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1. Following English usage, I have found it convenient to restrict the
term Fourier series to those trigonometric series which proceed by cosines
and sines of integral values of the variable, or variables, and have the
further property that their coefficients are expressible by means of in-
tegrals of the well-known kind, involving a function of the independent
variable, or variables. I have, for example, not followed the usage
adopted by Jordan, and other French writers, of employing the term to
characterise analogous series of functions, other than cosnx and sin nx,
such as Bessel functions. It seems to me, however, desirable to retain
the term when the very slight change-—formally speaking—of substituting
n-\-k for n is made. Though the series so obtained have not, however,
as far as I know, been the subject of systematic study, and I have found
it necessary to obtain among other things, the expressions for the co-
efficients as integrals, such series naturally present themselves. Special
examples of such series are indeed known.* I myself have been led to the
study of these series naturally by the necessity of extending to the case
when the order is irrational, properties of series of Bessel functions, which,
in the rational case, I have been able to deduce from the theory of what I
have called Restricted Fourier Series. Needless to say Series of Bessel
Functions are not the only series whose study might be expected to
demonstrate the same need.

In the researches in question, these non-harmonic trigonometrical
series do not present themselves in what I propose to call the Fourier
form, being of a more general type. It is evident, however, that a proper
grasp of the whole class of trigonometrical series in question cannot be
obtained without investigating the properties of the particular class in
•question. Indeed the behaviour of a Bessel seriest at the further bound

* See below, footnote to § 11.
t I distinguish between a series of Bessel functions 2̂ 4, Jm (k,z) and the special case,

Bessel series, when the coefficients A have the appropriate form.
x 2
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of the interval in which the expansion is valid, is most conveniently dis-
cussed by reference to the behaviour of a non-harmonic Fourier series,,
restricted in character generally, at an extremity of the interval in which
this series is defined.

The paper falls naturally into three parts. The first of these, §.§;2.-16y
treats of the definition and summation of the series in question...

A u • i. • i. • i cosine)
A non-harmonic trigonometrical . [ series-

° sine )

COS . . , .
an • (n+k)x

sin

is said to have the Fourier form if

1 f

ir sin 2A;7r J

2ir sin

o cos

and the function f(x) is then said to be the associated function of the-
series.

At an internal point of the interval (0, 2ir) these series are proved to-
have, apart from an additive term which tends uniformly to zero, the-,
same expression for the n-th. partial summation

1 f1'
— £ \f{z+t)+f(x — b)\ cosec It sm(n+l>)tdt,
W JO

as the Fourier series of a function equal to f(x) at, and in the neighbour-
hood of, the point x, and having any convenient values elsewhere. The
upper and lower functions, and the modes of oscillation, are accordingly
independent of the form of the associated function, except in an arbitrary
small neighbourhood of the point x considered, and are the same as those
of this auxiliary Fourier series. In particular, the conditions- of conver-
gence, and of uniform or bounded convergence, are the same for the non-
harnionic Fourier series and the auxiliary harmonic Fburier series.

These results are still true at the end-points of the interval (0, 27r),.
provided the function f(x), whose values have hitherto only been supposed
known almost everywhere in the interval (0, 2TT), is supposed " continued "
outside the interval in accordance with certain laws, which are different
for the cosine and sine series. The law of " continuation " appropriate to.
the cosine is embodied in the formulae :

f(t)=f(~t), \

-* )} =./(*) COS 2&ir. }
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"The law of " continuation" appropriate to the sine series is as follows;

i )/(2ir +1) -f^ir-t) \ = f(t) COS 2&7T.

These " continuation " formulae play in our present theory the part of the
periodicity in the case of harmonic series.

The proof of these properties depends on certain fundamental lemmas,
which, in our theory, take the place of the ordinary normal properties of
the sine and cosine. These are

P 8 m (n + k)(2ir-u) C0S (r+k)udu = 0 (r =t= n)o cos sin
or = + 7r sin 2JCTT (r = n),

r and n being integers, positive, negative, or zero. In particular it
appears that, if a function is expressible as the sum of either a convergent
non-harmonic Fourier cosine series, or the corresponding sine series, at a
point x internal to the interval (0, 2-7r), it is expressible by both these
series ; but that this is not the case at the points 0 and 2TT, unless the
value of the function at each of these points is zero. At the origin indeed
a sine series, of course, converges to zero, and at 2x each term of a cosine
series returns to its value at the origin, multiplied by cos 2&TT.

It follows from the theorem of Riemann-Lebesgue, that the coefficients
of a non-harmonic Fourier series tend to zero as we advance along the
series. Hence the second integrated series necessarily converges uni-
formly to a continuous function. We are thus able to show at once that

the necessary and sufficient condition that a non-harmonic . r series

should have the Fourier form is that the second integrated series should
converge to a second integral,* and the associated function is then the
second differential coefficient of this second integral almost everywhere in
(0, 27r): also, if we prefer to utilise at once both types of series, that we
may in this statement replace " second " by "first"

The first part of the paper terminates with some simple examples of
non-harmonic Fourier cosine and sine series, the nature of whose conver-
gence, uniform or bounded, is discussed.

The object of the second part of the paper, §§ 17-25, is mainly to
shew that there is no other way of obtaining the development of a given
function in such a series as is here contemplated. For this and later

* That is the integral of an integral.
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purposes we require the generalisation of Riemann's " Three Theorems on
Trigonometrical Series," given in his Habilitationsschrift.

Harnack's theorem, too, as to certain conditions under which the co-
efficients of a trigonometrical series tend to zero is generalised so as to
apply to non-harmonic series. In particular we have the result that, if
the points of non-convergence form a set which is at most of the first cate-
gory in some interval, then the coefficients tend to zero.

One of the most important consequences of these theorems is the re-
M. • u r * J- *• J. 7 • cosine]

suit we were in search of: no two distinct non-harmonic . • series
sine )v cos

of the type £ an . {n-\-k)x, with the same k, which converge to the
)I——-J: s i n

same value at each point of (0, 2TT) with the exception at most of a
countable set of points* can exist.

The main object of the third part of the paper (§$ 2fi to end), is to
apply the considerations which precede to establish rigidly a statement
which I made in a previous paper! as to the behaviour of a Bessel series
at the point z = 1. For this purpose it is convenient to use the theory
of restricted non-harmonic Fourier series in a slightly extended form.
In the light of the continuation formulae this theory is found to apply not

only when the interval of restriction belongs to the completely open in-
terval (0, 2TT), but even when one of these points is an included end-point
of the interval of restriction.

In consequence we may now state that the conditions of convergence
of a Bessel series at any point of the half-open interval (0 < x <; 1) are
the same as those of the Fourier series of a function equal to the asso-
ciated function f{z) of the Bessel series in an arbitrary small neighbour-
hood surrounding the point considered and having any convenient values
elsewhere, provided the value assigned to f{z) at any point to the right of
the point z = 2ir is defined as the same as that at the reflection of this
point in z — 27r.

2. I begin by stating the following lemmas, which take the place of
the familiar normal properties of the sine and cosine in that of Fourier
series :—

LEMMA 1.—If r and n are different integers, positive, negative, or zero,

—u) cos (r+k) udu = 0 (0 < k < 1),f2i

Jo

* Or totally imperfect set.
t " On Series of Bessel Functions," Proc. London Math. Soc, Ser. 2, Vol. 18 (1919),

pp. 163-200.



1918.] ON NON-HARMONIC FOURIER SERIES. 311

and if r = n, the value of the integral is

IT sin 2&7r.

LEMMA 2.—If r and n are different integers, positive, negative, or zero,

phr
\ cos (?i+&)(2?r—u) sin (r+k) udu = 0,
Jo

and, if r = n, the value of the integral is

— 7T S i n 2iK,TT.

The proofs may be left to the reader.

3. Hence, in place of the ordinary Fourier expansion, we are led to
examine the possibility of expanding a function f(x) in a series of the form*

re

2 a-ncos (k-\-n)x, (1)

where, in view of Lemma 1, the coefficients an have what may be called
the Non-harmonic Fourier Form,

fl»i = —:—7n— \ /"(2)sin(?i+&)(27r—t)dt, (2)
7T S i n liliTT Jd

for all integral values of n, positive, negative, or zero, and f{t) is supposed
defined and summable only in the closed interval (0, 2TT), to! which we re-
strict our attention. When the coefficients have this form, in which
case an -* 0, by the theorem of Riemann-Lebesgue, we shall write sym-
bolically

00

fix) — 2 an cos (k+n) x (0 < x < 2TT). (3)
71 = —CO

We shall then find that the partial summation sH, that is

sa(x) = 2 ar cos (k-\-r)x,
r=~n

apart from an additive term which tends uniformly to zero, has the same
form as that of the Fourier series of a function <px(f), equal to f(t) in an
arbitrary small interval enclosing the point x considered, and having any
convenient values elsewhere, provided x is internal to the completely open
interval (0, 27r).

* This symbol is to be understood to mean Lt 2 a,. cos(fc+7-)a\
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At the point 0 the same is still true, provided f (x) be regarded as
" continued " beyond the origin on the left, so as to be an even function
in the arbitrary small interval in question.

At the point %ir, the formula for sa only differs from that at 0 by the
multiplicative factor cos 2JCTT, and the connection with the Fourier series
of (j>x{t) still holds true, provided/(0 be regarded as " continued " beyond
the point 2-7T on the right, in accordance with the relation

£ {/(2T + * ) + / ( 2 I T - * ) • =f(t) cos 2A-7T, (4)

in the arbitrary small interval in question. It will be noticed that the
" continuation " defined in the present article is precisely that which is
fulfilled of itself when the non-harmonic series converges to f{x) every-
where.

-1. To prove these formulae, we have

.-?»= — ~ j - i I n \coa(k+r) xsiuik+rHZir-f)} f(t)dt
7T Sin iiHiir r=—n Jo

ir-t)dt (A)\
= —ii. Jo

— s'mk(x — t) •A-\- S cos r{x — t) '- \dt

1 f2jr

= . n1 /(2ir—t) [sin h {x +1) cosec h (x +1) sin (n -f J) (a; +1)
27T Sill 2/C7T Jo

— sin k {x—t) cosec J (j; — t) sin (w+J) (x — t)] dt. (A')

5. Now suppose first that
0 < x < 2TT,

then the integrand is the product of /(2-7r — t) into the sum of two terms,
each of the form

u (x, t) sin nt-\-v (x, t) cos nt,

where, in the first of the two terms, u and v are bounded, except in the
neighbourhood of t = ZTT—X, and, in the second, without exception, since
sin k (x — t) cosec \{x—t) remains bounded in the neighbourhood of the
point t = x.
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Thus, by the theorem of Riemann-Lebesgue, we may write

ZTT Sin Z/C7T J2n-x-e
sin (n+%){x-\-t)dt

cosec

= 0(1)4-77- M / ^ + ^ + . A * —'H cos Art cosec 4* sin(/&+*)*<&;
JiTT Jo

for, by the theorem of Riemann-Lebesgue, the integral which we have
neglected tends to zero, since cob "Ik-w sin kt cosea^t remains bounded
throughout (0, e).

Now in the last integral we may replace cos kt by unity, since this
integral may be broken up into two parts, differing from the whole only
in having unity and — 1+cos &£ respectively in place of coa kt, and the
latter part tends to zero by the theorem of Riemann-Lebesgue.

Thus, finally,

[ {f(x + t)+f{x-t)\ cosee£*8in(n+a)*«ftf (5)
o

which is the well-known Fourier formula.
This proves the first of our statements (§ 8).

6. Returning to (A') and putting x = 0, we get

1 (2n

6',t(0) = :—T-J— I /(27T — t) sin kt cosec H sin
7r sin ZKTT JO -

1 f277
= o(l)H . 7 f(iTT—t) sin A;̂  cosec

7T S i n Attir J-2n — e

by the theorem of Riemann-Lebesgue,

.* f
i n &K7T Jo

7T Sin

Expanding sin fe (2TT—^) and using again the theorem of Riemann-
Lebesgue, we get

1 (e

= o(lH f(t) GOB kt coaec %t Bin (n+Z) tdt
7T J

1 (e

f(t)
7T Jo

i r
7T Jo cosec J^ sin (w+i) <^, (5')

as at the end of the preceding article.



314 PROF. W. H. YOUNG [March 14,

This proves the statement made (§ 3) as to the identity of this formula
with that corresponding to the Fourier series of an even function <po(t)
equal to f(t) in (0, e).

Thus, iff{x) is continuous on the right at the origin, the series con-
verges there tof(0).

7. The statement as to the formula at the point x = %TT, follows at
once. Putting x = 2-7T in formula (A') it becomes

1 f2ir
slt (27r) = —:—ry- I /(27r—£) cos ZJCTT sin kt cosec %t sin (n-f | ) t

TT s i n isA'7r Jo

= COS 21-7T .<?„ (0)

1 p
= o (1)H /(0cos 2for cosec \t sin (n

" J O

= o(l)-f — I /(27T—0+/(27r+^) cosec H %va{n-\-V)tdt, (5")
2TT Jo '

supposing f{t) " continued" in accordance with the law formulated in
equation (4).

The series therefore converges at 2TT if, and only if, it converges at the
origin, and the value is cos 2&7r times the value at the origin.

8. By the formulae (5), (5') and (5") we have at once the following
theorem:—

THEOREM.—The non-harmonic Fourier cosine series

f(x) ~ 2 anco3(n-\-k)x, (3)

1 f2irwhere atl= —:—^— \ f(t) sin(/i+A;)(27r—t)dt, (2)
7T Sltl 2/C7T Jo

converges at any point x of the closed interval (0, 27r) under the same con-
ditions, and to the same value, as the Fourier series of a function <f>x {t),
equal to f(t) in an arbitrary small neighbourhood enclosing the point x in
question and having any convenient values elsewhere, provided f(t) be
supposed "continued" outside the interval in question, so that, in an
arbitrary small neighbourhood of the origin it is an even function, and
in an arbitrary small neighbourhood of the point 2TT,

=/(*) cos Mir. (4)
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We remark that it follows that the non-harmonic Fourier series cannot
represent the function f(t) at the point 2x unless

/(27r)=/(+0)cos2A-7r, (G)

nor at the origin unless f{t) is continuous on the right.

9. Remembering that the theorem of Riemann-Lebesgue asserts, not
merely that a certain integral tends to zero, but that it does so uniformly,
we may combine the formulse (5), (5'), and (5") in the formula

sll{x)-<rn{x) = t]n{x), (7)

where a-n(t) denotes the n-tih partial summation of the Fourier series of
the auxiliary function (f>x(t), and nnip) tends uniformly to zero.

Now by the definition of the auxiliary function <px(t) as equal to f(ti
in an arbitrary small neighbourhood enclosing the point x and having any
convenient values elsewhere, we see that, taking | h \ <. e, we have for all
these values of h, choosing the auxiliary functions conveniently,

t lying in the arbitrary small neighbourhood (x — e, x-\-e) already utilised
in constructing <f>x(t). Hence we may write

where r]n(x-\-h) tends uniformly to zero. Therefore

{Sm (x) — Sn(X + k) \ — \ <Tn (x) — a-a(X + h) } = Vm(X) — rin (x + h). (8)

This shews that if one of the series converges uniformly, or boundediy,
at the point x, on the right, or on the left, so does the other.

If the series do not converge, we see, by (7) and (8), that they have
the same upper and lower functions, and that, if one of them oscillates
boundediy on the right or on the left, so does the other, while if one of
them oscillates uniformly (in the first mode) above, or below, on the right,
or on the left, so does the other.

In particular if /(2TT) — cos 2&7r . /(0),

andf{x) is an integral in the closed interval (0, 2ir), the non-harmonic
Fourier cosine series of {x) converges uniformly to f(x) in the closed in-
terval (0, 2-7r).

10. This last result enables us to prove that the necessary and sufficient
condition that a non-harmonic cosine series should have the Fourier form
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'is that the second integrated series should converge to a second integral,
that is to the integral of an integral, in the closed interval (0, 27r)} and
the associated function of the original series is then almost everywhere
equal to the second differential coefficient of that repeated integral.*

Indeed writing I f(x)dx = F(x),
Jo

a+ f' F(x) dx = G(x),
Jo

we shall have G(2TT) = cos 2A,-TT . G (0),

1 f27r
if a has the value a = — r̂ — I F(x)dx.

1 — COS 2/C7T Jo

Now let f(x)~^ ^ a,,,cos(n-\-k)x,

n= — 'j:

x

G(ar)~ 2 Anco8.(n-\-Ji)x;
H-— <X>

then the latter series converges uniformly to G(x) in the closed interval
(0, 2TT).

But

— 7r sin 2kTr(k-\-n)~2 an

= - r(k+n)-2f(x)sm(k+n)(2Tr-x)dx
Jo

•2 sin(Ai+«)(27r—x) dF(x)

-\2n

six\(k-\-n)C27r—x)F(x)
Jo

— f (k+n)-1 F(x)cos(k+n)(27r—x)dx
Jo

= Jo
1 coB{k+n)(2ir—x)dG(x)

= - (k-n)-1 { G(2TT)-COS 2^TTG(0)} +An

* I t will be seen below tbat in tbis statement we may replace the second by the first.
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The relation between the series
cc so

2 ancoa{n-\-k)x and 2 Ancoa{n-\-k)x
?l =—(/ - . U = — CO

is therefore that the second is the second integrated series of the first.
Thus the second integrated series of the non-harmonic Fourier cosine

series oif(x) converges uniformly to a second integral of f(x), and con-
versely, the second differentiated series of the non-harmonic Fourier cosine
series of a second integral of f(x) is the non-harmonic Fourier cosine series
oif(x).

The result stated at the beginning of this article is equivalent to this,
last double statement and is therefore proved.

11. Example.—Put f(t)=l.

We get for all integral values of n, positive, negative, and zero,

atlir sin 2A;7r = (1—cos %kTr)l(k-\-u),

that is, a,,7rcot kir = l/(k-\-?i).

The " continuation " of the function gives us

f{-t) = 1, /(27T + 0 = 2C0S2fr7T-l,

where 0 < t < e.
Thus at each point the auxiliary Fourier series converges, and it con-

verges uniformly except at x = 2-7T, where it still converges boundedly.
The sum is 1 except at x = 2TT, where it is cos 2k-n-.

Hence, by our general theory the series
CO •£

2 , . COB (k-{-n)x

converges uniformly to -rr cot kir at each point of (0, 2-7r), except at th&
point 2TT, where it converges boundedly to ir cot kir cos 2A:-7r.

Thus* in 0 ̂  x < %-rr we have, uniformly,

7r cot kir = 2 , cos (k-\-n) x

cos kx , _ " k coskx C08?ix-\-nain kx Binnx

* This result has already been obtained (for 0 < z < 2n-) by a direct method. See
Bromwioh, Theory of Infinite Series, § 90, p. 231, top, where references are supplied.
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Putting x = 0 in this equation, we get the well-known formula

CO J

TT COt kir = Z 7—; . (10)

We get the same formula, with each side multiplied by cos 2&7r,
when x = 2TT.

When x = 7r, we get the known cosecant formula.
That the convergence is bounded is evident from the series itself, as

well as that it is uniform, except at x = 2TT, for

n 7 , S cosnx j o7 • 7 v sin «£
2 A; cos kx 2, To o and 2« sin £# 2-

k l

2, To o and 2« sin £# 2- 75 r,

Sai k.—nl ,l=i kr—w

converge uniformly for all values of x, while

n • 7 ^ (/f —;i)sin n̂ c n • 7 v sin
— 2 sin A\E >/ —75 7, = 2 sin kx 2, -7—:

kr1 A+Now, by Abel's lemma, the latter series converges uniformly for all
values of x in (0, 2ir) excluding the end-points 0 and 2TT. Also the series
is known to converge boundedly in (0 ̂  x ^ 2-rr), and therefore, when
multiplied by sin kx, converges at the origin uniformly to zero. Thus our
series, being the sum of these three series, converges boundedly, and,
except at x = 2TT, uniformly.

12. Again, in virtue of Lemma 2, we are led to examine the possi-
bility of expanding a function f(x) in a series of the form

2 bnsin(k-\-n)x, (11)

where, in view of Lemma 2, the coefficients have what may be called the
non-harmonic Fourier form,

c o s

for all integral values of n, positive, negative, and zero : fit) being supposed
denned and summable only in the closed interval (0, 2TT), to which we re-
strict our attention.

We again write symbolically

2 baaw(k+n)x, (13)
1 1 = — CO

where, by the theorem of Riemann-Lebesgue, bH -> 0 {n-+ x>).
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We then find the same result as before, in so far as the internal points
of the interval (0, 2TT) are concerned. We have, however, in order to ex-
tend the result to the end-points 0 and 27r to use a different mode of
" continuation" from that applicable to the non-harmonic Fourier
cosine series. This is again that which is naturally fulfilled when the
series converges everywhere to f(x\. Indeed the partial summation sn of
the sine series (11) has the same form (A) as before, except that the two
terms inside the bracket are now united by the sign + instead of —,

«« = ^—-1
 nl 2 M sin(k + >•)(x + t) + sin(k + r){x — t)\ /(2TT—t)dt. (B)

2TSin2A;7r r =_, t Jo

This only affects the term which, at the next stage, disappears by the
theorem of Riemann-Lebesgue. We get, in fact, corresponding to the
formula (A'),

1 f2ir
•s« = o—• o; I /(27T —$ [sin &(# + £) cosec ^(ic-|-£j sin i

LIT Sin iiiiir Jo "*

~\~ sin K \X ~~ t) cosec o \x ~~ t) sin (?ir~p •j) \x ~~ t)\ etc, \H )

which leads as before to the formula (5).

13. At the origin sa = 0, always, which implies the law of " continua-
tion " by which/(0 is an odd function in an arbitrary small neighbour-
hood enclosing the origin.

14. At x = 2x, we have, using (A'), after changing the — into + ,

1
sin ^ j o V ( - O -j sin Jc

cosec %t sin (?t+£) tdt
1 f2rr

= — /(^Tr — t) cos kt cosec%t sin {n+^)tdt

1 f*
= o{l)-\ /(2TT—t)cos kt cosec U sin{n+l>)tdt

7T JO "

i r2jr

H 1 /(2TT—^)cos kt cosec \t si
7T J2ir-e

= o(l)+ — f |/(27r-0+/
"* Jo

i r«
= o(l)H |/(2TT—0+/(0cos2A-7r| cosec $t sin(n+l)tdt

"" JO
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using the theorem of Riemann-Lebesgue in the third and fifth of these
equations.

Thus if we " continue " our function f(t) beyond the right-hand end-
point 2-7T, according to the law

(14)
we shall have

S|l(27r) = o ( i ) + i - £ j/(2,r-*)+/(2H-fll eosec£f sin(n+J)*<«f (5")

which is the Fourier formula.

15. Hence we have the following theorem :—

THEOREM.—The non-harmonic Fourier sine series

/(a-)— 2 bnsin(n+k)x, (13)

H = — 00

1 I'"
where bn. = —r-^,— /(flcos(rc+fc)(2ir—fldf, (12)

7Tsin Lhii jf,

converges at any point, x of the closed interval (0, 27r) under the same con-
ditions, and to the same value, as the Fourier series of a function <j>x(t),
equal to f(t) in an arbitrary small neighbourhood enclosing the point x in
question and having any convenient values elsewhere, provided f{t) be
supposed " continued " outside the interval in question, so that, in an
arbitrary small neighbourhood of the origin it is an odd function, and in
an arbitrary small neighbourhood of the point 2TT,

- /(27r-0! = f(t) cos 2kir. (14)

We remark that it follows that the non-harmonic Fourier series cannot
represent the function f(t) at the origin unless

/(O) = 0, (15)

and it cannot represent the function fit) at the point 2-7T, unless

/(2ir) = /(2ir — 0 ) + / ( + 0) COS 2&7T. (16)

If therefore continuous on the right at the origin, it must be continuous
on the left at 2TT.

The discussion of the uniform, or bounded, convergence or oscillation,
on the right, or on the left, given in § 9, evidently applies equally to the
sine series, the appropriate law of "continuation" being supposed utilised.
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In particular, iff{0) = 0, andf{x) is an integral in the closed interval
(0, 2-7r), in which case (16) holds, then the non-harmonic Fourier sine
series off(x) converges uniformly to f(x) in the closed interval (0, 2-7r).

Thus, as an application of this result, we see that if

F(x) — f(x)dx ~ £ bnsin(k-\-n)x,
Jo »=—<»

where f{x) ~ 2 aucos(k-{-n)x,
7 1 = — 00

the non-harmonic Fourier sine series of F(x) converges uniformly in
(0, 2TT) to F(x). But

TT sin 2k-!r(k-{-n)~lan = {k+n)~l sin (fc+n)(27r—x)f(x) dx
Jo

-1 sin {k+nUZ-n—x) dF(x)

(;e) cos (A;+H^TT—#) da: = 6(i,.

(2
=

in

Jo

Thus we see that the first integrated series of a non-harmonic Fourier
cosine series converges uniformly in the closed interval (0, 2TT) to the in-
tegral of the associated function of the cosine series; and, conversely, the
first derived series of the non-harmonic Fourier sine series of an integral
is a non-harmonic Fourier cosine series, whose associated function has
that integral for integral.

Similarly, using the result proved in § 9, that the non-harmonic cosine
series of an integral which satisfies the proper " continuation " law, con-
verges uniformly to that integral in the closed interval (0, lir), we see that
in the preceding statement in italics we may write cosine for sine.

We may state these results otherwise by saying : The 7iecessary and
sufficient condition that a non-harmonic sine or cosine series should have
the Fourier form is that the first integrated series sliould converge toioards
an integral in the closed interval (0, 2-7r).

We have seen that a similar condition may be stated in the casa of
the cosine series, and may evidently also be given for the sine series, in
which the second integrated series takes the place of the first in this
statement, the integral (first integral) being replaced by a second integral.
This form of the condition has the advantage of only comparing sine series
with sine series, and cosine series with cosine series.

SEE. 2. VOL. 18. NO. 1345. Y
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16. As an example, suppose that

We get for all integral values of n, positive, negative, and zero,

1 f2ir 1
hn = —• tl7 cos (k+n){Zir—t)dt = n , . .

7r sm 2/C7T Jo ir{k+n)

The " continuation " according to the law appropriate to the sine series,
gives us f{—t) = 1, and / ( 2 x + 0 = 2 cos 2&7r-f 1. Thus at the origin
and at the point 2TT the auxiliary Fourier series, which is everywhere con-
vergent, does not represent the function. The convergence is uniform
•except at the end-points, where it is bounded. Hence, for 0 < x < 27r,
we have*

" sin(k-\-n)x _ sin kx . ^ ksinkncosnx—ncosbns'mnx
77 "„=-. k+n ~ ~ T " +

 Ht1 F = ^ ' (17)

the convergence being uniform, while at the origin the series converges
boundedly to zero, and, at the point 2TT, it converges boundedly to
ir |l+cos2ft7r} = 27r cos2 kir, agreeing with (10).

17. We next proceed to generalise Riemann's three theorems on
trigonometrical series, t Riemann's reasoning applies with comparatively
slight alterations to non-harmonic trigonometrical series, and in order to
save space I have not written out the proofs at length.

E-IEMANN'S FIIIST THEOREM {generalised).—

50

Jf the series IS A(^, where
11= —00

Aj = an cos {n-f-k) x-f-bllt sin {n-{-k)x,

converges at the point x to, say, fix), and its second integrated series con-
verges at x and in its neighbourhood to a function G{x), then

• See footnote to §11.
t B. Eiemann, Habilitationsschrift, §8, Ges. Werke, pp. 246-249.
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We have

= —2

CO I

— y A
n = — 03 \

From this point on the proof is, in all essentials, identical with Riemann's.*

COR.—Under the same circumstances if a and /3 approach zero so that
the ratio of each to the other does not tend towards zero

This is the form in which Riemann enunciates his theorem, but we use it
in the simpler form, from which as he points out, it immediately follows.

18. RIEMANN'S SECOND THEOREM (generalised).—

If the second integrated series of the series
CO 00

2 An= 2 \ancos(n+k)x-\-bnain(n-\-lc)x},
n=— 00 « . = — 00

converges at x and. in its neighbourhood to a function G(x), then

-a)}/a->0 (a-*O).

The proof of this theorem also is practically identical with Riemann's.

* Similarly we may shew that wlien the series 2 An does not converge, all the limits of

{G (x + h)~2G (x) + G (x-a) \l<x\

when a -*• 0, lie between the txoo bounds

where U and L are the values of the upper and lower functions of 2 An at the point x, pro-

vided only the second integrated series converge ami G (x) denote its sum.

This form of the result is due to my wife, being a closer pair of bounds than that given
in tho case of harmonic series by Hassenfelder, " Zur Theorie der trigonometrischen Reihe "
(1900), Jahresbericht des kb'niglichen Gymnasiums zu Strassburg (Teubner), as an emendation
of a similar result due to Du Bois Reymond. See a forthcoming paper by Grace Chisholm
Young, also Hobson's Theory of Functions of a Real Variable.

Y 2
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19. The extended form of Riemann's Third Theorem, I have already
given in the recent communication to the Royal Society already cited.*
The enunciation is as follows:—

RIEMANN'S THIRD THEOREM {generalised).—

If in (b, c) the function \{x) is the integral of an integral, and if \{x\
and \'{x) are both zero at b and c, then

I = fx2 \ {G(x+u)+G(x-u)} X(u) C0S niidu~+0 0* -*<*),
JU sin

where

G = - 2 (n+k)-2\ancos(n+k)x+bnsm(n+k)x} =- £
n=—co

where (0 ^ k < 1), provided only (i) the series converge uniformly, and

(ii) AV -> 0 (n -> QO ).

The proof, which also is closely modelled' on Riemann's will not be
introduced here.

20. Harnack has proved the following result:—

If (a, b) be any interval, and i\, r3, ... any sequence of continually
increasing positive integers, we can find a sub-sequence nlt n2, ... and a
point x, internal to (a, b), such that, from and after a certain index, the
values n. x

all differ from an odd multiple of \-K by less than an assigned {arbitrary}

small positive number f.t

Hence it immediately follows that if at every internal point x of (a, b),.
we have . . . . ^, s

| \n. sin UiX I < S,
for all indices i, we must have for all indices i from and after a certain,
integer, , . . ^ „ ,

I An,. | < o sec f,

and therefore Lit | \n. \ ^ S sec £ ^ S,

since £ is arbitrary, and may be chosen as small as we please.
From this result Harnack easily deduces a theorem for harmonic

* "On Non-harmonic Trigonometrical Series", 1918, § 10.
t The proof may be consulted in Hobson's Theory of Functions of a Real Variable, p. 747.
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trigonometric series, equally true for non-harmonic series. His proof is
equally valid in the more general case. The theorem is as follows:—

HARNACK'S THEOREM (generalised).—

n

If 2 A^{x) is a non-harmonic or harmonic trigonometric series, where
—n

An = an coa(n-\-k) x-\-bn sin(«.+&) x (0 ^ k < 1),

and the series is such that in (0, 2ir) there is a sub-interval in which the
upper and loioer functions at each point x differ by less than 8, then all
the limits of the coefficients an, and ba, when n -> <x>, are numerically less
than or equal to S.

COR. 2.—If the points of non-convergence form a set which is at most
of the first category in some interval, then the coefficients tend toioards
zero.

For the points at which the excess of the upper function over the
lower function is greater than S form, as is known, an inner limiting set,
and therefore form in every interval in which they are dense everywhere
a set of the second category, and cannot therefore be a sub-set of a set of
the first category ; they must be nowhere dense therefore in an interval
in which the points of non-uniform convergence form a set of the first
category. Thus the conditions of the corollary hold good, since this is
true for all values of S.

21. To prove the uniqueness of the expansion in a non-harmonic
Fourier cosine or sine series, we state and prove the theorem in a form
which is practically the most general possible, though, by employing a
less simple method the words "countable set of points" might be re-
placed by " totally imperfect set," that is a set containing no perfect sub-
set. We give the proof for the cosine series, but it will be seen that we
may in it substitute the sine for the cosine. The theorem is as follows:—

THEOREM.—No tivo distinct non-harvionic - . series of the type
{sine J y*

00

2 an coa(n+k)x, with the same k, which converge to the same value at
n.= — »

each point of (0, 27r), with the exception at most of a countable set of
•points, can exist.

Suppose, if possible, that there were two such series, and let their
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difference be denoted by 2 ancos(n-\-k)x: then this latter series must
1 4 = — X

converge to zero, except at a countable set of points.
Since a countable set is a set of the first category, it follows from the

Cor. 2 of § 20, that the coefficient an tends to zero.
If we then write

G(x) = — 2 (n+k)~'2 an cos (n-\-k)x,
1 1 = — 0 0

we see that G(x) is a continuous function, satisfying the two conditions that

(i) {G(x + t)+G(x-Q-2G(x)\ = 0,

except at the countable set of points; and further, without exception

(ii) \G(x + f) + G(x-t)-2G(x)\t-*0 «->0).

Hence by the extension of Schwartz's theorem,* G(x) is a linear function
of x, and we may write

CO

Ax-\-B = — 2 (n-\-k)~2 an cos (n-\-k)x,
71 — 00

the convergence being uniform.
Multiply by sin (n-\- &)(2TT—X) and integrate from 0 to 27r, and we get,

since term-by-term integration is allowable,

!

2l7

(Ax+B) sin (n+&)(2x—x) dx — — {n-\-k)~ianir sin 2A-7T,
o

whence

riir

\ (Ax+B)dco8(n+k)(2ir—x) = (n+k)~l aair sin Zkw,
Jo

that is, integrating by parts,

(Ax+B) cos (w+i)(2ir—a-)l *— V A cos (n+k)(Zir—x) dx
Jo Jo

( \ ) a sin

that is,

ft—B cos 2for+(ra+&)-1il sin 2/CTT = (n+^)"1 anir sin

• Hobson's Tiieory of Functions of a Real Variable, p. 211.
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Now let n -> oo, then, since A sin Zkir is finite, and an ->O, we get

(2 i r4+B) —JBcos2&7T = 0.

Therefore also, by the preceding equation,

A sin 2&7r = an7r sin 2&TT.

Now again letting ?j -*• oo, we get

A sin 2&X = 0 ;

and therefore .4=0.

Hence also from the former equation

Thus, by the above expression for (?i-\-k)~1 anir sin "27CTT, we have, for al?
values of n,

an = 0,
which proves the theorem.

22. The considerations above exposed lead naturally, as in the case of
harmonic series,* from the theory of non-harmonic Fourier series to that
of restricted non-harmonic Fourier series. The definition is as follows :

The p-th derived series of a non-harmonic Fourier cosine or sine series
of F(x) is said to be a non-harmonic restricted Fourier cosine or sine
series of the p-th class, and to be restricted to one or more intervals (a, /3),
if, throughout each completely open interval in (a, /3), F(x) is a p-th in-
tegral. The p-th. differential coefficient of F{x) is then said to be the
associated function of the restricted Fourier series in any of these inter-
vals of restriction.

If, in addition, the coefficients of the restricted Fourier series tend to
zero as we advance along the series, it is said to be " ordinary" and is
denoted briefly as a non-harmonic B. F. series.

We have already seen that a non-harmonic Fourier sine or cosine series
satisfies both these conditions in the closed interval (0, 2-7r).

One of the fundamental properties of non-harmonic restricted Fourier

* W. H. Young, " On the Convergence of the Derived Series of Fourier Series " (1916),
Proc. London Math. Soc, Ser. 2, Vol. 17 (1919), pp. 195-236 ; " On the Ordinary Conver-
gence of Restricted Fourier Series" (1917), Proc. Boy. Soc., (A), Vol. 93, pp. 276-292; "On
Restricted Fourier Series and the Convergence of Power Series " (1917), Proc. London Math.
Soc, Ser. 2, Vol. 17 (1919), pp. 353-366.
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series* is embodied in the following theorems:—

THEOREM.—The upper and lower functions at any point internal to
the interval of restriction are independent of the nature of the associated

function, except in an arbitrary small neighbourhood surrounding the
point, provided the individual terms of the series tend to zero at the point
as we advance along the series ; indeed the part of the expression for the
n-th partial summation depending on the remaining values of the func-
tion tends uniformly to zero.

THEOREM.—In the case tohen the typical coefficient itself converges to
zero so that the series is " ordinary", loe can go still further and assert
that the series behaves at any internal point of its interval of restriction
precisely like the Fourier series of a function equal to the associated
function of the series in the neighbourhood of the point and having any
convenient values elsewhere.

These theorems remain true at the end-points, provided the associated
function satisfy at the point in question the appropriate " continuation"
formula applying to the point.

23. For the proof of these theorems we require a modified form of the
expressions (A') and (B'). These expressions involve only the values of
f(x) in the interval (0, 2TT). We shall now suppose that f(x) is "con-
tinued" according to the appropriate law. The formulae (A") and (A'")
obtained are identical for the sine and cosine series, only varying in theso
" continuation " formulae, and in the meaning of the symbol An . Taking,
for example, the formula (A') with the corresponding "continuation"
formula f(t)=f(-t),

i -l/(27r+0+/(27r-*)l- = cos 2kTr.f(t),

we may transform (A') as follows :

Writing in the first term of the bracket

x-\-t = 2TT—U,

and in the second term x—t = U—2TT,

• These theorems were given by me in the communication to the Royal Society quoted
above. The proof is reproduced here, slightly adjusted so as to agree with the present point
of view, and so as to include the end-points.
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we get for (A'), omitting the factor l/(2ir sin 2&TT),

f2ir-s

f(x-\-u) sin /c(27r—u) cosec \u sin(ft+£) udu
— X

f(u—x) sin k(u—2-JT) cosec \u sin(?i-f-J) wcfa*.
X

Adding and subtracting the integrals requisite to change the limits of in-
tegration in both these terms to (0, 2TT), and then making the obvious
changes of the independent variable in the superfluous integrals, we get

(
\j(x-\-u)+f(u—x)\ sin k(2-jr—u) cosec %u sin (71+2O udu

Jo

r*
+ [f(x—u) sin k{Zir-\-u)—f{u—a:)sin k&ir — it)

Jo '
— \f{x — ji-\-QlTr)-\-f(2Tr-\-u — x)\ sinkii\eosec %u sin

Since / satisfies the " continuation " formulae appropriate to a cosine series,
the superfluous integral will be zero, and we get

1 f2jr
sn = —:—^— I £ \f{x-\-u)+f(x—u)\ sin k(2,7T—u)cosec £wsinOi7r sin 2A"7r Jo

(A")

7T Sin

f2jr
^ \f(x-\-u)-\-f(x—u) \ sin ^(2TT—2t) cot %u sin nit cZ

Jo
1 r-ir

H :—rrr- \ [ f(x + u) + f(x — u) \ sin k (27T — w)COS
7T sin Jiliir Jo

The last of these integrals, being one half the sum of the ?i-th and the
—n)-th coefficients in the non-harmonic Fourier cosine series of

% \f(x + u)-t-f(x — u)\ is, as will be shewn in the next article, equal to
^ - l ] • . Thus the partial summation sn of our series is given by

sn.= 2 A\k) = 2 arco3{r+k) x

X sin k (2-7T—u) cot %u sin nu du, (A'.")

in which formula {f(x-\-u)-\-f(x—u)\ must be supposed to obey the "con-
09

tinuation" laws appropriate to the cosine series, since 2 A^ is a

cosine series. If this series is a sine series the same formula holds, but
the continuation is that appropriate in this case (15) and (16).
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24. Indeed, supposing f(t) = f(—t), we have

%{f(x+u)+f(x—u)} Bin(n+k)(2w—u)du

= f " %f{Q*in(;n+k)&>ir—t+x)dt+\ * if (t) sin (n+k){2ir-t-x)dt
Jx J-x

= I f(t) sin (n+k) (27r—£) cos (n+/c) a; cZi
Jo

—f{2ir+t) sin

f(t) 8m(n+k)(2ir-t)dt, (19)

supposing the " continuation " formula (4) to hold.
If on the other hand the " continuation " formulae (15) and (16) holds,

we get, similarly,

- t t ) du

= sin (n+k) x f(t) cos {n+k){2ir—t) dt. (20)
Jo

Thus supposing known the non-harmonic Fourier -i . series of fix), say

B CO 11 = — 0 5 Sill

we have £ ;/0c+u)+/0z-w)!- ~ 2 A™cos{n+k)u. (21).
•n = — M

25. We proceed now to the proof of the theorems enunciated in § 22.
Writing for the second integrated series,

G(x) 2 {n+k)-2 A™ = - 2 (n+k)-2 an
 S m (n+k)x,

) i = — » ? l= — v: C O S

we have seen that, by (A'"), and § 25,

- 2
r=-n

1 f2rr

+ ?i :—Tvi— 1 \G(x+u) + G{x—u)| s ink(2x—u)cot^usinnudu
2I7T s i n 2A;7r Jo
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Thus the upper and lower functions of the non-harmonic restricted
Fourier series in question, are the upper and lower limits, when n-> oo,
of the second differential coefficient of this expression. Since A^+A^l
tends by hypothesis to zero, we have only to consider the upper and
lower limits of

d? (2n

I = —-2 1 \G(x-\-u)-\-G(x — u)\sin&(27r — u)coi ^u sin nudu.

(XX J (i

In treating this expression, the first step is to introduce in place of

sin k{2ir —u) cot \u,
a function </>(u), defined equal to it in (e < u ^ 2TT), and having at the
origin the value — 2k, while its differential coefficient is zero there. In
(0, e) we suppose (j>{u) to be the integral of an integral, with the same
value and the same left and right hand differential coefficients at the
point c, and to be otherwise subject to no conditions. The function
[</>{u)-\-2k~\ then satisfies the conditions imposed on \(u) in the extension
of Biemann's Third Theorem (§ 19).

We thus have

^ a \ {G(x+u) + G{xu)\ {</>(u) + 2k\ sinnudu-^O
clx Jo

Hence we may replace (I) in our investigation by

•j-% 1 G(x-{-u)-\-G(x —u)\ [sin k(Zir—u) cot \u — <f>{u) — 2k) sinnudu
CIX J i t

d? fe= y a \G{x-{-u)-\-G(x—u) \ J sin k (2-7T — u) cob %u — <f> (u) \ sin nu du
clx Jo

d2 f-17
— 2 k -r-2 J G (x+u) -f G (x—u) [ s i n nu du.

O.X" Jo

We see then we only need to prove that the last term tends to zero.
For this purpose we introduce a new function yfr(u), defined as equal to

1 — cos k (27r—u) (e < : u <; 2TT),

and having at the origin zero for its value and for that of its differential
coefficient. This function when suitably filled in from 0 to e, satisfies the
conditions imposed on \(u) in the extended form of Riemann's Third
Theorem. Therefore, omitting for the moment the factor — 2k, we may
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replace the last term in question by

d2 f2ir
r-§ 1 •,G(x4-2i)-\-G(x—u)\ [1—\U{ii)~\ain?iudu
Ix"Jo '(IX

d2 fe

(XX Jo
u)} {1—\[s (u)—cos k (27r—w)

'2»r

jG(^+^) + G(a;—?t)} cos/i;(27r—u)si
o

The last term is equal to

72

^ 5 2 {G(a;+M) + G(a;-M)} [sin{k+n){2ir-u)-Bm(k-n)(2ir~u)\ die

= 7T sin 2fcT •! / I ? - / I _ »} -> 0.

Thus, finally, writing now </> (it) instead of*

<j> (u) + 2& {1—\/r (M) — cos A; (2?r—«t) ] ,

we see that the partial summation sa of our non-harmonic restricted
Fourier series is given by the formula

X -Jsin k{$ir—u) cot hi — <j>(;u)} sin nuduJTr sin 2&7r, (22)

where <f>(u) is the integral of an integral, with the value — 2k cos 2/c7r at
the origin, and sin ft(27r—e) cot^e at the point e. If the point x is in-
ternal to the interval (0, 2TT), we can, in this formula, choose e so small
that no " continuation " is necessary. But if x = 0, we have to regard
G as an even function, and, if x = 2TT, we have to assume that the " con-
tinuation " formula used is that appropriate to a • . series.

r (sine
Since our upper and lower functions are the upper and lower limits of

..sft> this proves the first theorem of § 22.

25. Now if in the interval (x—e, x-\-e) the function G is the integral
of the integral of / , we may in the expression (22) perform the differentia-
tion under the integral sign, writing / in place of G. By the theorem of
Riemann-Lebesgue, the part of the integral involving the arbitrary func-
tion 0 then tends to zero. Thus we are left with

,i \ i 1 T u / i % I xt \i sin&(27r—u) , ,

sn = o(l)H 1 \ f(x-\-u)-\-f(x—ti) \ :—prr cot hi ain nudu,
IT Jo sin AKTT
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Now, when u ->• 0,

j sin k(2>7ru) ., I , . [sin k (2ir—u) — sin 2A;TT] COS \u k cot2/c7r
I —=—7Tn 1 I" COC Ml = •L : •zr1 : =; - • ; ,
I sin 2A;7r ) z sin Zkir sin £w £

and is therefore bounded in the neighbourhood of the origin.
By the theorem of Riemann-Lebesgue, therefore, we may replace

our expression by

sn = o(l) + 1 ! f(x -+•«•) +/(#—1() \ cot hi sin ?m du,
Jo

which is the Fourier expression.
This completes the proof of the second of the theorems of § 22.

26. We come now to the application of the results of the present paper
to the theory of Bessel series. In particular we are now able to obtain
the conditions of convergence at the end-point z = 1 of the interval of
restriction cf the Bessel series.

The asymptotic approximation

9 1 / 9

ffll — * , Kilo ~~

e) Jm(x) = cos \js-\ ^—- sin \fr

where \6\ <. 1 and \fs = — x-\-^C2m-\-l)ir, holds up to and including the
point x = 1.

Consequently we may regard as valid up to and including z = 1, the
formal restrictions (21) and (29) obtained in my paper on " Series of
Bessel Functions", viz., firstly, the relation (21),

5 Arjn{krz) = z->- {s1+*-is2+*-2s3;-,

where Ss, and the first integrated series of S2, and the second integrated
series of Si, are convergent series whose sums are integrals; while the
second integrated series of the Bessel series on the left of this formal
identity is a uniformly convergent series whose sum is the integral of an
integral; and, secondly, the relation (29),

where T3 and the first integrated series of Tx converge uniformly to in-
tegrals, while „
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We recall also the fact that, apart from an irrelevant factor, S2 and 2\ are
the first integrated series of Sx and T respectively.

Now, by hypothesis Ark'^-^O (r-> oo),

and, integrating twice with respect to y = x(l—z), the series

we get the integral of an integral. Thus T is a non-harmonic restricted
Fourier series in (0 ^ y < 1), and therefore in this interval Tv the first
integrated series of T, converges to an integral, the convergence being
uniform in every closed interval inside (0 ^ y < 1). Similarly now we
see that S.j, converges uniformly to an integral.

Thus we get from the given relations

r=0

where <f>(z) is an integral in (0 < z ^ 1).
Hence, denoting the function associated with the Bessel series by /(<?),

and that associated with the series T by g(y), where y = 7r(l — z), we get,
after multiplying by z* and integrating twice with respect to z = 1 — yjir,

\dz\ z*f{z) dz=\dz^g \ir(l-z)\ dz+\ dz j<p(z) dz,

whence, differentiating twice, and choosing the function g suitably at the
set of content zero at which the differentiation does not work,

g{ir(X~z)} = z*f(z)-<p(z).

Thus, by our theory, the non-harmonic restricted Fourier series T
behaves at the point ir(l—z) like the Fourier series of a function which
in the neighbourhood of the point considered has the form

**/(*)-0(*),

provided the point z is internal to the interval (0, 1); and at the point
z = 1 [which is the same as 7r(l— Z) = 0], the function has this form,
and on the right is reflected in the point z = 1. This will be satisfied if
z^f{z) and <j>(z) separately have this " continuation " property. Now <p(z)
is an integral up to and including the point 2 = 1 , and is therefore, when
" continued " by reflection in this point, still an integral in the whole
neighbourhood considered. Therefore its Fourier series converges uni-
formly, and, consequently, the term <{>{z) may be suppressed in the ex-
pression for our auxiliary function. Also the Fourier series of
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behaves in (0 < z < 1) like the Fourier series of f(z), and the Fourier
series of the function which in the neighbourhood of z = 1 is equal to
zhf{z) on the left and is reflected on the right, behaves like that of the
function equal to f(z) on the left and reflected on the right, for in each
case the factor removed represents a bounded function.

Thus, finally, observing that, in virtue of the relations found, the Bessel
series behaves in respect of convergence, and so forth, according to the
behaviour of the series T, we see that the Bessel series converges, oscillates,
or diverges, under precisely the same conditions and in precisely the same
manner {uniform, bounded, d-c.) as the Fourier series of a function which
in a neighbourhood enclosing the point z considered is equal to f{z), if
(0 < z < 1), and, if z = 1, has this form on the left of the point and is
reflected in the point.


