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FUNCTIONS OF LIMITING MATRICES
By F. B. Pppuck.

.Read June 10th, 1920.]

1. Interesting problems arise in the theory of matrices when two o
more of the roots are equal. This case has been discussed by Frobenius,*
Sylvester,t Buchheim,} and Taber,§ by different methods. Sylvester!,
gave the formula for any function of a matrix with unequal roots. and
suggested that the case of equal roots might be treated by passing to the
limit. Sylvester’s suggestion has to be modified before it can be put into
practice, as the purely symbolic method leads to difficulties when we come
to consider the non-scalar fractional powers of a scalar.® , §

It appears that several lines of investigation can be coordinated by
reverting to Grassmann’s treatment of a matrix as an open product.”
The limiting process can then be carried out in full generality, and thus
we have convenient explicit formule in terms of the scalar coefficients
of the degenerate matrix.

If all the roots A;, A, ..., A, of & matrix of order n are distinet there
are n distinet (generalised) axes u, iy, ..., #t,. For simplicity we shall
denote Grassmann’s external multiplication by simple juxtaposition as in
the latter part of Al, avoiding the square brackets of A2. Write

W= (et latla ety ety ;WU Uy
e e e e 2 = —— cen n - .
Wity .. Uy Wy Uy oee ) ’ TR
(1

Frobenius, Jour. f. Math. (Crelle), Vol. 84 (1878), p. 1.
J. Sylvester, Johns Hoplkins Univ. Circulars, Vol. 3 (1884), p. 9 (Math. I'apers,
133); Amer, Jowr. Math., Vol. 6 (1884), p. 270 (Math. Papers, Vol. 4, p. 208).
Buchheim, Proceedings, Vol. 16 (1884), p. 63; Phil. Mag. [5], Vol.22 (1886), p. 173.
\ H. Taber, Amer. Jour. Math. Vol. 12 (1890), p. 337.
| J. J. Sylvester, Comptes Rendus, Vol. 04 (1882), p. 55 (Math. Papers, Vol. 3, p. 562).
€ J. J. Sylvester, Phil. Mag. [5], Vol. 16 (1883), p. 267 (Math. Papers, Vol. 4, p. 110).

#x H. Grassmann, Die lincale Ausdelmungslelre, p. 266, 1844 [referred to as Al; Ges.
Werke, Vol.1 (1), p. 284]; Die Ausdehnungslelire, p. 245, 1862 [referred to as A2; Ges.
Werke, Vol. 1 (2), p. 243].
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“Then the matrix is expressed as an open product in the form
LD TR TIE 2 W TS SR S VTR AR

‘The notation is a combination of Grassmaunn’s first notation with Gibbs’
«yadic notation as modified by Heaviside. Thus

DT WTRRTIE S 5 WETRNETIE T SEUTE 5 W TR T 8
where u;x is the external product

(——)n_l Uy ... Uyd
U lly ... Uy

and may be described without impropriety as the scalar product of 2; and
£.*  Following Gibbs, «. is said to be the extensive quantity reciprocal
to u,.

2. Let s+1 axes coalesece with «,. In addition, let «, be a typical
axis which remains distinct from u«, while the corresponding root tends to
A, and u, a typical axis distinct from «, with a root A,, distinct from A..
We have therefore four sets of quantities to be considered in the first
place, represented by the scheme

N AFe oo ATe
e Loty oo w2,

where the ¢'s are ultimately indefinitely small scalars and the z’s ulti-
mately indefinitely small extensive quantities. For the present they are
finite. Write P for the complete external product

w. (e t-2y) ... etz e Iy,

and PEw for the product omitting any factor «, with such a sign that
PEu/P is the extensive quantity reciprocal to u« in the n-ad P. Write
() similarly for the complete external product

A,-+E.

1

>\m,

Ulm;

1Ly ... s e, Iaey,.
Then

P=¢q, PEG+z,)=QEz, PEu = QEw, PEu,= QEu,,

and PEu, = QEu,— E QEzx,,
1

o=

* See A2, Abschnitt 1, Kap. 4: the scalar product is used in this sense in Al,
pp. 268 et seg. The quantities »' are practically Grassmann’s complementary quantities.
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a case of a general theorem of Grassmann’s to e used later. Hence

$ = R;'tlr.P?;H;' + Sl Opte) (it 4-0) . P;]_i’ﬁ%ﬂ
2 Qoted . Eéﬂ +Z A £ Ili;nm

=A [“r QEu,.+ S QEz, + Za. QEw +Z Nty - QEw,
1

’ ‘ O ’:‘]. ” (!) Q n T

+ S eo(ltp o) . QEQI:" + 2. Qlé)—u' .
o =1 !

Since 1 = Zu. QLu/Q in any n-ad @, we have more simply

= At S (A >u,,).0€“'"+ S (ot qu S e QS”"'. (2
m ¢

The problem before us is to find the limiting form of ¢ when the
scalars € and the extensive quantities « tend to zero. Take a set of ex-
tensive quantities w41, Upyg, ..., Up4. arbitrarily, but fixed. Let R be
the complete external produet

Uptlpyq ooo Uppgd Lo e,
and let &, = (@0) i, + (o) tpr1 ... F (@)t F (ot + Zlom)ity,. (32
Thus
Q = «, {10V, + (A1) ttr i+ ... FA) 0 F A+ Z(Am)
{20+ (21) 1y 1+ ... F (28) 2y s F 20w+ X (2m) 20,

1(s0) tp - (s1) try sy + ..o F (8o F Z(sO 2 + 2 (s) 0y, t Ll e,

Write A for the determinant

(1D 12y ... (19
(21) (22 ... (29
(s1) (s2) ... (s9)

Then leaving QE:x, undetermined for the moment,

Q = AR, QEu, = AREwu,— X (s0) QEx.,

ao=1

QEu, = AREu,— l (0QLr,, QEu,= AREu,— E (em)QE.c,.
oc-1 o=
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Write »' = REuf{R for the quantity reciprocal to any factor w of the
n-ad R, in accordance with (1), Then equation (2) gives

4§:=‘§14'§%1

where

P = A | . ul > Uppp- uf.+,]+2 Nt i i+ Ayt cn, (4)
p=1 t

m

2

P, = 2 € (1+00) .+ é e (Tp)ttys 4 Z (eo—eNat) 1,
a=1 p=1 !

+2 e F N o) | sz._ ®)

No new terms arise in ¥, in the limit. As regards ®,, we have*

Q—gx—" = él (Ga) s sa

where (pgq)’ is the minor of (pq) in A, divided by A. The coefficient of
W, . Usq (@ =1tos) in &, is

e = ,é. e(1+ 50 (ra. (6)
The coefficient of 44, . %40 (0, a = 1 t0 9 is
Voo =a§s] e (p)oa)’. @
T'he coefficient of . Upro (@ = 1 t0 §) is
_— é‘(s.,—e,)(a-t)(a'a)'. ®
'The coefficient of Uy, . %f.q (@ = 1 to ) 1s
Cne = é} (e =AnF AN om0’ @

Since the vanishing of the quantities (og) tends in general to make the
inverse set (rg)' infinite, we must consider the possibility of all the
quantities sa, spar Mar {ma ténding to finite limits. Using the same letters
for the limits we have therefore the semi-canonical form of the limiting

* A2, pp. 38, 39.
SE“. L. ¥OL. 19. o, 1376. 2
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open product, name}y*

8
’ ~
=\t Z upp, gt Zupwg |+ N0, 0,
p=1 t n

+ S] Ma’”r+ = Voa Uy p+: 'ha'"‘!+2 §m¢'um] -u;'-l-c- (10)
as. p=1 1 m

8. To find any function f(®) of an open product ¢ we replace each
root A by f(A), leaving the axes unaltered. Thus

J@) = f(\) [u,.. 1+ Z.l n,.+,,.u',+,+.\’2 u .~u§,]+2f()\m) Wp o U,

p= m
+3 [ 2F S ettt ittt Gt | U an
a=1 p-1 t .
where i = S & (1+00)ca), (12)
o1
I’:m =X € (ap)(ca)', (18)
=1
e = X (ee—e)lot)(oa), 14
o .l
Cw = I leo—F) +fA) ! (em)(a)’, (15)
o=1
and er = fO4e) —f\). (16)

So far approximations have only heen made in the first lines of (10)
and (11), where no limiting problem arises. We have now to calculate
the limiting values of ua, vpa Was (na in terms of those of way Ypay Mtas Ciiar
We first eliminate the scalars (&), that is the modes of evanescence of
the z’s, leaving only the ¢'s. From (6) and (7) we have

8

Mavge = X S S e (140 (oB) e.(rB) 7).
=1

B B=l o=1 1 -1

The summation with respect to B gives zero if « %= = and unity if 7= r.
Hence

S pprge = 2 & (1400 (a).
)] o=l

* The degenerate forms of open products of the third order have been found by different
methods by J. W. Gibbs, Scientific Papers, Vol. 2, p. 71, and ¥. L. Hitcheock, Proc. Roy.
Soc. Edinburgh, Vol. 35 (1915), p. 171.
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The result can ohviously be generalised. Write

Mpa = Zpgvpybys ..o aa (P < 8),

where 3, v. ..., A are p—1 of the first s positive integers, and summation
is over all possible values of each, equality included. Then we can prove

by induction that .
sy = 2 €2 (1400)(ca)'.
- 1

Equation (6) is included if we put mio = pa. From the first s of these
equations we can caleulate the s coefticients

(1410)(1e), 1+20)2a), ..., (1450)(s@)’

and expresy u, in terms of e, €, ..., €, May K20, «ooy s Write A for the

determinant
1

€ € €.
& € ... €

S & 3
ley € ... €

and Ad,, for the minor of 2 in &,  Write further

f = .‘.. e.’,A;,‘E
” =1 A ’

Then we have without approximation
e = fruetfo maat L Ffittn

It £\ is hiolomorphic in the neighbourhood of \,, the quantity 5, tends to
;P /p! as the €'s tend to zero. Hence

wl = f OGRS+ B . ()

The theory for v, is similar. Writing

- .
Vpoa = ZVppbigybys o Vaa (P K 8)

we have vhe = Vo [T+ 22 5N ...+ ’—;,— FON. (18)

As regds i, we have the derived formula

Upta = = Ee—eel o) ow)',
o=1

85
=4
[C4
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where 7, = ., and
Npta — E'hgl’gyl/ys coaa (PN

Writing A for the determinant

1 1 1
€ € .ee €
et el L. !

and A,, for the minor of €/, we find as before .
’
Na = 4’1 'ltu+¢2')f_nn+ . --+¢s')sv-n

< ’ ’
where p= % ¢ Be(pon

et

o=1 €€ A

It is clear from the form of equations (6), (8), (12) and (14) that if ¢,
tends to a definite limit when e, as well as ¢, €, ..., &, tends to zero, that
limit is f™ ) /p!. Thisc will be the case if, for every finite value of ¢,
¢, tends to a definite value as e, . ..., e. tend to zero. Let e thevefore
be finite. and write \. = A, +¢. Then

g, = S fOED=fA) Ay
" 0':1 Ar+€v—ki A .

This expression. however, has the definite limit

L0 fA =D 4
(p=D! AN =N T

which proves the theorem. Hence we have finally

e = mf A+ ”z—’,f N+ ..+ ’f‘_‘—’;ﬁs' A (19

The theory for ¢,. is implicitly contained in the above, and we have

Y OO | G D SN —FiIAD )
Cma — Qe N —N\, + 1 M, i Aa—l)\a,.- ) +

Cow 71 A —FAW) {

- 20
G—1! o1 U AN, 20

+

Whel'e s:,nnn_ = Eg,,,ﬁ "ﬂy'ys vee Vaa (2' g S).

The enuncintion of the genernl theorem for any numbev of sets of
coincident axes is cumbrous, but the theorem itself is eusily understood.
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Corresponding to each set of roots such as A, we have terms of the type

E 3
7 "
A, [u,.u..—{- DI TIN5 u,.ui]
t

p=1

4

s
+ E n ur+ El ypa u’t'-ﬁ-p+>: Ma u£+E gma um] - "’1"*n!
) p= t m

where no account is taken of coincidences outside the r set, except that
u!, ... are calculated from a complete external product in which only one
axis of a ¢oineident set is refained and the factors made up to the full
number by arbitrary extensive quantities. The rules for f(P), or rather

the part of f(®) belonging to r, are as above.

4. The quantity vy, may be regarded as obtained by repeated appli-
cation of the formula

V(p+1) pa = :E" Vops Vaga  (Dt+y < 8), (21)

and then the other quantities are given by

5

M = b MAVp=1)pay  Mjta = 21 M V(p~1) Bas fpmﬂ = .,E, S:,uﬁl’(,.—l)ﬂu- (22)
4.1 = g-

Equation (21) is of the form of matricular multiplication, as it should be,
for considering the special open product

V=23 L.‘. u,,au,.ﬂ].u,'.ﬂ, (23)
a=1 =1

we have : v=3|3 vp,,au,“.] Upsa P 5) (24)
a=1 =1

The pos:sibility of identical relations between the coefticients in (10) has
been left open in passing to the limit, and it remains to apply the test
that s+ 441 of the roots are equal to A,. We have

P—A = A=A, .0+ > Ore  UbsaF Oe—A) Z o101+ N —N) U Wia»
1 ¢

e w

where

Doq = Maur'}'(xr_x) ur+a+ }: Voa l"r+p+z ']‘c“t+: S:mu w,,.
p=1 ¢ ne.
The external product of the antecedents of ®—A, whose vanishing deter-
mines the roots, is obviously independent of the quantities u, », {. Con-
sidering ¥ as a special form of (10) we see that 1t must have all its roots
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zero ; and these are all the necessary restrictions oun the generality of (10).
Since ¥ is an open product of order s, ‘¥* vanishes identically, snd

Vgpa = 0. (25)

It follows that the series (18) must stop at ye—1),.f€~ " A)/(s— D! at most.
Not more than s of the relations (25) are, of course, iudependent.

Other forms may be obtained by considering that the quantities v' satisfy

equations of the same form as the quantities ». Thus from the relation

we derive ,‘.‘,l Vo = 2‘.1 Voaa = voo = 2 Ymtyaa = 0. (26)

To find the identicul equation of lowest degree satisfied by the open
product ¢ we proceed as follows. Let ¢, be a function of ¢ which does
not contain any of the extensive quantities 1., #,.., #: (which we call the
r set) as antecedents. Let ®, be another function similarly related to a
second simple or multiple root. Then $.P, does not contain the » set as
antecedents, nor #,P, the » set. But since P, and P, are functions of P,
$,$, = ,P,. Hence $,P, contains no member of either the » set or
the v set as antecedent. Proceeding to the end we see that the produc
[I®, extended over all the roots is identically zero. Hence we huve to
find the function ¢, of lowest degree having the required property with
respect t0 2., ¥, 4., %, and we know from the general theory that this is a
power of ®—A..

Put f(®) = (¢—)\)%. Then

PN pt=0 it p¥£gq, =1 if p=gq.
Thus g, = vy = 1, = 0 if q > 5, and
‘ Ml”l = Miyas VLu. = Vypas ’Hln = Yyta if q < S.
Hence &, = (#—N\,)". where ¢ is the least number for which
,u-qu = Vapa = Nt = 07 (27)
provided that any such number less than s exists, failing which we have
g = s. It follows that coalescence of the ¢ type always causes reduction
of the degree of the identical equation, by an amount equal to the number
of terms involved, and further reduction may take place. From (21) and

(22), if equations (27) are satisfied for any value of ¢ they are satisfied for.
all higher values up to s, and we have also

§('1+1)mﬁ = .. = gsnm =0 (q < s). (28)
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Hence we have what seems to be the essential point of 3uchheim's second
paper,* that if (P—AX,)" i¢ the highest power of ¢—A, in the identical
equation, differential coefticients up to the order ¢ —1 oceur in the corre-
sponding part of f(¢).

h. Tf f(2) 18 q-valued and ¢ a matrix of order », f(®) is in general
n“-valued,t but funetions of special matrices may contain arbitrary con-
stants, or be non-existent. One cause of indeterminacy is that & may
admit a transformation of axes (as for example the matrix unity), the
wultiformity of f(2) causing the constants of transformation to appear in
the vesult. The other cause is more closely connected with our present
subject. The g-th root of & degenerate matrix is found in practice by
assuming a form of the greatest admissible generality as to roots and axes.
and comparing its ¢-th power with the given wmatrix.§y That arbitrary
constants may enter into the solution is clear from the preceding formule.
Let f($) in equation (11) be a ¢-th root of ®, and let N\, = 0. Then from
§ 4, if ¢ > s, the origiual matrix must satisfy the conditions

M“ = ypu = 'I{ﬂ = (”

and then there are not equations enough t¢ determine the assumed con-
SEAIILS Mg, Vpay Mtas Cwa-  Theoretically, there is no need to assume a tenta-
tive standpoint, since the indeterminate solutions can be found by a divect
limiting process. This point seems of interest, as it leads us to something
approaching a general theory of functious of open products.

Starting from the finite polynomial, which is interpreted dirvectly s
the sum of a sequence of intelligible operations, we ascend to the Taylor
or Laurent series with the roots A, Ag, ... in the belt of convergence.|:
But there is no need to stop aé this. The domain can, in general, be
extended by quasi-analytical continuatiou in powers of $—N\, where A is
some complex quantity, and thus a larger class of products, namely those
whose roots lie within the extended domain, brought within the scope of
our formule. If we calculate f($) and then let \, move up to a singularity
of f(z), there may be either a single limiting form, or one with arbitrary
constants, or no finite limit. A branch-point without infinity gives rise
to the first two, any intinity of f(2) to the last. e know beforehand that
a pole of f(z) will have this effect, since —N\, cannot be inverted.

# Buchheim, loc. cil.

+ Taber, loc. cit.

1 C. J. Joly, Manual of Quaternions, p. 99.

§ F. L. Hitchcock, Proc. Loy. Soc. Edinburyit, Vol. 37 (1917), p. 350.
I| . Weyr, Bull. des Sciences Math. [2], Vol. 11 (1887), p. 205,



408 I UNCTIONS OF LIMITING MATRICES.

Indeterminacy ean occur even in an open product of the third order
with a double root: thus Aju,. w3+ §ug. s has the square root
Nbutg. w54 iy b4 NS g s

To illustrate the general theory consider the g-th power of the open

product .
b = X (uy. 001+ g b F g ug . wh 4 (g + Cug) . ud,

where ¢ is real and commensurable and 2% uniformised by a radial cut, so
that if ¢ = m/n, f(z) is the m-th power of onme branch of 2. From
{17) and (20),

‘ Py
DY = N (wy. 1+ 1y w0+ . zté-{-[qp?\""u,-}-f h u,,] .
—

If ¢ > 1 there is a determinate limit as A — 0, namely

PRI TS oV iy T 7
If 0<q <1 there is a finite limit if u tends to zero in the order A''
giving the indeterminate result N} ug. us+u'u;. us4+0 ug.us. Finally if

¢ is negative no compensation of coefficients can give a finite limit, illus-
trating what has been said about the effect of a pole.



