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FUNCTIONS OF LIMITING MATRICES

By F. B. PIDDUCK.

."Read June 10th, 1920.]

1. Interesting problems arise in the theory of matrices when two or
more of the roots are equal. This case has been discussed by Frobenius,*
Sylvester,* Buchheim,t and Tabeiy§ by different methods. Sylvester!!,
gave the formula for any function of a matrix with unequal roots, ami
suggested that the case of equal roots might be treated by passing to the
limit. Sylvester's suggestion has to be modified before it can be put into
practice, as the purely symbolic method leads to difficulties when we come
to consider the non-scalar fractional powers of a scalar.v , §

It appears that several lines of investigation can be coordinated by
reverting to Grassmann's treatment of a matrix as an open product."
The limiting process can then be carried out in full generality, and thus
we have convenient explicit formulae in terms of the scalar coefficients
of the degenerate matrix.

If all the roots \ u A.2> ..., \n of a matrix of order n are distinct there
•are n distinct (generalised) axes uv uit ..., itn. For simplicity we shall
denote Grassmann's external multiplication by simple juxtaposition as in
the latter part of Al, avoiding the square brackets of A*2. Write

\ \ ) , II* I ) it,,,

0

• G. Frobenius, Jour. / . Math. (Crelle), Vol. 84 (1878), p. 1.
t J. J. Sylvester, Johns Hopkins Univ. Circulars, Vol. 3 (1884), p. 9 {Math. Taper*,,

Vol. 4, p. 133); Amer. Jour. Math., Vol. 6 (1884), p. 270 {Math. Papers, Vol. 4, p. 208).
* A. Buchheim, Proceedings, Vol. 16 (1884), p. 63 ; Phil. Mag. [5], Vol.22 (1886), p. 173.
S H. Taber, Amer. Jour. Math. Vol. 12 (1890), p. 337.
ii J. J. Sylvester, Comptes Rendus, Vol. 94 (1882), p. 55 {Math. Papers, Vol. 3, p. 562).

«[ J. J. Sylvester, Phil. Mag. [5], Vol. 16 (1883), p. 267 (Math. Papers, Vol. 4, p. 110).
** H. Grassmanu, Die lineale Aiisdehnungslehre, p. 266, 1844 [referred to as A l ; Gen.

Werke, Vol .1 (1), p. 284]; Die Atcsdehnungslehre, p. 245, 1862 [referred to as A2; Gen.
Werke, Vol. 1 (2), p. 243].
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Then the matrix is expressed as an open product in the form

The notation is a combination of Grassmann's first notation with Gibbs'
•dyadic notation as modified by Heaviside. Thus

% n Un . u'nXy

where u\ x is the external product

) ) t _ ! U2...UnX

ux u.2 ... un

and may be described without impropriety as the scalar product of u[ and
./;.* Following Gibbs, it,, is said to be the extensive quantity reciprocal
to «,-.

2. Let s + 1 axes coalesce with ar. In addition, let ut be a typical
axis which remains distinct from ur while the corresponding root tends to
A,., and um a typical axis distinct from ur with a root A()i distinct from A,.
We have therefore four sets of quantities to be considered in the first
place, represented by the scheme

A,

If;.

K+ex ... X

a.A-x-, ... it,

A,+et

where the e's are ultimately indefinitely small scalars and the JC'S ulti-
mately indefinitely small extensive quantities. For the present they are
finite. Write P for the complete external product

and PEu for the product omitting any factor u, with such a sign that
PEu/P is the extensive quantity reciprocal to u in the vt-ad P. Write
Q similarly for the complete external product

Then

P = Q, PE {ur+x9) = QExv, PEut = QEut, PEuM = QEu.m,

and PEur = QEur— 1

* See A2, Abschnitt 1, Kap. 4 : the scalar product is used in this sense in Al,
pp. 268 et seq. The quantities u' are practically Grassmann's complementary quantities.



400 F . B. PlDDUCK [June 10..

a case of a general theorem of Grassmann's to he used later. Hence

1 1 (X + )(WH<V)= \,.ltr.

= Xr \ur .
QEllr

Q " Q ' Q J

PEut

+-2XM7/W. ' ̂

QExc

<r = 1

QEu,

/ ' Q

Since 1 = Xu. QEii/Q in any n-a,d Q, we have more simply

4* = X r + 1 (XlM—
W . T

The problem before us is to find the limiting form of $ when the
scalars e and the extensive quantities x tend to zero. Take a set of ex-
tensive quantities «r +i , ur+2, ••-, «r+* arbitrarily, but fixed. Let R h&
the complete external product

and let x« =

Thus

Q = «, ;(10)

• (20) wr+(21) wr

?^r-}-(si)//,.+ i + . . . + (s.s

Write d for the determinant

(11) (12)

(21) -(22) (2s)

(sl) (s2) ... (ss)

'Jhen leaving QEx* undetermined for the moment,

Q = AH, QEi(r = ABEur- 1 (o-O) Q ^ a ,
< r = l

gjS/^ = ABEut— ^ {(jfiQEx,,, QEitn = ABEum— I (<rm)QExe
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Write u' = REujB for the quantity reciprocal to any factor u of th«

/t-ad B, in accordance with (1). Then equation (2) gives

wbere

$ t = \ r Ur . ur+ 2 ur+f>. n,',.+t> + 2 (K+et) n,. ?<-J + 2 \mnm . ?t«, (4)

* 3 = 2 \€Al+<r0)ur+ i eA<rp)Ur+p+2{e.-eMvt) n,

wj . ^ ^ . (5)

No new terms arise in $ 2 in the limit. As regards <£2, we have*

Exa

m 0=1

where {pq)r is the minor of (pq) in A, divided by A. The coefficient of
u,.. u'r+a (a = 1 to s) in <£a is

Ata= 2 e,(l+oO>(«ra)'. (6)
< r = l

The coefficient of ur+p. u'r+a (p, a = 1 to s) is

V = 2 €A<rp)(<ra)'. (7)

The coefficient of u,. u'r+a (a = 1 to s) is

>fca= 2 (e<,—et)(<rt){<ray. (8)

The coefficient of um.. wi+a (a = 1 to s) is

£ * = 2 ( e r - \ w + Xr)((m)(<roV. (9)< r = l

Since the vanishing of the quantities (<rg) tends in general to make the
inverse set {<rqY infinite, we must consider the possibility of all the
quantities fAa, 'pa, Wa, £m* tending to finite limits. Using the same letters
for the limits we have therefore the serai-canonical form of the limiting

* A2, pp. 3S, 39.

BE:-., -j. roc. 19. NO. 137G. 2 i»
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open product, namely*

$ = XA uT.iie+ 2 ttr+p.•«'+,+ 2«•!.?«! + 2X,» -M W . I4
L. p = l t J m

-f 2 /*««,• + - «'pa«r.p+2 *lta-tlf\-2£m»Vn •«!•+»• (10)
o-.l L p-_i / w J

8. To find any function / ($ ) of an open product 4> we replace eacb
root X by/(X), leaving the axes unaltered. Thus

p=\ I

+ V I f I V ' IV ' IV-' I ' /I 1\

Where /*« = - e;(l-f-<rO)(cra.)r, (12)
e r _ l

{ = I (18)

H<r»»)(«ra)', (15)

and «?;. =/(X,+e, , . )~/(X,). (16)

So far approximations have only been made in the first lines of (10)
and (11), where no limiting problem arises. We have now to calculate
the limiting values of fx'a, i'pa> '/L £'na in terms of those of jua, vpa} rjta, £ma.
We first eliminate the scalars (a-k), that is the modes of evanescence of
the x's, leaving only the es . From (6) and (7) we have

2 / * ^ = i 1 1 ea( l + (r0)((T)8)'eT(Ti8)(T«)'.
0 = 1 / 3 = l <r- 1 T - I

The summation with respect to ft gives ssero if a ^= T and unity if a- = T.
Hence

M0i'0= 2 4

• The degenerate forms of open products of the third order have been found by different
methods by J. W. Gibbs, Scientific Papers, Vol. 2, p. 71, aud F. L. Hitchoock, Proc. Hoy.
Soc. Edinburgh, Vol. 35 (1915), p. 171.
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The result can obviously be generalised. Write

408

. i>\a {p ^ a),

where fi, y, ..., A arep—1 of the first s positive integers, and summation
is over all possible values of each, equality included. Then we can prove
by induction that #

Equation (0) is included if we put MU = &*• From the first s of these
equations we can calculate the s coefficients

a n d e x p r e s s u, ' i n t e r m s of e l t e.2» •••> f«, M<x> M'-a, •••» /**.. W r i t e A f o r t h e
d e t e r m i n f i n l

e , e.j . . . et.

jind Aa,, Cor the minor of e£ in A. Write further

/V' -" A. *

Then we have without approximation

Hi = / i Ma-I-Jf'ir M2a"f - • +/«/*,a.

is liolomorphic in the neighbourhood of \,, the quantity/,, tends to

-)//*! a« the e's tend to zero. Hence

The theory for i'po ' s similar. Writing

(17)

we have „;. = ^.r(Xr)+!^/'l(Ar) + ...

As ve^iiids jy,:a, we have the derived formula

(18)

•2 D 2
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where *]H« — »7u and

F. B. PIDDUCK

— " VKa

Writing A for the determinant

1 1

y - l _ * - 1

[Tune 10.

and A^ for the minor of e£, we find as before .

where </>,, — 1 —— ^ — ' .

It is clear from the form of equations (6), (8), (12) and (14) that if <f>r

tends to a definite limit when e,, as well as ev e2, ..., e,, tends to zero, that
limit is fv)(Kr)lp\. This will be the case if, for every finite value of e,,

<f>v tends to a definite value as €ls e2 c. tend to zero. Let e, therefore
be finite, and write \, = A,+e,. Then

This expression, however, has the definite limit

1 <)''~' ! f(Xr)

('/» —1)! f̂ A',1-" ' x ' ~ x ' !

whioh proves the theorem. Hence we have, finally

(19)

The theory tor £wa is implicitly contained in the above, and we have

A,—A,,,

(,s —1)!

Avhere C,v,>n. = S^7/l|

The enunciation of the general theorem for any number of sets of
coincident axes is cumbrous, but the theorem itself is easily underhtood.
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Corresponding to each set of roots such as A, we have terms of the type

Ar ur.u,.+ 2 Ml.+p.^+p+2 ut.u\
L p=\ t J

-|- 2 H*U,+ 2 I/paZt,+p + 2 ty«M<+2fnitt «»* - "£-«
, _ l L p = l A m J

where no account is taken of coincidences outside the /• set, except that
it1,, ... are calculated from a complete external product in which only one
jixis of a coincident set is retained and the factors ma<l« up to the full
number by arbitrary extensive quantities. The rules for /(<&), or rather
the part of/(3>) belonging to /•, are as above.

1. The quantity vpoa may be regarded as obtained l>.y repeated appli-
cation of the formula

— V / „ i _̂ » ., > /O1 \
r/) pa. — "** VppfiVqfia. \P I y ^ ^ "VJ V-^-1-/

and then the other quantities are given by

v ,, „ — v „ „ ;- — v /- „ (09\
.U...I —< Ha I-(p —I) flat 'l/ita. -^ lltfi "(/) — 1) fiat Sp?«,0 — > "'& v{i>— l )^a- \ ^ « /

4 .1 £ - 1 3 - 1

Equation (21) is of the form of matricular multiplication, as it should be,
for considering the special open product

(.23)

we have W — 2 I 2 uppaur+t> \.u'r+a KP < *). (24)^ ' = 2 2 vP?a.u,r+p -Wr+a {p < <).
o=i LP=I J

The possibility of identical relations between the coefficients in (10) has
been left open in passing to the limit, and it remains to apply the test
that s+ / - | - l of the roots are equal to Ar. We have

I-—A) 2 //.,.-«; + 2 (X,1(—X)
t ,„

where

—A) J^+a-r- 2 i/p8Mr

The external product of the antecedents of 3>—A, whose vanishing deter-
mines the roots, is obviously independent of the quantities /J., »;, ^. Con-
sidering VV as a special form of (10) we see that it must have all its roots
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zero; and these are all the necessary restrictions on the generality of (10).
Since ¥ is an open product of order s, ¥s vanishes identically, and

*V, = 0. (25)

It follows that the series (18) must stop at ,̂_i)PB/<5~1)(Xr)/('<!'—W »t most.
Not more than <s of the relations (25) are, of course, iudependent.

Other forms may be obtained by considering that the quantities v satisfy
equations of the same form as the quantities v. Thus from the relation

we derive - i'«. = 2 I ^ = ... = 2 %-i ) a a = 0. (26)
« = .l a = l a = l

To find the identical equation of lowest degree satisfied by the open
product $ we proceed as follows. Let £,. be a function of 4> which does
not contain any of the extensive quantities ur, ur+a, ut (which we call the
r set) as antecedents. Let <£>t. be another function similarly related to a
second simple or multiple root. Then <£,-$,. does not contain the r fiet as
antecedents, nor 3%$,. the v set. But since 4?,. and 3?r are functions of $,
<£,.#„ = <&v&,.. Hence $,.$„ contains no member of either the r set ov
the v set as antecedent. Proceeding to the end we see that the produc
IH?,. extended over all the roots is identically zero. Hence we have to
find the function 4\. of lowest degree having the required property with
respect to ur, u-r+n, n,, and we know from the general theory that this is a
power of «£—X,.

Put / ($) = {4>-\)«. Then

/W(\r)lp\ = 0 it pj=q, =1 if p = q.

Thus n'a = i/pO = >]',„. = 0 if q> s, and

f*'n = M,,n, I'po = V>lf>a, Via. = V>,ta i f Q ^ S.

Hence 3v = (4>—\,V. where q> is the least number for which

IJ-qa = Vqpa = V;ta = 0 , (27)

provided that any such number less than s exists, failing which we have
q = s. It follows that coalescence of the t type always causes reduction
of the degree of the identical equation, by an amount equal to the number
of terms involved, and further reduction may take place. From (21) and
(22), if equations (27) are satisfied for any value of q they are satisfied for
all higher values up to s, and we have also

... = £mfi = 0 (q < S). (28)
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Hence we have what seem6 to be the essential point oi Buehheim's second
paper,* that if (*§>—A,)1' is the highest power of <1>—X,. in the identical
equation, differential coefficients up to the order <\ — I occur in the corre-
sponding part of

5. If/0?) is '/-valued and <J> a matrix of order u, /($) is in general
»''-valued,t but functions of special matrices may contain arbitrary con-
stants, or be non-existent. One cause of indeterminacy is that 3? may
admit a transformation of axes (as for example the matrix unity), the
multiformity of f(z) causing the constants of transformation to appear in
the result, t The other cause is more closely connected with our present
subject. The q-th root of a degenerate matrix is found in practice by
assuming a form of the greatest admissible generality as to roots and axes,
and comparing its 7-th power with the given matrix.§ That arbitrary
constants may enter into the solution is clear from the preceding formulae.
Let/(4>) in equation (11) l>e a </-th root of <f>, and let A,. = 0. Then from
>j 4. if q > s, the original matrix must satisfy the- conditions

M« = vP« = >ho — 0 ,

and then there are not equations enough to determine the assumed con-
stants ixat v'pa, tj[a, £'wa. Theoretically, there is no need to assume a tenta-
tive standpoint, since the indeterminate solutions can be found by a direct
limiting process. This point seems of interest, us it leads us to something
approaching a general theory of functions of open products.

Starting from the finite polynomial, which is interpreted directly as
the sum of a sequence of intelligible operations, we ascend to the Taylor
or Laurent series with the roots A1? Aa, ... in the belt of convergence.|;
But there is no need to stop at this. The domain can, in general, be
extended by quasi-analytical continuation in powers of $—A, where A is
some complex quantity, uiul thus a larger class of products, namely those
whose roots lie within the extended domain, brought within the scope of
our formulse. If we calculate/($) and then let A,, move up to a singularity
of f(z), there may be either a single limiting form, or one with arbitrary
constants, or no finite limit. A branch-point without infinity gives rise
to the first two. any infinity of f(z) to the last. We know beforehand that
i\ pole oif(z) will have this effect, since «£—A,, cannot be inverted.

* Buchheim, loc. cit.
t Taber, loc. cit.
$ C. J. Joly, Mamuil of Quaternions, p. 99.
5 F. L. Hitchcock, Proc. Roy. Soc. Edinburgh, Vol. HI (1917), p. 350.
|| K Weyr, Bull, des Sciences Math. [2], Vol. 11 (1887>. [>. 205.
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Indeterminacy can occur even in an open product of the third order
with a double root: thus \%u% . i('z-\-£n,3,iiu has the square root

V 1 "-j -Ms-

To illustrate the general theory consider the 17-th power of the open
product

4> = X (M,. n\ +1(:2. it®+X3 u3.113 + ifiUi+^3). Ms,

where q is real and commensurable and / ' uniformised by a radial cut, so
that if q = mfnt f(z) is the w-th power of one branch of zxl%. From
U7) and (20),

If 7 > 1 there is a determinate limit as X -> 0, namely

If 0 < q < 1 there is a finite limit if fx tends to zero in the order X1 '',
giving the indeterminate result X!|̂ 3̂.M3+/x'̂ 1̂. Mo+^Xp1^.^. Finally if
q is negative no compensation of coefficients can give a finite limit, illus-
trating what has been said about the effect of a pole.


