified, 

2 7 r J .  ~-n = Jo D---n J~" (2z sin 8) dO. 
But 

~J~. (w) = ,os (w sin 4 -  2nr d~ 

- -  sin 2nzr~ d~b e-21t~-wsinh~ 
0 

* .Bessels'che .Futwtionen, p. 65. 
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Thus when n is an integer, 

rr ~---nJ2.(w) = 2 fo=* sin (w sin , - -  2nd~) d ,  

-- 27r ~  ̂ ddp e--2n9 -wsinh 9, 

so that on reduction 
7/" �9 ~ 7/" 

where He (w) is Struve's function* defined by 

He (w) = ~ sin (w sin 0) dO. (48) 

Again, 

zrJ. j _ , = ~ r  Jo (2z sin x) sin 2nxd. v 
do sin nzr "' 

so that when n is integral, 

w(Ja ~n-----n + (--)"  J '~J~=on / Jo~ ~r J~ sin x .  ~)n ~ sln2nXdxsin nTr 

s = Jo(2Z sin x) (2xc~176149 
sin 2 ~,Tr 

0 The integrand takes the form (~ when n is integral�9 

Therefore evaluating in the usual way, which is obviously 
legitimate, we obtain 

By subtraction with (47), and with the help of the results, 
true for integral values of n, 

y ~r sin 2nx Jo(2Z sin dx 0 (49) 

Yo" Yo" x 2 sin 2nx Oo(2Z sin x) dx = ~r x sin 2nx Jo(2Z sin x) dx, (50) 

it appears that 

cos 2nx Ho(2Z sin x)dx--~, fo ddp~ ~ dO e -2nO-2~'inO sinhO J.(z) Y~(z) 
�9 ~o (51 )  

�9 Cf. Struvo, Wied. Ann. Bd. xvi. 1882, p. 1008; Lord Rayleigh, 
' Theory of Sound,' w ~02. 
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The value of T when n is integral may now be deduced, 
and thence t by (41). 

Expansions of the _First Type. 

Returning to the value of R given in (31), it is first to be 
noticed that the evaluation (a.symptotic) of the integral, given 
in a previous paper +, was m no way dependent upon the 
restriction of 2n to an odd integer. Accordingly, this 
evaluation may be used in the general case. T h d  same 
applies to the subsequent treatment of p as given by (35) of 
the present paper. 

Thus quoting the values of R and p previously obtained, 
we obtain the following asymptotic exvansions when n is less 
than z, and z - -n  is not very small : -  

When n is not an integer 

2R "~ . 
J . ( : )  = sm 0 

J _ . ( : ) -  cos ~ r  J,~(z) (-~zR) ~ cos p sin nvr, 

and when n is an integer, 

/ .\2vR .+ 
u = - - ~ - - ~ )  cos P, 

where if n = z  sin a, defining an angle a, 

R = s e e = +   sec3=+*:sec'=+ . . . .  . ( 5 2 )  

where 
1 27 -- 96n ~ 4640n ~ -  1125-- 640n 4 

X 2 = - - ~ 3 ,  X~= 27 , X 6 -  210 , 

and 

4 .  s + 3 .  X~+a+(s+2)3~8+i+2n~s. s + l .  s + 2  .Xs-t  

+ n*s. s ~ -  4 .  X,_~=0, (53) 

and every third term of R, beginning with the second, is 
two orders (in z or n) smaller than those before. 

Phil. Mag. Dec. 1907. 
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Moreover, if identically 
l+p~x,~A.~t~x,+ . . . .  ([+~2x~.+h4x4+ ... )-1. (54) 

Then 

p =  �88 + z(cos ~ -  ~r 2- --~ sin ~) 

- 1 ~g-~tan ~ -  ~ ( t a n  a -  ~ tan%) 
n Ln"  n - ' 

+ rigS(tan a--~; tan3 ~,+ ~, t a n ~ , ) - - . . . } ,  (55). 

and the second, filth, &e. terms in the large brackets are 
each two orders smaller than the preceding. 

An identical relation 

P6 ~ 2 - - ~  + ~ - ... = o ,  . . . .  (56) 

proved later*, has been used in the reduction. 
R may be arranged more conveniently for some purposes 

in the form 
= ~ . 2  : ~I~ 4 10z~ ~1~2' z ~l~ '  

I4=z  1 + 3 !  22 + 7 5 ! - 2  - T +  6~ 2 ~ + 7 [  2 6 

56z ~ ~,~2 6 280z ~ ~13~2 ~ "~ 1 
+ 8! 2~ + 9! 2 ~ ~ . . . .  ~/~-~_~,, (57) 

where ~=~/~}z, ~ = ~ / ~ n ,  

being here given to an order z -6 when z and n are of the 
same order. We shall refer to this system of expansions 
subsequently as (A). 

TI~e Remainder in the Expansion of R. 
From the previous paper the remainder after r terms in 

the expansion of R is 

dr/ -~ f v e - "  dt, (58) qr J o 
W~lerO 

v =  sinht  ~ pt, vr= cosht T-/z, X=2zcoshqt ,  Xp - 2 n ,  

and Z denotes an addition of the two values corresponding 
to the ambiguity. 

Now it is well known that the integral 

I=~o-/(t) e-Xr(~ �9 �9 �9 �9 (59) 

�9 Cf. (67) infra. 
Phil. Mug. S. 6. VoI. 19. No. 110. Feb. 1910. R 
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whore X is large~ and f, F are uniform in the range, is 
represented to an order X -1 by 

i = j o  / (0 )  e-xF.) d,, . . . .  (60) 

or by I - -  t f ' ( O )  e - X F ( t ) d t , . . .  . (61) 

aceordlng as r (0) is not or is zero. Moreover~ F(t)  may be 
expanded, and the first non-vanishing power of t alone 
retained, if F(t) does not contain X. Also F(0) - -0 ,  and 
F '  must not vanish in the ranges except perhaps at t = 0 .  

In the present ease ~ =  ~ ,  and n is less than z, so 

that F I--- d cannot vanish. The other conditions are obviously 
satisfied. 

/1  d V 1  . , . 
Now when t = 0 ,  v--0, and ~-~ = /  ,.-7 is zero wlmn ~. is 

~,v dt]  v _ 
�9 7 l -  

odd~ and when r is even, it is g~ven by 2z X~+~ u,+~, where 

u~+l represents the form in R next after the final one retained 
1 

(in the second expression for R) with X(1-T---~) substituted 
7 r  

~or-~--z-F~nn~, and the summation and integration prefixed. 

Thus the remainder after r terms only differs by an order 
X - l  from 

d ~ u , + t  v~e-X'dt ,  or Z Xur+l ~ - ,  
0 0 

when v is odd. When r is even its order is less. 
I f  the ~.th term of R be therefore denoted by 7rU,(- ~ -  n2~-~ 

. . ~. * d k ~ . I  , 

where U~ is a certmn operatmn, the error revolved in stopping 
a t  the rth term is of magnitude 

"~ 1 1 , 

or _I U~+I____~ .... 
~r ~ / z ~ _ , ~ . ~ ,  �9 . . . .  ( 6 " 2 )  

and is therefore of the same magnitude as the term next 
after the last retained. The expansion of R is thus asymptotic 
in the proper sense. Thai of p will also be asymptotic, but 
less convergent. 
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Expansioas wheat n is greater, than z. 
When n is non-integral, in the notation of (36), 

T1 = 1--cos  2n~: sin 2nx. Jo(2z sin x)dx 

"wh(~r{5 

z sin 6 
/~ . . . . .  >i 

~t 

Now.~b-u (x-+p sin x) is never zero, or a very small quantity 

for any possible values of x and tt in the double range of 
integration. Therefore the integration of I~ and I:  may be 
efi~cted by the method of the last section, and in so far as 
s leading terms are coneerned~ 

I . - -  {'~ - 1 1~' "--,)o 1-4-/~ (1 _/x cos x) sin 2~(x + ~ sin x')dx 

1 C"jo 1--cos 2n~ 
1-+_ sin 2m d~= -= 2~t + 2: sin ~b" 

Thus 
z ( ~ d . /  1 1 

1 z 
( 1 ~ - : 2 ) ~  ' 

on reduction. 

The leading term of 2T_1 is therefore (~,~_r Let its 

expansion as a series be of the form 

2T1 1 v~ v~ 
z = ~- + ~ + ~ + . . . ,  . . . .  (64)  

where x =  (n~--z2)L R 
I t  is a solution of the same differential equation as - 

which had the value ~vhen n <  z~ z 

R __ i + X~ + . . . ,  

R 2 
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Thus when n > z, the real form 

1 _ xj + x_, (x.o = n.o_ z2 ) 
rib" X ~ ,~ ; '  ' " "  ~ 

is a solution of the differential equation for -T~. By eom- 
z 

parison, it represents 2T-A if vz~=(--)"M,; and therefore if 
z 

x =  (n~--z~) 't, and the coefficients X have the same values as 
in expansion A, 

2T,_  ; (65) 

and if the coefficients tt are also given by expansion A, 

"~;x = t -  m~. + . (6(;) 

We may now prove the existence of the identical relation 
(55). For 

(.b--T-l):=o= 2 n (1 -- p~ tt- ~ -  ) 

But by the integral (37), 

and therefore 

+n~- . . . . . . .  

This is readily verified to any order by direct substitution 
of the values of p calculated from (53). 

Now, with the use of the relation ----2n, it follows 
from (41) that 

O F  

t,+nlog 2--n logz-- �89 =~s dz(,~-l - n ) 

i = n .  "s tanh/3(tanh/3-- 1 )dB-  

where z--n seeh/3, x = n i a n h  ~. 



the  expansion are identical  with those 
then if 
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But  

tanh B (tanh B -  1)dfl = --  log ~oos h--/~ + tanh B + log 2 - 1  ; 

and thus 
e~ 

h _ n l o g  . ~ 7r 1"@, "cosf(~ - - n  tanh B ., log nF~s(n) + n + n 

n j  

3 eosech fl coth 2 ~ + / 

by  the use of the identical  relation, and finally 

+ . ). 
But  by St ir l ing 's  series, n being large, 

�9 r - - ~ l o g 2 +  B ,  _ B2 - +  . . . .  (6  
n - -  n l o g  n - -  ~ log n F - - ~ )  - -  ~- 1 . 2 .  n 3 . 4  n 3 

where the B's  are Bernoul l ian nu lnbers* .  

And finally 

t i = n ( t a n h  ~ - ~ )  ,o~ . -  ~ t , ~ -  3 ~ - . . .  

" ~-~ 2 ! n 3 4 ! + .... (70) 

I t  appears  at once that  J,~(z) is u l t imately  rapidly evan- 
escent when n grea t ly  exceeds z. Accordingly ,  T~ and T 
become identical,  as also t~ and t. 

Thus when n is not_integral ,  and the coefficients ~, tt in 
of expansion A, 

we have 

where  

n > z = z cos fl~ 

,j~,(:)= t4~+e~ 
\ ~ z /  

J - , , ( z ) - cos  n~rJ~(z)=sin ncr . (~z ) ' e - '  

X_ 
ST ~i,,h ~ =  1-- 7~eoth~ Z + if~ coth' ~ - . . . ;  

r .E.a. vide Whittaker, ' Modern Analysis,' p. 194. 

B3 
m 

5 . 6 .  n '~ "'" 

(71) 
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and the second, fifth .... terms are each two orders in n smaller 
than those preceding, and 16 1 / & + l / * s  ) t=n( tanh  B - ~ )  -�89 log~ 2-- ~ 4- '~  n-,2 3 n -~' '" 

1 (  ~_~= ) B1 1! B,2~ Ba4I  
+ P4 coth ~ - -  c~ "'" + n -9). n a 4 !. ~- n a 61 ..., (72) 

where 1, p=n -z,/x4n -4, decrease in order by n -~ at each third 
member of the series. 

This will be called expansion B. 
This value of J,(z) continues to bold when n is an integer, 

and it may be expected that - - 1  Y,(z) will then replace 
7/" 

{J_.(z)--cos n~-g.(z)} cosec n~r ; but the formal proof ia 
necessary owing to the use of T1 in place of T. This proof is 
given in the next section. 

.Expansions when n is integral and greater than z. 
In order to verify the result last ~u~,gested,~ concernin, g tho 

expression for Y~(z), it is only necessary to prove that if 

(2TyPe 
J - ( : ) =  ' 

Y"(z) = - (2T 7r ~ e -t. 

Then the value of T is, to a first order, given by 

2T= z 
. . . . . . .  (73) 

For if this be true, the subsequent proof follows the lines 
above. Now by (50) 

�9 k(~)Yo(z)= cos 2,,x. rfo(eZ sin .~)dx-- - / d4, ]. dO e-'.,,,| 
" w J o  ~, o 

(say) . . . . . . . . . . .  
, J r  

The first approximation to I1, found in the usual manner, 
is, when n > z, n is large, and not too close to z in value, 

If= ~,Jo \ n - - z s i n  r n+zsindp] d+ 

4z { I dt 

= -   -Jo 
~ 

_ _  4 sin-'~, . . . . . . .  (75) 
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To the same order, 

I~=--~o,,t?.E(2n+2zsinOeoshdp)-'e-2"v-~:"":o"~"av]: 

~ + z sin 0 

= ~ / ~  ~- - s i n - ~ =  n. ' on reduction, �9 ( . 6 )  

Thus 
1 

J,,(z)Y.(z) = �89  ~r 2-I2= -- x/ 'n ' -L~ -~' " (77) 

giving the proper value for T. 
Finally, in expansion B, when n is integral, we write 

J .  (z) ---- {'~T'~*et 

and the functions (T, t) are those previously given. 
The limits of accuracy ot ~ expansion B will be the same as 

those for A, with n and z interchanged. 

The transhion between different forms of expansion. 
I t  will now be shown that there is no range of large values 

of n or z for which expansions are yat  to he determined, when 
n and z are real, and that each expansion passes naturally 
into the other, without the necessity of an intermediate 
expansion. We  shall first define expansion C as that of a 
previous paper, where n--z is not large in comparison 
with zk, viz. 

1 ( 6 ) ~  
J ( z )  = ~  z J~(P)' 

1 ( 6 ) ~  n~r +/~(p) +A(p) sin n~'}, n not integral. J_ . (=)  = ~ ~ t f~(p) cos 

(!l Y.(~)  = - { f @ ) + f ~ 6 , ) b  ~ i ~ t e g r a l , .  . . . . .  (~9) 
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~ O W  

asymptotic value of 

f; S i ( - , , 9  - , s~( -  <7) = .  d~. ,~-<'o~+ ..... 

is given by 
. 3 < (~), 

, 71~-' 2~ 3 - } 2 f t .  

so that 

t" t ; (p)= cos Oo + o w ) d ~ .  

Y s  = sin (~+ow)~ , , , ,  
0 

f t~(o)= ,Zw~-~+o  ,o. . . . . . .  (80) 

Stokes * has shown that when a is not small, an 

=' ( ( F )  ~ c o s  2 - � 8 8  

( ) ' )  ( ~'~ 
~ " - i ~  (81) / ~ ( -  ~) = - 3 ~  s~u 2 .~ 

where ~ is negative. 
Moreover, when p is positive, and not too small, 

2 ] J0 cos ~ (w + pw)<tw= ~ ~ - , r  ~. (8~) 

The values of J . (z )  and Y,~(z) of expansion C, when these 
formulae are valid, become, on reduction, identical with 

A 

\~'z j 

* Camb. Phil. Trans. ix., Math. and Phys. Papers, ii. p. 329 et seq. 
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provided that 

Z ~ 
R =  ~ 

2 . . . .  ( 8 4 )  e = ~ * ~ ( ~ ' - , O ~  ~ , �9 . . . . .  

when n is less than z. 
The corresponding values from expansion A are, retaining 

the leading terms 

R =  z 
(~-'~- n:)~'  

" ~ ~ ' ~ -  ~ - ~ , ~  + ~ ,  ( s s )  p = [ z " - - n  )~-r s in -  ~- 
Z 

But when n and z are nearly equal, if sin-* n _ ~r 

Then 

cos e = ~ sin r = 1 (: _ n)"-' (z + ~)~; 
Z '  Z 

and 
p=z(sin ~ - ~  cos ~) + ~ 

= { ~ - +  5 ( z - - n ) ~ ( z ) ,  . . . . .  (86) 

on reduction, which is the value furnished by expansion C. 
Accordingly there exists a region in which either A or 

C may be used. Similarly, such a region exists for C 
and B. 

Finally, the scheme of expansions A, B~ C is complete 
for a real argument. For  the case of purely imaginary 
argument,  only one set of expansions is necessary. These 
may be expressed in terms of the same coefficients (X,/~) as 
A and B*. 

Trinity College, Cambridge. 

~ Cfi British Association Report, Dublin, 1908. 


