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Stokes’ law to liquid spheres of diameters varying from 30
to 50 times the mean free path of air molecules.

3. The results obtained by this method taken in connexion
with Rutherford’s experiments seem to constitute experi-
mental verification of Stokes’ law for these drops.

4. Positively charged drops of water and alcohol are found
by direct measurement to carry charges which are multiples
of 4:65 x 10-19, and all of the multiples from 2 to 6 inclusive
have been obtained.

5. The mean of the five most reliable determinations of e
is 469 x 100, The corresponding value of n (the number
of molecules in 1 cubic cm. of gas at 0° C., 76 cm. pressure)
is 2:76 x 10'° : that of N (the number of moleculesin a gram-

molecule) is 618 x 10%: that of € (=3/2 -I;\g, the kinetic

energy of agitation in ergs of a molecule at 0° C., 76 cm.
pressure) is 2:01 x 10-16 ; that of m (the massin grams of an
atom of hydrogen) is 1-62 x 10—,

Ryerson Laboratory,

Untversity of Chicago,
October 9, 1909.

XXIIL. The Asymptotic Expansions of Bessel Functions. By
J. W. NicroLsow, M.A., D.Sc., Isaac Newton Student in
the University of Cambridge™.

D ANY physical problems depend, for their final solution,
upon a knowledge of the approximate values of
Legendre and Bessel functions for a large range of their
argument and order. In the case of the Bessel functions,
investigatorsT have almost entirely confined their attention
to those special types in which the order n is small, though
the argument < may be large or small,
A treatment of the more general problem presented when
7 s also large has been given by Lorenz {, but only when = is
half an odd integer. The immediate object of Lorenz was
to obtain some expansions necessary for his investigation of
the scattering of light by a glass sphere, in which, as in most
problems of this type, only Bessel functions expressible in
finite form are required. His results were first approximations

* Communicated by the Author. Read before the British Association,
Dublin, 1908.

t Poisson, Journal de I' Ecole, 1823 ; Stokes, Camb. Phil. Trans. 1856 ;
Hankel, Math. Ann. i. 1869 ; Lipschitz, Crelle, 1859 ; and others.

1 @Euvres Scientifiques, vol, 1. p. 435 et seq.
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only, and include three cases: (1) = and n very large, but
z—n not of low order in comparison; (2) ¢ and = very
large, and n—2z not of low order ; and (3) z and # nearly
equal. The limits of validity were left very doubtful in each
case, and especially in (3), there were many points in the
investigation which cannot bear éxamination. In a paper
by the author*, the defect in this case was indicated, and
expansions deduced when = and z do not differ by an amount
of higher order than ¢}, whether n be greater or less than z.
These results are general, and hold for all large real values
of n. They were subsequentlyt applied to the calculation
of a table for the function J, (z) in this case, based upon
Airy’s} tabulation of a type of integral occurring in physical
optics.

pThe Bessel functions of nearly equal argument and order
may be reduced to an approximate dependence on this and
an associated integral, and thence also to Bessel functions
of small argument and fractional order 1, whose tabulation
is readily effected. In another paper§, the special case of
restricted order of Lorenz has been further investigated when
the order is less than the argument, and a type of expansion
obtained which can be used to a degree of accuracy determined
only by its convergence.

The consideration of corresponding expansions for the
remaining cases of large real argument or order is the object
of this paper. A scheme is developed which will furnish
the approximate values of the functions in all cases in which
one or both of the magnitudes » and z is large, and both are
real. The order is not restricted in any other way. Some
interesting analytical results appear in the course of the
work, and a general theory is indicated, applicable to all
solutions of differential equations of the second order
which can be expressed in series whose general term is
known.

The Associated Equation of the Third Ovder.

If (yy, y2) are two independent solutions of a differential
equation of the second order with invariant 1, so that

,d?
(f+D) Gom=0, . . . . . @

# Phil. Mag. Aug. 1908,
+ Phil. Mag. July 1909. _
1 Airy, Camb. Phil, Trans. vi. p. 379; viii. p. 595.
§ Phi{ Mag, Dec. 1907,
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we shall give the name ¢ asymptotic substitution” to any
one of the following pairs of equations :—

(1) ;u=Risinp  y;=Ricosp

(2) yy=8sinhe y,=Sicosho

(3) p=T e ye=Toe=% . . . (@)
where (RS Tp o t) are functions of =.

It appears at once from (1) that if dashes denote differ-
_entiations with respect to z,

vy’ =yye=C, . . . . . . (8)

where C depends on the two solutions chosen.
Thus by the first asymptotic summation,

! <3 !
Récos p &;;ge +R3p’ cos p) —Résinp (—Iiéc;;i d —Ri#p'sin p): C
or dp C
(7; —_ R . - . . . . . . (4:)

In a similar manner it may be proved that

de C dt C
(it:‘; = -S“ N (TZ = 2—T « . . . . . (5)
Asymptotic expansions for y, and y; of any type may,
therefore, be obtained when R, 8, and T have been found.
But writing, in the equation

g:%/—+1y=0,
P dv (
y=ey  p=o
then on reduction
w/’ —4u? 4 21*=C% . . . . . (6)

The possiote vaiues of u are (ip,a,?), corresponding to

the values (R, 8, T) of », and making —(—I—sz(t, 1, ‘},)—0—
respectively. dz u
A solution of (6) 1s therefore 8. Morcover, R and T
satisfy similar equations with «C and 1C written for C. But
C disappears on differentiation, and the equation becomes

linear, yielding
wW A+ 2ul'=0, . . . . . (D)

and (R, S, T) are three independent solutions of this equation,
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which will be referred to as the associated equation of
the third order. It will be recognized as the equation
whose solution is a quadratic function of any two solutions

of (1).
Definition of the Bessel Functions.

‘We shall choose, when =« is not an integer,

yl_(an(z) N )]

Y= (%z)gcosec nr(J_ue)—cosnmJ,(2)) . . . (9)

where, in accordance with the usual notation,
2
’)

I() = 5ar e +1)( Tl ta e n+1 nt2 )(10)
J_a(e) =

sin nwr 2 [‘(n) 1— z2 ot ;
( tE g In2on )
(11)
with the ordinary semiconvergent expansions* when z, and
not =, is large,

) Jn(z) =TU,(z) sin (z— o+ 7")+V,,\z, cos (‘.— - ) (12)

(%
wz\5 nw o w .
(—2-) J_n(..« Un( cos (S+ —2' + I)—-V,,(a) sin (c+ R -+ ‘I) (13)
where
: _ 4212407 =32 402 —12.4n7— 3% 4n?—5%.4n2—T2
Un(@)=1= gy + 41 (82) -(14)
A= 1% 4n? =12 4n2— 32 4?5
Vu(z)= 118 — T8 N ¢ 1))
These values make
yay' —pys=1, . . . . . (16)
dp 1

so that, for these standard solutions, C=1, =R

This definition also makes J_, (2)=(—)*J, (2) when = is

integral. By comparison with Hankel’s expansions the

formulze (8, 9) are obviously the most suitable for the ex-

pansion of (y,¥s) in the forms R¥(sinp. cosp) in general,
* Hankel, Z c.
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when 7 ceases to be small. As defined above, J, (z) admits
the integral formula ¥
7 (z)=f cos (2 sin § —n@)df—sin mrf df . e-n0-zeinh 8 (17)
° 0
z being positive, whilst 7J_, (z) is represented by the same
expression with the sign of n changed. .
If n be an integer we select, as standard solutions,

y,:(’;)%J; i2)y . . . ... (18)

yg=——(2—‘:r)%Yn(z), e )

where Y, (z) is Hankel’s second solution of Bessel’s equation,
defined by

n (2 J_n
V@)=(2%0 —(~p 22l a0

By proceeding to the limit when = is integral in the
former case, it is at once obvious that this substitution is

the natural continuation of the first. Thus it is again true
that

gy —yy=1, . . - . . . (D
and, therefore, when = is integral, the expansions deduced
for (J_a (2) — cosnw Jn (2)) cosec nw will remain valid for

- ;Y,, (2). This is an obvious property of Hankel’s expan-

sions when n is small. When z is small, Y, (2) may be
written

Yu(2)=290(2) {'y+ log ;—} -—(7;—)_” (71%!1—!—+ "—I—,z' (g )’ + )

z ”Sn 2 ”+2S|+S”+1
_(2_)n'!+(§) wgiril e o 32

y=—5377 ..., Sp=14+3+32+ ... +

and negative factorials are to be taken as zero.
The asymptotic expansion when 2 18 large ist

(%>%Yn(z)= —Ua(z) cos (z— %r + ;j) + Va(2) sin (z_.. -"21 + {),(23)

where U,, V, are as before.

where

S

* e, g. vide Whittaker, Modern Analysis, p. 281.
+ Hankel, Math. Ann. i. p. 494
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Solutions of the Associated Equation. Values of R, p.
If y denote y; or y,in the substitutions for Bessel functions,

2.1
(ya¥)"" + (1- v . "’)yz§=0.

z

Thus

n?—1
2’

I=1— (24)

and the associated equation becomes
2u 4 (4= 4nP ) + (dnP—Du=0. . (25)

Writing u=3, a.z",

the relation between successive coefficients becomes
r+l.r+2=2n.r+2+42n.a,420=—4ra,
with an indicial equation
s—1.5s=142n.s—1~2n=0.
The following series solutions therefore exist,

4n?—1* 1.3 4n2—1%4n*—3?
u1=1+—§.——4z7— +;2—.—4.—W e e e e . (26)

P 1.3 P
w=tdepteawmremp T 0 (@D
4l 2n41 22 2n+1.20+3 z
=2 (1— n+l 2.2a+1 " a+l.2+42 2.4.22+1.2042)
. . . (28

where if n be an integer, u; must be multiplied by the
evanescent factor of the denominators, thereby ceasing to be
distinct from u;. For positive real values of =, u, and u,
are convergent for all finite values of z, but v, is ultimately
divergent except when 2n is an odd integer, in which case it
terminates.

Proceeding to an examination of wuy, it is seen that when
2 is intinite in comparison with n, u;=1.

But comparing (8, 9) and (12, 23), in this case, 9,2+ y'=1,
or R=1 from the first asymptotic substitution. Thus »,=R
when z is very great, and being always a linear combination
of R, S, and T, which are of similar magnitudes, it must
always be R either identically or in an asymptotic sense, not
necessarily that of Poincaré.
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When #n and z are both great, a first approximation to R
is obviously

Lo 1.3w

R=1+2.;2* +2—:1? + chey

or z
R:—-‘-T_' Z>n’
VE—n?

which leads to one of Lorenz’s expansions, when # is half an
odd integer. But the errorinvolved would be very doubtful.

Now writing as in usual notation for Bessel functions of
imaginary argument,

K, (x):j;m o-Aeohodp, . . . . (29)
then it may be shown ¥ that when the series terminates
wy=R= %ff K, (2: sinh §) cosh 2ntde,  (30)
or, as a reversible double integral,

R= %—:—y f ¢—2Zzsinhtcosh ¥ gosh 2utdtdyr.  (31)
o o

But this expression remains finite and determinate when
n is not half an odd integer, and it may, moreover, be proved
by direct substitution that it is still a solution of the same
ditferential equation. Accordingly, it is still the value of R,
as it also takes the correct value when z=w. Thus for all
real values of » and z,

R= %—fj K, (2zsinh¢) cosh 2atdt, . . (32)
o

and when 2n is not an odd integer, the series u;, though
divergent nltimately, may be used for the computation of
the integral.
Expressing the value of R in terms of the Bessel functions,
we deduce, when n is not an integer,
8 . ® .
Jﬁ(z) +J_,2(2) =2 u()I _n(2) cosnm= esin’nw|  K(22zsinh t)cosh2ntds,
0
(33)
and when = is an integer,
Yi(:)+ w235 z)=8 s Ko (22 sinh ¢) cosh 2nt dt. (3%
/0

* Phil. Mag. Dec. 1907.
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Some of the special cases in which 2n is an odd integer
are very interesting, as the integral can then be expressed in
terms of trigonometric functions.

Since by (4, 16)

dp _ 1

d=:" R
and when z is very great in comparison with », the usual
expansions yield

3

p=i—5

nm
9 + I)

it follows that in general

p=:_%”+g_f(%_1)dz. .. (35)

Second Solutions.  Values of T, t when n is not integral.

The second series solution, when n is not integral, is of
the absolutely convergent form

oo L 3 1.3 8
=ty pt o e amgt
Now if

T
1’m=f sin 2ne sin*g da,
0

tv}v;hfre n is not, and m is an integer, then it is readily shown
a

—2m .2m-—1

U= A g Um-1,
(=)"2m! T
= — sin 2nx dx
222 e mi®, P —12 ... 112—125; ?
whence
2nz " (2csine)®  (2esinaz)t .
Ug == e 1— e - =7 . Vsin2nz dz
3= T cos 2nm ), ( gt TomE - )
2nz K o J (2= d 36
= " sin2nz. zsin ) da.
1— cos2nm ), of ) (36)

It remains to identify w,. Now making a substitution
(a modification of the third asymptotic substitution),

y1=('gi)%Jn(:), yﬁ(%f“"sec"”-'} -n(2)s g1ys=T1.(37)
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Then, bly; direct multiplication, an ascending series is
obtained whose leading terms are

3

Y13 ='—~" 3 ‘—‘#—‘—q

Y= gntoon w1z
and which, moreover, must satisfy the associated equation.
Thus by comparison of series

U= 2nT1,
and

ar

= . 9o cin s

T T cos 2mrjo sin 2nedo(2zsine) do. . (38)
This result was known to Lorenz for the case in which 2n

is an odd integer. The substitution (36) is more convenient

than (9) when = is non-integral and greater than z. Thus

for all real values of = and n, the latter not being an integer,

mw
()T (o) = i fo sin 202 . Jo(2esin2) da.  (39)

~ wsinnw

When = is an integer, evaluating the form then presented, by
an obviously legitimate process,

: 1 T, . .
(_)nJi(z)=;§zj; sin 2ne . Jo(22 sin z) de =+ —g—-nsmmr

=)r(" :
= 7j‘ 22 cos 2nad ( 2z sin ) dx
0

FUERY T
= (—;r?l _271 X 2 cos 2nz J (22 sin @) dz,

or 2 17 . .
Ja(z)= - | sin2Zna. Jo(2¢sina) de, n=integer. (40)
Q

This follows otherwise from a result given by Neumann *.
The determination of T (T, being infinite) when = is integral
is somewhat difficult, for w, and u; cease to be distinct. For
this determination a more direct method is useful t.

It was shown that if ¢ be defined by the third asymptotic
substitution,

ot _ 1
o< 217
* Cf. Gray and Matthews, p. 28.
t (/. the formula for J»(2) Yn(2), infra.
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2n,
Now near 2=0, ¢ =21} ‘ Yo T
N m ecomes zero like ST () (n 1)’
or near :=0,

1 T
= lod =log o
t=nlog s+ 5 lognrz(n) ,
and therefore in general

1 T z 1 n
t=2~10g7;1‘_‘7(—75—n10g2+nlogz+£’ (ﬁ\—;)dz) (41)

this being the only possible function satisfying all the con-
ditions. In a similar way, if ¢; corresponds to T; as ¢ to T,
1 T B 1l a
tl-—-ElOg;lT.‘Tn) —7l10g2+7110gv+£ (g,r‘;—-;)dz. (42)

These two relations cease to be distinct when = is very
great in comparison with z, for it will appear that T, and T
only differ by an amount which is exponentially evanescent
when = tends to infinity.

The third series satisfying the associated equation is

n4+1 22 2n+1.2n+3 2t
ntl 2.+l T ntl.n+2 2.4.2n+1.2.n+2_'")

uy=2#+1 (1 -

i 22 sin27+20 24 sin2r+49 -
— 2dnt1 somg & S Y __ctsin™Hg N .
- +j:) (sm o 112041 +2!2n+1.2n+2 ...)dﬁ.J; sin?* 8 48

_T+1)TE2e+1) (7
= AT+ D o Jm(2zsin@)db. . . . . L L 0L (43)

But

2 T2 20 = _1':_22_*_‘_( -2
W= Ja(z)= 53 +12(n+ 1) 1 2. n+l +...)
and therefore by comparison, and by the differential equation,

TUg

T
2 2=—,-,,74-—v—=}z J n 2z sl 0 do,
5 21 (n 1) zJ; on (22 8in )

by the use of a well-known property of gamma functions.

Here 2n must be greater than —1, in order that the
integral may be finite. Thus for all real values of z, and
values of n greater than —J},

™
wJ?.@):j Jm(2:5in0)d6, . . . (44)
0

which is a known result for integral values of ».
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The value of 8, in the second asymptotic substitution, may
now be expressed, but this substitution is of small importance,
as it is identical with the third in all useful cases.

Again, by (44), if n< {,

T
7%, (2) =J: d_2m(225in@)df. . . . (45)

Thus, if the argument of the functions be constantly =
when not expressed,

21:'J,‘aa—i—n = j‘ ian Jan (225in 6) d6
0

T
27‘_J_”BJ—n — _'a_

e = - J_s,(22sin 6) d6.
0

Thus

oJ. J_,0d_, R . ° .
F Y 5 —6;—) = .‘; {ann (2#sin 9)—3_;;J‘2" (22 sin 0)}d0,

or, when n is made integral, its only possible value being
zero,

™
T ole)=| Yo(2ssin6)dd. . . (46)
e
A more general result is proved in the nest section.

The Formula for J,(2) Y, (2).

An expression for the product of two Bessel functions of
different types, when = is integral, has been given by
Neumann™*.  But it is somewhat unsuitable for our purpose,
and an alternative is now developed which can, however, be
formally identified with that of Neamann.

By (43), the argument being z unless otherwise specified,

9Jx

277Jn -5_;5

9

=f 9 J,,(225in 6) d.
o On

But

T
720 () =J cos (wsin p—2ne) dep
(]
~— sin 2n7rj dp e—2n¢ ~weinhg_
4]

* Bessels'che Functionen, p. 65,
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Thus when =z is an integer,
v Jan(w) = 2"1 ¢ sin (w sin ¢ —2ne) dop
on o .

—27":) dé e—2n¢ —wsinh ¢,
so that on reduction

2J n %%: =%"0 cos 2n¢ Hy(22 sin ¢) dp — ?rj; ¢ sin 2n¢p Jo(22 sin ¢) dp

_ gf (Tdadd) e—-2n¢—2zsin9sinh¢’ L (47)
mJo Jo
where H, (w) is Struve’s function* defined by

ki
H, () =2 f sin (wsin 0)d6. . . . (48)
Again, °

l'd .
7J, J_,.=j‘ Jo (22 sin @) e Mz g,
0

sinnr
so that when n is integral,

od_, Ja T . 0 sin2
W(J,. 5n +(--)n.1n.a__n)=yo Jo(2zsinw . 222200 gy

on sinnw

ki - .
. 22 o8 2nx sin nmT — T COS nw £1n 2na
=‘f Jo(22 sin 2) ( g )dx
0 sSIn® 7

The integrand takes the form g when n is integral.

Therefore evaluating in the usual way, which is obviously
legitimate, we obtain

( —)"Jn%;—" +Jn %in = 2—71,_55; (w2 —42%) sin 2nzx Jo(22 sin z) d.

By subtraction with (47), and with the help of the results,
true for integral values of #,

w
j sin 2nz do(2zsine)da=0. . . . . . . . . . (49)

T T
j‘ 2? sin 2n2 J (22 sin ) d.z:-zrf zsin 2nae Jo(22sinz)de, . . (50)
0 0
it appears that
ol . 2 * N ~2n¢ —~2z5in 8§ sinh ¢
5@ Yo =4 | cos2ne Ho2zsina)da—2| dp| dfe
Jo T Jo 0 (1)

* Cf. Struve, Wied. Ann. Bd, xvi. 1882, p. 1008; Lord Rayleigh,
¢ Theory of Sound,” § 302.
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The value of T when x is integral may now be deduced,
and thence ¢ by (41).

Expansions of the First Type.

Returning to the value of R given in (31), it is first to be
noticed that the evaluation (asymptotic) of the integral, given
in a previous paper *, was in no way dependent upon the
restriction of 2n to an odd integer. Accordingly, this
evaluation may be used in the general case. The same
applies to the subsequent treatment of p as given by (35) of
the present paper.

Tgus quoting the values of R and p previously obtained,
we obtain the following asymptotic expansions when n is less
than 2, and z—n is not very small :—

‘When # is not an integer

(o) = (f_}‘) sin p

2R\} .
J_a(2)— cosnmr Ja(2) =(F) cos p sin am,

and when = is an integer,

() = (%? >% sinp

Y.(5)=—- (—2—23)j cos p,

where if n=2zsin «, defining an angle «,

R =seca+t 2-«_?590"’a+ gfsec4a+ s+ (52)
where
A= — %3’ A= 27_—;@3 A= 4640n2-1211625—640n4’
and

4,543 Nt (34 2)°Aq 1+ 2% s+ 1 s+ 2 . 0
+nts.s2~4.0,.5=0, . . (53)

and every third term of R, beginning with the second, is
two orders (in z or n) smaller than those before.

* Phil, Mag. Dec. 19807.
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Moreover, if identically

T4 ma®+ et + o =(L+r + 02t + .0 )"L (54)
Then

T .
p=4m+:(cos a— 5 —asin «)
1igp
4f /l‘(‘) 1 3
—-< Stana— “3(tan =1 tan’a
7 722 7"4( 3 )

+ %g(tan a—Ltan® e+ ! tan®a) — }, (55)

and the second, fifth, &c. terms in the large brackets are
-each two orders smaller than the preceding.
An identical relation

pa= B =0, ... L (36)

n® ' nb

proved later *, has been used in the reduction.

R may be arranged more conveniently for some purposes
in the form

R=z{1+ z 8,8 | =z 88, 102288 = 8§88

3179 tyi et tgT o tyyTae
5622 6,28,° 28023 8,%8,° 1
R
where 8,=3/dz, 8,=9/n,

being here given to an order =% when z and n are of the
same order. We shall refer to this system of expansions

subsequently as (A).
The Remainder in the Expansion of R.

From the previous paper the remainder after » terms in
the expansion of R is

N A e A RN
52}:, wjo {(wt) y}v'e dt, . (58)
where

v==sinh¢ F pt, v'=cosht F p, A=2zcoshy, Au=2n,

and 3 denotes an addition of the two values corresponding
to the ambiguaity.

Now it is well known that the integral

1=r fB oL L (59)

* (7. (67) tafra.
Phil. Mag. S. 6. Vol. 19. No. 110. Feb. 1910. R
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where A is large, and f, F are uniform in the range, is
represented to an order A~! by

I=j F0)e PO, .. . . (60)
0

or by I=j tF Q) e MO ge . . . . (61)
0

according as f(0) is not or is zero. Moreover, F(¢) may be
expanded, and the first non-vanishing power of ¢ alone
retained, if F(¢) does not contain A. Alse F(0)=0, and
F' must not vanish in the ranges except perhaps at £=0.

n .
In the present case p= Toosh g and n is less than z, so

that /=1’ cannot vanish. The other conditions are obviously
satisfied.

a\'1 .
Now when t=0, v=0, and (}, 5, L, is zero when » is
v dt) v

odd, and when 7 is even, it is given by Z; A+ g, where
up41 represents the termin R next after the final one retained
(in thewsewnd expression for R) with X(_l}ﬂ) substituted
for Pt and the summation and integration prefixed.

Thus the remainder after » terms only differs by an order
A1 from

p ’ d\!l‘ u,.Hj v e\ dt, or I ’A hur{-l (éfy
/0 0 0 A

when » iz odd. When r is even its order is less.
If the »th term of R be therefore denoted by 7w U (2 —n?)-3,

where Uy is a certain operation, the error involved in stopping
at the #th term is of magnitude

1 ® 1 1
R )

coshyr—n 7 = cosh Yr+
ar 1 T
;Ur+lﬁ, N (1))

and is therefore of the same magnitude as the term next
after the last retained. The expansion of R is thus asymptotic

in the proper sense. That of p will also be asymptotic, but
less convergent.
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Fapansions when n is greater than z.
When = is non-integral, in the notation of (36),

w
T)= . ( sin 2ne . Jy(22 sin 2)dz
171 ¢os “_’)m'vo o )

=if;ra:¢5g2;;7f>j0- (Tt L)dg, . . . (62)
where

1, I,= (” sin 2n(e +psina)de, . . . (63)
v 0
_zsind

n

Now‘a—a‘; (@ psin @) is never zero, ora very small quantity
for any possible values of 2 and p in the double range of
integration. Therefore the integration of I, and I, may be
effected by the method of the last section, and in so far as

the leading terms are concerned,

1, Ig:\ﬁr f'l_g (14 p cos &) sin 2nlw+ wsin a)dx

= 1 (" o= 1—cos Znmw
T ik, sIn =Hb b= Znt2zsind

Thus

z f" 1 1
1= E'n"’ dd’(ﬁ;ﬁ_: sin ¢ + n—z sin¢)

on reduction. .
The leading term of ”—T‘ is therefore (#?—:%)-i. Let its
expansion as a series be of the form

27, 1

z =z

Vo Vs .
- R N ()

where &= (n? —2%)t.

It is a solution of the same differential equation as R
which had the value when n<z, c
R_ 1 A2
= ’(gz_ne); F—n?)i too

R2
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Thus when n> z, the real form

| VRS W o o g
._’L‘ E+.??T”" (-’C— n'-/)

. . . . . T

is a solution of the differential equation for ~'. By com-
. . 2T, . ~ .

parison, it represents —;1 if wp=(=)As; and therefore if

a=(@*—:2)}, and the coefficients A have the same values as
in expansion A,

QTl =

¥

"')bg;—;; +A ::5:3—...; . e (65)

>

&

and if the coefficients u are also given by expansion A,

L _ 200 pe g )
T= U ER ) e 69

We may now prove the existence of the identical relation

(55). For
< — My M .
-2—T—1):=0—2n (1 n? + nt )

But by the integral (37),
£ =2n;
(2T1 "

g He
Mo ;1-2-+n"2—...—0.

and therefore

This is readily verified to any order by direct substitution
of the values of u calculated from (53).

Now, with the use of the relation (2—‘}) =2n, it follows
from (41) that V,

_ o | < > ? Z -];‘ - l (i [
tl-—-.f;,- lOg;f‘l(—n) -_—7n lOg 2+ (ﬁ:)olog“-!-"; d" (ZTl Jot 41‘1)0)

or

& 1 n
ti+nlog2—n log:—%logﬁ% ==50 dz(r’l'l -.:)

= ” tanh B(tanh 8—1)dB~ % ﬁ i dﬁ(yg— 2 coshe B+ ) (68)

‘8

where :=n sech 8, z=ntanh B.
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But
W0 GB
‘3 tanh 3 (tanh 8—1)dB= — log cosh B +tanh B+log2—1;
and thus

w

B
¢ —nlog :-—%log;fg—@ +n4nlog 'é"(‘}” —ntanh 8

osh 3
17
= - j tl,B(y2-g;coth2,8+-#-fcoth‘ﬁ—...)'
8 n

n
= L dg (&4— cosech? 8— #8 cosech? Becoth’B+ .. )
n g n? nt y

by the use of the identical relation, and finally

= (8= 1 o — ) = (Bhcoth B— ocotin B...)
+5u“ ) (nchth,B 3m.coth B...)

n? 3nt
But by Stirling’s series, n being large,
— e | . aT —1 Bl — B2 B;; . “
n=nlogn 2]°g£P2(n)_2 log 2+ 1.2.n 3.4%° + 3.6.a% 77 (6

where the B’s are Bernoullian numbers *.
And finally

1 1
t=n(tanh B—B)—Llog 2— 7?;(;1,4— 3 ’;-Z—g —-)

1 " B,1! B,2! .
+;3(/£400thﬁ—-31—3200th36)+ ;:—2—!*‘—;;;, Z:—!+. (70)

It appears at once that J,(z) is ultimately rapidly evan-
escent when # greatly exceeds z. Accordingly, Ty and T
become identical, as also ¢ and ¢.

Thus when » is not.integral, and the coefficients A, u in
the expansion are identical with those of expansion A,

then if
n>z=zcos B,
we have
2T\;
Jn Z)= (»--—-) et
) \TZ
. 2T}

J_(2) ~ cos nwrd (2) =sin n7r. (%—/) et

where

2Tsinh,8=1—%§coth2,3+%coth‘,@—-...; . (1)

* E. 0. vide Whittaker, ¢ Modern Analysis,’ p. 194.
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and the second, fifth, ... terms are each two orders in 2 smaller
than those preceding, and

t=n(tanh B—8)—} log 2—3( _lee L )

- 2008 ST\ T e TR

1 Ho o 113 B,1! _ By2!  Bs4!
+ g (acoth B— Frcoth®Be L)+ oy — L+ =

where 1, uyn~2, um~*, decrease in order by n~2 at each third
member of the series.
This will be called expansion B.

This value of Jx(2) continues to hold when n is an integer,
and it may be expected that — % Y.(z) will then replace

{J -n(2) ~cos nwd ()} cosec nr; but the formal proof is
necessary owing to the use of T, in place of T. This proof is
given in the next section.

(12)

Expansions when n is integral and greater than z.

In order to verify the result last suggested, concerning the
expression for Y,(z), it is only necessary to prove that if

Tu() = (?)ef

Y, ()= — (2T7T et

~

Then the value of T is, to a first order, given by

M= .. .. ... (13)

GEE

For if this be true, the subsequent proof follows the lines
above. Now by (50)

J,,(z)Yﬂ(z =%j’:’ cos 2nzx . Ho(2z sin w)dw— %j; d¢ ‘,:rdo e—2n@—2z sin @ sinh @

=§Il—%Iz(say). Y ¢ 75

The first approximation to I, found in the usual manner,
is, when n> 2, n is large, and not too close to z in value,

1" 1 1
L= 'ﬂ'jo (n—-zsin¢ ﬁ-?sxﬁ) d
1 dt
R N T
4

== — 1 _1: - .
= 'n-\/nt:?.sm nt (75)
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To the same order,

o

I,= —-J "de . [(292 + 2z sin 6 cosh ¢)~le-2®-2sing "“hﬁ]
0

0
Y
=% . ndzsiné
_ 1 {_'": _sin-li} on reduction 76
=Ja=AE T o 69

Thus

2 1
J.()Ya(e)=41,— ;12:—" - W;-?, .. 0T

giving the proper value for T.
Finally, in expansion B, when = is integral, we write

J,,(z)=(%£—)*et, Y,,(z)=—(g?:—"-’ bty . . (18)

~

and the functions (T, ¢) are those previously given.
The limits of accuracy of expansion B will be the same as
those for A, with » and z interchanged.

The transition between different forms of expansion.

Tt will now be shown that there is no range of large values
of n or z for which expansions are yeot to be determined, when
n and z are real, and that each expansion passes naturally
into the other, without the necessity of an intermediate
expansion, We shall first define expansion C as that of a
previous paper, where n—z is not large in comparison
with z3, viz,

56 =2(2) A
1 (6\¢ ENTFT o .
J_.()= — (;) { f1(p) cos nar +f2(p) +f5(p) sin »w}, n not integral,

Ya(2) =_(9){ Fl@)+ (o)}, m integral, . . . . . . (19)
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where
6\
Po= =)
fl(P)=j‘ i cos (w + pw)dw,
0

Silp)= ‘ sin (w® + pw)duw,
Jo

rg(p)_—.j dwe*ee, . . . . . (80)
0

Now Stokes * has shown that when ¢ is not small, an
asymptotic value of

«®

fi(=o)—ys(—0a)= “ di ¢~ WPt
Jo

is given by .
R i 25('()7:1—;2« .
Bt
so that
fi(—o)= g%cos (2(%):2—%71'),
f(=a)== 7 sin (2(‘3’)—%7) )

where o is negative.
Moreover, when p is positive, and not too small,

e VR L (89)

(' m, 3 5
(2)j0 cos 5 (w" + pw)dw= 3 3iph

The values of Jx(2) and Y,(z) of expansion C, when these
formulee are valid. become, on reduction, identical with

2R\ i
J.(s)= ‘;g') sin p,

Yn(z)=—(2—7?')%cos - . . . (83)

* Camb. Phil. Trans. ix., Math. and Phys. Papers, ii. p. 329 et seq.
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provided that

R= (2 . ;—-n)%’

.‘)_;_
P=%w+%(:_)l),g(§),. e (8D

when = is less than z.
The corresponding values from expansion A are, retaining
the leading terms

z
=

p=(*—n®)t+n sin“? —sam+im, . . (85)
But when = and z are nearly equal, if sin-* g = g —€
: 2
Then
€os ezg’ sin = ]5 (c—n)r(c+ n)3;
and

p=z(sine—ecose)+}m
=47r+;:;(s—n)z~(§)'i. .. (86)

on reduction, which is the value furnished by expansion C.
Accordingly there exists a region in which either A or
C may be used. Similarly, such a region exists for C
and B.
Finally, the scheme of expansions A, B, C is complete
for a real argument. For the case of purely imaginary
argument, only one set of expansions is necessary. These

may be expressed in terms of the same coefficients (A, ) as
A and B*.

Trinity College, Cambridge.

* Cf. British Association Report, Dublin, 1908.



