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By W. H. Youna.
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1. Following English usage, I have found it convenient to restrict the
term Fourier series to those trigonometric series which proceed by cosines
and sines of integral values of the variable, or variables, and have the
further property that their coeflicients are expressible by means of in-
tegrals of the well-known kind, involving a function of the independent
variable, or variables. I have, for example, not followed the usage
adopted by Jordan, and other French writers, of employing the term to
characterise analogous series of functions, other than cosnz and sin nr,
such as Bessel funetions. It seems to me, however, desirable to retain
the term when the very slight change-—formally speaking-—of substituting
n—+k for n is made. Though the series so obtained have not, however,
as far as I know, been the subject of systematic study, and I have found
it necessary to obtain among other things, the expressions for the co-
efficients as integrals, such series naturally present themselves. Special
-examples of such series are indeed known.* I myself have been led to the
study of these series naturally by the necessity of extending to the case
when the order is irrational, properties of series of Bessel functions, which,
in the rational case, I have been able to deduce from the theory of what I
have called Restricted Fourier Series. Needless to say Series of Bessel
Functions are not the only series whose study might be expected to
-demonstrate the same need.

In the researches in question, these non-harmonic trigonometrical
series do not present themselves in what I propose to call the Fourier
form, being of a more general type. It is evident, however, that a proper
grasp of the whole class of trigonometrical series in question cannot be
obtained without investigating the properties of the particular class in
«question. Indeed the behaviour of a Bessel seriest at the further bound

¥ See below, footnote to § 11.
+ I distinguish between a series of Bessel functions Z4,J. (k-2) and the special case,
Bessel series, when the ooefficients 4 have the appropriate form.

x 2
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of the interval in which the expansion is valid, is most conveuniently dis-
cussed by reference to the behaviour of a non-harmonic Fourier series,.
restricted in character generally, at an extremity of the interval in which:
this series is defined.

The paper falls naturally into three parts. The first of these, §§ 2-16,.
treats of the definition and summation of the series in question.

C ., cosine) .
A non-harmonie trigonometrical sine | Sevies

w
cos
AN
a, . ¥k
et (1 sin ( )

nN=—w
is said to have the Fouwrier form if

1 2 .
= sin 2k L 1@ 2:; (n+k)2r—0t) d¢,

a, =

and the function f(z) is then said to be the associated function of the
series.

At an internal point of the interval (0, 2) these series are proved to.
have, apart from an additive term which tends uniformly to zero, the:
same expression for the n-th partial summation

s, =o(1)+ %S‘o 3 {f@+t)+f@—b)} cosec 3t sin(n+3)t dt,

as the Fourier series of a function equal to f(x) at, and in the neighbour-
hood of, the point x, and having any convenient values elsewhere. The
upper and lower functions, and the modes of oscillation, are accordingly
independent of the form of the associated function, ewcept in an arbitrary
small neighbourhood of the point x considered, and are the same as those
of this auxiliary Fourier series. In particular, the conditions of conver-
gence, and of uniform or bounded convergence, are the same for the non-.
harmonic Fourier series and the auziliary harmonic Fourier sertes.

These results are still true at the end-points of the interval (0, 2),
provided the function f(z), whose values have hitherto only been supposed
known almost everywhere in the interval (0, 2), is supposed *‘ continued ™
outside the interval in accordance with certain laws, which are different
for the cosine and sine series. The law of * continuation ” appropriate to,
the cosine is embodied in the formule :

fo=f-o.
L f@r+H+f@r—1t)) = f(t) cos 2km. J
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The law of “ continuation ”” appropriate to the sine series is as follows ;

3 f 27 +1) —f(27r—t = f(t) cos 2k.

These * continuation ” formul® play in our present theory the part of the
perindicity in the case of harmonic series.
The proof of these properties depends on certain fundamental lemmas,

which, in our theory, take the place of the ordinary normal properties of
the sine and cosine. These are

" gin cos 3 .
L‘ cos 02+ #) 27 —) sin r+Rudu=10 (r+mn)
o = 4+ 7sin 2kr (»r = n),

r and n being integers, positive, negative, or zero. In particular it
appears that, if a function is expressible as the sum of either a convergent
non-harmonic Fourier cosine series, or the corresponding sine series, at a
point z internal to the interval (0, 27), it is expressible by both these
series ; but that this is not the case at the points O and 2, unless the
value of the function at each of these points is zero. At the origin indeed
a sine series, of course, converges to zero, and at 27 each term of a cosine
series returns to its valwe at the origin, multiplied by cos 2kr.

1t follows from the theorem of Riemann-Lebesgue, that the coefficients
of a non-harmonic Fourier series tend to zero as we advance along the
series. Hence the second integrated series necessarily converges uni-
formly to a continuous function. We are thus able to show at once that
the necessary and sufficient condition that a non-harmonic cesme } series
should have the Fourier form is that the second integrated series should
converge to a second integral* and the associated function s then the
second dufferential coefficient of this second integral almost everywhere in
(0,27) : also, if we prefer to utilise at once both types of series, that we
may i this statement replace ** second ” by “ first.”

The first part of the paper terminates with some simple exa.mples of
non-harmonic Fourier cosine and sine series, the nature of whose conver-
gence, uniform or bounded, is discussed.

The object of the second part of the paper, §§17-25, is mainly to
shew that there is no other way of obtaining the development of a given
function in such a series as is here contemplated. For this and later

* That is the integral of an integral.
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purposes we require the generalisation of Riemann’s ““ Three Theorems on
Trigonometrical Series,” given in his Habilitationsschrift.

Harnack’s theorem, too, as to certain conditions under which the co-
efficients of a trigonometrical series tend to zero is generalised so as to
apply to non-harmonic series. In particular we have the result that, ¢f
the potnts of non-convergence form a set which vs at most of the first cate-
gory in some wnterval, then the coefficients tend to zero.

One of the most important consequences of these theorems is the re-

. . . costne .
sult we were in search of : no two distinct non-harmonic sine } seres

o«

of the type T a. :?; (m—4k) z, with the same k, which converge tv the

same value at each point of (0, 2w) with the exception at most of a
countable set of points* can exrist.

The main object of the third part of the paper (§§ 26 to end), is to
apply the considerations which precede to establish rigidly a statement
which I made in a previous papert as to the behaviour of a Bessel series

" at the point z = 1. For this purpose it is convenient to use the theory
of restricted non-harmonic Fourier series in a slightly extended form.
In the light of the continuation formulsw this theory is found to apply not
only when the interval of restriction belongs to the completely open in-
terval (0, 27), but even when one of these points is an included end-point
of the interval of restriction.

In consequence we may now state that the conditions of convergence
of a Bessel series at any point of the half-open interval 0 <z <<1) are
the same as those of the Fourier series of a function equal to the asso-
ciated function f(z) of the Bessel series in an arbitrary small neighbour-
hood surrounding the point considered and having any convenient values
elsewhere, provided the value assigned to f(2) at any point to the right of
the point 2z = 2w 15 defined as the same as that at the reflection of this
point in z = 2.

2. I begin by stating the following lemmas, which take the place of
the familiar normal properties of the sine and cosine in that of Fourier
series :—

Lemma 1.—If r and n are different integers, positive, negative, or zero,

j)’r sin(n+k)2r—uw)cos(+hudu =0 0O<k<<l),
0

* Or totally imperfect set.
t ¢ On Series of Bessel Functions,” Proc. London Math. Soc., Ser. 2, Vol. 18 (1919),

pp- 163-200.
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and if r = n, the value of the integral is

7 sin 2k .

Lemya 2.—If » and n arve dufferent integers, positive, negative, or zero,
2
5 cos (n+k)2r—wu)sin r+ k) udu = 0,
0

and, if r = n, the value of the integral is
— 7 gin 2km.

The proofs may be left to the reader.

8. Hence, in place of the ordinary Fourier expansion, we are led to
examine the possibility of expanding a function f(z) in a series of the form*

s a, cos (k+n) x, 1)
n=-w
where, in view of Lemma 1, the coefficients @, have what may be called
the Non-harmonic Fourier Form,

an= i S F(t) sin (n4-K) @ —B)dt, @
for all integral values of n, positive, negative, or zero, and f(¢) is supposed
defined and summable only in the closed interval (0, 27), toZwhich we re-
strict our attention. When the coefficients have this form, in which
case a,—> 0, by the theorem of Riemann-Lebesgue, we shall write sym-
bolically

L]

f@)~ Z ayeosk+n)z 0<z<<2m). (8)

NH=—

We shall then find that the partial summation s,, that is

"

s.x) = = a,cos(k+nz,

r==nN
apart from an additive term which tends uniformly to zero, has the same
form as that of the Fourier series of a function ¢.(t), equal to f(¢) in an
arbitrary small interval enclosing the point z considered, and having any
convenient values elsewhere, provided z is internal to the completely open
interval (0, 2w).

* This symbol is to be understood to mean It ; a,cos(k +7)a.
N=—PpsH o~
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At the point O the same is still true, provided f(z) be regarded as
‘“ continued ”’ beyond the origin on the left, so as to be an even function
in the arbitrary small interval in question.

At the point 27, the formula for s, only differs from that at 0 by the
multiplicative factor cos 2k, and the connection with the Fourier series
of ¢,(f) still holds true, provided f(¢) be regarded as “ continued ’ beyond
the point 27 on the right, in accordance with the relation

f27r+t)+f (27 —1t)} = f(¢) cos 2k, (4)

in the arbitrary small interval in question. It will be noticed that the
“ continuation ”’ defined in the present article is precisely that which is
fulfilled of itself when the non-harmonic series converges to f(x) every-
where.

4. To prove these formule, we have

3 2
Sp = .1—— z j {cos (k47) zsin (k+2)2m—10)} f(¢)dt

7 sin 2k r=—n Jg

1 o r"{Sin(k-i-")(-r+t)—sin(k+r)(,c-—t)}f(g,,_t)dt (A)

T wsin 2k .o _u Jo

1

5 f@r—1) [sm ka0 34 2 cos r(w-{-t)}

= 7 sin 2k7
—sin k(c—¢) {%-{-é cos;(:r—t)’]dt
2w
=g j F(@m— ) [sin k(@41 cosec 3 (64 sin (o4 3) (@48
d m Jo

—sin k (z—¢) cosec 3 (x—¢) sin(n+3) (@ —¢)] dt. (A"

5. Now suppose first that
o< <m,

then the integrand is the product of f(27—¢) into the sum of two terms,
each of the form
u (z, t) sin nt+v (z, t) cos nt,

where, in the first of the two terms, » and v are bounded, except in the
neighbourhood of ¢ = 27 —uz, and, in the second, without exception, since
sin k (z—¢t) cosec 3 (x—¢) remains bounded in the neighbourhood of the

point ¢ = z.
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Thus, by the theorem of Riemann-Lebesgue, we may write

2r—x+e

o)+ 27 sin Zkvr L,,_z_e

f@m—t)sin k(z+1¢) cosec 3 (z+ 1)
sin(n+3%)(z+t)dt
{flwtt)sin &k (@r—t)+fx—t)sin k 27 +0)}

cosec 3t sin(n43) tdt
= o(l)+%_ K {fle+t)+f(x—1): cos kit cosec 4t sin(n+3) tdt;

(1)+ 27 sin 2k7r L

or, by the theorem of Riemann-Lebesgue, the integral which we have
neglected tends to zero, since cos 2kw sin kt cosec 3¢ remains bounded
throughout (0, ¢).

Now in the last integral we may replace cos k¢ by unity, since this
integral may be broken up into two parts, differing from the whole only
in having unity and —14-cos k¢ respectively in place of cos k¢, and the
latter part tends to zero by the theorem of Riemann-Lebesgue.

Thus, finally,

8,(x) = o)+ 217; S; {fledt)+f@—10) | cosec it sin (n+3) tdt, (5)

which is the well-known Fourier formula.
This proves the first of our skatements (§ 3).

6. Returning to (A') and putting z = 0, we get

-

1S
, — 1
$.(0) = - j f(2m—1¢) sin kt cosec 3¢ sin (n+43) tdt

= o)+ m -r f(@mw—¢) sin kt cosec 4¢ sin(n+ )¢ dt,
by the theorem of Riemann-Lebesgue,
=o()+ W J f(t) sin k(2w —1) cosec 3¢ sin (n+3) ¢dt.

Ixpanding sin & (27—¢) and using again t;he theorem of Riemann-
Lebesgue, we get

= o(l)—i—% S J(t) cos kt cosec 3¢ sin (n+3) ¢tdt
T Jo

= o(l)+ % SO F(8) cosec ¢ sin (n4-3) ¢dt, 5

as ab the end of the preceding article.
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This proves the statement made (§ 3) as to the identity of this formula
with that corresponding to the Fourier series of an even function ¢,(f)
equal to f(¢) in (0, e).

Thus, of f(z) is continuous on the right at the origin, the series con-
verges there to f(0).

7. The statement as to the formula at the point z = 2w, follows at
once. Putting z = 27 in formula (A’) it becomes

1

s (2m) = 7 sin 2k

2m
S f(2m—t) cos 2k sin kt cosec 3¢ sin (n+3) ¢
0
= cos 2k= ¢, (0)

= o)+ = j Ftt) cos 2 cosec 3¢ sin (n+3) ¢dt

= o)+ 5 L f@m—+f@r+1)! cosee bt sintB)tde, (57)

supposing f(t) “continued” in accordance with the la,w formulated in
equation (4).

The series therefore converges at 2w of, and only if, it converges at the
origin, and the value vs cos 2k times the value at the origin.

8. By the formule (5), (5') and (5") we have at once the following
theorem :—

TaroreM.—The non-harmontc Fourier cosine series

n

flx) ~ _E @, cos8 n+k)z, (8)
where a, = ﬁ S f(t) sin(n+k) (2w —t)dt, (2)

converges at any point x of the closed interval (0, 2w) under the same con-
dittons, and to the same value, as the Fourier series of a function ¢.(¢),
equal to f(t) in an arbitrary small neighbourhood enclosing the point x in
question and having any convenient values elsewhere, provided f(t) be
supposed *‘ continued " outside the wnterval in gquestion, so that, in an
arbitrary small nerghbourhood of the origin 1+t ts an even function, and
wm an arbitrary small neighbourhood of the point 2,

3 f@m—t)+f@r4D" = f(t) cos 2k (4)



1918.] ON NON-HARMONIC FOURIER SERIES. 315

We remark that it follows that the non-harmonic Fourier series cannot
represent the function f() at the point 27 unless

f(2x) = f(40) cos 2k, (6)

nor at the origin unless f(f) is continuous on the right.

9. Remembering that the theorem of Riemann-Lebesgue asserts, not
merely that a certain integral tends to zero, but that it does so uniformly,
we may combine the formule (5), (5), and (5") in the formula

$u(2) — o (X) = na (), (7}

where o, () denotes the n-th partial summation of the Fourier series of
the auxiliary function ¢,(t), and 5,(x) tends uniformly to zero.

Now by the definition of the auxiliary function ¢,(¢) as equal to f(¢:
in an arbitrary small neighbourhood enclosing the point z and having any
convenient values elsewhere, we see that, taking || <<e, we have for all
these values of /i, choosing the auxiliary functions conveniently,

pren (t) = ¢ (1),

t lying in the arbitrary small neighbourhood (x—e, z+¢) already utilised
in constructing ¢,(t). Hence we may write

su(z+ ) —o, (x4 1) = n,(z+ 1),

where 7,(z+ 1) tends uniformly to zero. Therefore
\sm(w) Sn .,C+]l)r %O'm(x)—o'n(x_l_h), - 'Im(il? 771,, x+]l) (8)

This shews that if one of the series converges uniformly, or boundedly,
at the point x, on the right, or on the left, so does the other.

If the series do not converge, we see, by (7) and (8), that they have
the same upper and lower functions, and that, if one of them oscillates
boundedly on the right or on the left, so does the other, while if one of
them oscillates uniformly (in the first mode) above, or below, on the right,
or on the left, so does the other.

In particular if f(27) = cos 2k . £(0),

and f(z) ts an integral in the closed interval (0, 2w), the non-harmonic
Fourier cosine series of () converges uniformly to f(z) in the closed in-
terval (0, 27).

10. This last result enables us to prove that tie necessary and sufficient
condstion that a non-harmonic cosine series should have the Fowrier form
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is that the second integrated series should converge to a second integral,
that is to the integral of an integral, in the closed interval (0, 27), and
the associated function of the original series is then almost everywhere

equal to the second differential coefficient of that repeated integral.*

Indeed writing J‘u f(z)dz = F(x),
0

a,+j;1r(x) iz = G (),

we shall have G(27) = cos 2kw . G (0),
if @ has the value U= — S (QFF(;c)dx
’ ~ 1—cos 2kw )y g
Now let f(z) ~ s a, cos(n+k)z,

G(z) ~ s A.cos(n+k)z;

H= =R

then the latter series converges uniformly to G(r) in the closed interval
{0, 2). o
But

—a sin 2kw(k+n)"%a,

S L (k-+n)~* f(@) sin (k-+n) @ —2)dz

- S (k+n)* sin (k+n) (@7 —2) dF (2)

= - [(k+n)“’3 sin(k+n) (27 —ux) F(a:):rr
0

—_ rﬂ(k +n) F(zx) cos(k+n)(27w—z)dx
)

2
= —j (k+n)"1 cos(k+n) (2w —z)dG(x)

’ G @)sin(h4+n) (27 —2a)dz

(1]

- [(k-l—n)‘l G(2) cos(k+n)(27r-—x)]:"+J

= — (k—n)"1! G(27)—cos 2k7G(0)} + 4.,
= A,

* Tt will be seen below that in this statement we may replace the second by the first.
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The relation between the series

2 aycosmtk)xr and Z A,cos(nt+k)z

is therefore that the seeond is the second integrated series of the first.

Thus the second integrated series of the non-harmoniec Fourier cosine
series of f(x) econverges uniformly to a second integral of f(z), and con-
versely, the second differentiated series of the non-harmonic Fourier cosine
geries of a second integral of f(z) is the non-harmonic Fourier cosine series
of f().

The result stated at the beginning of this article is equivalent to this.
last double statement and is therefore proved.

11. Example—Put f(&) = 1.
We get for all integral values of n, positive, negative, and zero,

@, 7 sin 2kT = (1 —cos 2k7) [(k+n),
that is, a, 7 cot kr = 1/(k+n).
The ‘‘ continuation ”’ of the function gives us
f(—=t =1, fQ@r+1t) = 2cos 2kr—1,

where 0 <t <e.

Thus at each point the auxiliary Fourier series converges, and it con-
verges uniformly except at x = 2w, where it still converges boundedly.
The sum is 1 except at = = 2w, where it is cos 2.

Hence, by our general theory the series
& 1
- _ .
=z k_{_ncos k+n)x
converges uniformly to wcot kw at each point of (0, 2w), except at the
point 27, where it converges boundedly to = cot km cos 2k.

Thus* in 0 <z << 27 we have, uniformly,

n

o

7 cob kr = l_Z‘J /+ cos(k+n)z

__cos ke >k coskxz cos nz+n sin kz sin nr
y n=1 k2_7l .

@

* This result has already been obtained (for 0 < z < 2r) by a direct method. See
Bromwich, Theory of Infinite Series, § 90, p. 231, top, where references are supplied.
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Putting z = 0 in this equation, we get the well-known formula

weothr = = 1

R (10)

We get the same formula, with each side multiplied by cos 2k,
when 2 = 2.

When 2 = 7, we get the known cosecant formula.

That the convergence is bounded is evident from the series itself, as
well as that it is uniform, except at z = 2=, for

n

- .
oS NI . sin nz

2kcoskr £ 53— and 2ksinkz £ 5—

w1 KE—n .

converge uniformly for all values of z, while

. 2 (k—n)sinnz . 2 sinne
—23111k1:2(%-—=2smk;v2 .

n=1 k*—n n=1 ]\'+7l'

Now, by Abel’s lemma, the latter series converges uniformly for all
values of z in (0, 27) excluding the end-points 0 and 27. Also the series
i1s known to converge boundedly in (0 <z < 27), and therefore, when
multiplied by sin kx, converges at the origin uniformly to zero. Thus our
series, being the sum of these three series, converges boundedly, and,
except at z = 27, uniformly.

12. Again, in virtue of Lemma 2, we are led to examine the possi-
bility of expanding a function f(z) in a series of the form

Z b,sin(k+n)z, (11)
where, in view of Lemma 2, the coefficients have what may be called the
non-harmonic Fourier form,

by = 1 E"f(t) cog (n4k) 2w —t)dt, (12)

7 sin 2k

for all integral values of », positive, negative, and zero : f(#) being supposed
defined and summable only in the closed interval (0, 27), to which we re-
strict our attention.

We again write symbolically

f@)~ = basine4n)z, (18)

N=—w

where, by the theorem of Riemann-Lebesgue, 0,0 (n— ).
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We then find the same result as before, in so far as the internal points
of the interval (0, 27) are concerned. We have, however, in order to ex-
tend the result to the end-points O and 2= to use a different mode of
‘“ continuation” from that applicable to the non-harmonic Fourier
cosine series. This is again that which is naturally fulfilled when the
series converges everywhere to f(z). Indeed the partial summation s, of
the sine series (11) has the same form (A) as before, except that the two
terms inside the bracket are now united by the sign + instead of —

=i 3 Jh-}sin(k+)')(J:+t)+sin(k+r)(x—t)} f@r—1t)dt. (B)

2w sin 2k o__, Jo

This only affects the term which, at the next stage, disappears by the
theorem of Riemann-Lebesgue. e get, in fact, corresponding to the
formula (A"),

1
= 27 sin2kw

5 f@r—t) [sm k(x+t)cosec 3 (z+t) sin (m+4)(xz4¢)
+sin & (z—t)cosecd (x —t)sin (n+3) (x—t)] d¢, (B)

which leads as before to the formula (5).

18. At the origin s, = 0, always, which implies the law of ‘ continua-
tion "’ by which f(¢) is an odd function in an arbitrary small neighbour-
hood enclosing the origin.

14. At 2 = 27, we have, using (\’), after changing the — into +,

1
27 sin 2k

su(27) = L F@m—1) {sin k(@74 ) +sin k@r—18)!

cosec 3t sin (n+3%) tdt
1 i ]
== j f(2m—1) cos kt cosec 3¢ sin (n+3)tdt

11 .
= o)+ P So Jf@mw—t)cos kt cosec 2t sin(n+3) t dt

+ % ‘( Jf@m—t)cos kt cosec 4¢ sin(n+4-3)tdt

=o(1)+

=I|r-'

j {f@7r—0)+f(¢) cos k(2r—1)} cosec$tsin(n-3)idt

o

=o)+ —71; 5 {f@r—8)+F(t) cos 2k} cosec 3t sin(n+3)tdt
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using the theorem of Riemann-Lebesgue in the third and fifth of these
equations.

Thus if we “ continue ” our function f(¢) beyond the right-hand end-
point 27, according to the law

Hf@m4+O—f@r—1} = f(t) cos 2, (14)

we shall have
$,(2m) = o(1)+ 517_756 | f@r—8)+fQ2m+1t)} cosec 3¢ sin(n+3) tdt, (5")'

whieh is the Fourier formula.

15. Hence we have the following theorem :—

THeorEM.~—T he non-harmonic Fowrter sine series

flo) ~ _ é b, sin(n+k)z, (18)
1 21
where b, = ey L f(&) cos (m+k)(2m—t) dt, (12)

converges at any point  of the closed interval (0, 27) under the same con-
ditions, and to the same value, as the Fourier series of a function ¢,(¢),
equal to f(t) tn an arbvtrary small nerghbourhood enclosing the point & in
question and having any convenient values elsewhere, provided f(t) be
supposed * continued " outside the interval in question, so that, in an
arbitrary small neighbouriood of the origin it @s an odd function, and in
an arbitrary small neighbourhood of the point 2,

1 fQa4D—fRr—1t)! = f(t) cos k. (14)

We remark that it follows that the nou-harmonic Fourier series cannot
represent the function f(t) at the origin unless

f0) =0, (15)
and it cannot represent the function f(t) at the point 2w, wiless
fw) = f(27r—0)4f(40) cos 2kr. (16)

If therefore continuous on the right at the origin, it must be continuous
on the left at 2.

The discussion of the uniform, or bounded, convergence or oscillation,
on the right, or on the left, given in § 9, evidently applies equally to the
sine series, the appropriate law of ‘“‘continuation’ being supposed utilised.
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In particular, if f(0)=0, and f(z) is an integral n the closed interval
(0, 27), in which case (16) holds, then the non-harmonic Fourier sine
sertes of f(x) converges uniformly to f(z) in the closed interval (0, 2w).
Thus, as an application of this result, we see that if

Fx) = rf(z) dz ~ g: b, sin (k+)«,
0

N= -

Ed

where f@)~ T a,cos(b+n)z,

n=-—an

the non-harmonic Fourier sine series of F(x) converges uniformly in
(0, 27) to F(z). But

(k+n)~' sin (A +4n) (27 —x) dF (x)

- sin 2kw(k+n)"la, = r" (k=+n)"!sin (k+n)(27—:ix) f(z) d«
(1]
Vﬂ

= 'rﬂ F(z)cos (k+n)@r—x)dz = b,.
0

Thus we see that the first integrated series of @ non-harmonic Fourier
cosine seres converges uniformly in the closed interval (0, 2m) to the in-
tegral of the associated function of the cosine series; and, conversely, the
Jirst derived series of the non-harmonic Fourier sine sertes of an integral
s @ non-harmonic Fourier cosine series, whose associated function has
that integral for integral.

Similarly, using the result proved in § 9, that the non-harmonic cosine
series of an integral which satisfies the proper ‘ continuation” law, con-
verges uniformly to that integral in the closed interval (0, 27), we see that
in the preceding statement in italics we may write cosine for sine.

We may state these results otherwise by saying: The necessary and
sufficient condition that a non-harmonic sine or cosine sertes should have
the Fourier form 1s that the first integrated sertes should converge towards
an integral in the closed interval (0, 27). _

We have seen that a similar condition may be stated in the case of
the cosine series, and raay evidently also be given for the sine series, in
which the second integrated series takes the place of the first in this
statement, the integral (firsf integral) being replaced by a second integral.
This form of the condition has the advantage of only comparing sine series
with sine series, and cosine series with cosine series.

SER. 2. VOL. 18, Xo. 1345. Y
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'16. As an example, suppose that
f@ = 1.
‘We get for all integral values of n, positive, negative, and zero,

1 i 1

b, = o 2 L cos (k+n)(2r—08)dt = m .
The “ continuation ”’ according to the law appropriate to the sine series,
gives us f(—t) =1, and f(2w41¢) = 2cos 2kw+41. Thus at the origin
and at the point 27 the auxiliary Fourier series, which is everywhere con-
vergent, does not represent the function. The convergence is uniform
except at the end-points, where it is bounded. Hence, for 0 < 2z < 2,
we have*

w0

2 sin(k+n)z _ sinkx | & ksinkncosnz—n coskn sinnz

TEE TR TR TG F :

amn

the convergence being uniform, while at the origin the series converges
bouundedly to zero, and, at the point 2w, it couverges boundedly to
w {14cos 2k7} = 2 cos® k, agreeing with (10).

17. We next proceed to generalise Riemann’s three theorems on
trigonometrical series.t Riemann’s reasoning applies with comparatively
slight alterations to non-harmonic trigonometrical series, and in order to
save space I have not written out the proofs at length.

Rienann’s First THEOREM (generalised).—

»n
. @ 3
If the series = AV, where
2 @

L= —

A,(,.“ = a, cos (n+k)z+Db, sin (n+k)z,

converges at the point x to, say, f(x), and tts second integrated series con-
verges at « and in its neighbourhood to a function G(x), then

{Glz+a)—2G@+G(z—a)} [d* = fl@) (a—0).

-# See footnote to §11.
+ B. Riemann, Habilitationsschrift, § 8, Ges. Werke, pp. 246-249.
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We have

{G(2+2d)—2G(2)+ G(@—2a) } /40

= - % (k+n)~2a, | cos(k+n) (x+ 2a) —2(k +n) cosz +cos (k+n) (z — 2a) }

n=-—n

- (sin(k+n)a 2
—n=2—m Ant k+n)a } ) : (18)

From this point on the proof is, in all essentials, identical with Riemann’s.*

Cor.—Under the same circumstances if a and B approach zero so that
the ratio of each to the other does not tend towards zero

Getatf)—Glta—p)—Ga—etP+Ge—a=p) , .,
4af3 .

This is the form in which Riemann enunciates his theorem, but we use it
in the simpler form, from which as he points out, it immediately follows.

18. Riemann’s Seconp TrroREM (generalised).—

If the second integrated series of the series

I

T bgs

T 4, {a, cos(n+k)x+b,sin(n+k)<!},

n w

converges at x and i its netghbourhood to a function G(z), then

(Glz+9)—2G()+Gz—a)fa—>0 (a—0).

The proof of this theorem also is practically identical with Riemann’s.

* Similarly we may shew that when the series .,2 Au does not converge, all the limits of

Na-x
{G(x+h)—2G (2) + G (x—a)}/a?,
when a—> 0, lie between the two bounds

L(U+L)xX(U-L) (1+ %),

where U and L are the values of the upper and lower funmctions of ; A, at the point x, pro-

vided only the second integrated series converge and G (x) denote its sum.

This form of the result is due to my wife, being a closer pair of bounds than that given
in the case of harmonic series by Hassenfelder, ** Zur Theorie der trigonometrischen Reihe **
(1900), Jahresbericht des kiniglichen Gymnasiums zu Strassburg (Teubner), as an emendation
of a similar result due to Du Bois Reymond. See a forthcoming paper by Grace Chisholm
Young, also Hobson's Theory of Functions of a Real Variable.

Y 2
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19. The extended form of Riemann’s Third Theorem, I have already
given in the recent communication to the Royal Society already cited.®
The enunciation is as follows :—

Riemann’s THIRD THEOREM (generalised).—

If in (b, c) the function \(x) is the integral of an integral, and if \(x)
and \'(z) are both zervo at b and c, then

IEnﬂHGm+m+G&—wMWi$pmm»0 (u— ),
where

2]

G=— I (u+kb*{a.cos(nt+k)x+bsin(n+h)z} =— = +k)24P,

where (0 < k < 1), provided oﬁly () the series converge unmiformly, and
(i) 45’0 (- ).

The proof, which also is closely modelled’ on Riemann’s will not be
infroduced here.

20. Harnack has proved the followiﬁg result :—

If (a, b) be any wnterval, and 7y, 75, ... any sequence of continually
mereasing positive integers, we can find a sub-sequence %y, Ny, ... and «
point z, internal to (a, b), such that, from and after a certain indez, the

values nz,

all differ from an odd multiple of 3w by less than an assigned (arbitrary)
small positive number (.t

Hence it immediately follows that if at every internal point z of (a, ),
we have | A, 8in 2,2 | < 6,
for all indices 7z, we must have for all indices ¢ from and after a certain
integer, |, | < 6 secé,

and therefore Ll A, | < dsecl <6,
i—>w ¢

since { is arbitrary, and may be chosen as small as we please.
From this result Harnack easily deduces & theorem for harmonic

« ¢ On Non-harmonic Trigonometrical Series’’, 1918, § 10.
1 The proof may be consulted in Hobson’s Theory of Functions of a Real Variable, p. T47.
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trigonometric series, equally true for non-harmonic series. His proof is
equally valid in the more general case. The theorem is as follows:—

Hagnack’s Taeorem (generalised).—

n
If 2 A(,,';)(.zt) s @ non-harmonic or harmonic trigonometric series, where

-

AV = g, cosn+k) z+businmt+kz Ok <1),

and the series is such that in (0, 2w) there is a sub-interval tn which the
upper and lower functions at each point x differ by less than 8, then all
the limits of the coefficients a, and b,, when n—> o, are numerically less
than or equal to 6.

Cor. 2.—If the points of non-convergence form a set which is at most
of the first category in some interval, then the coefficients tend towards
zero.

For the points at which the excess of the upper function over the
lower funection is greater than ¢ form, as is known, an inner limiting set,
and therefore form in every interval in which they are dense everywhere
a set of the second category, and cannot therefore be a sub-set of a set of
the first category ; they must be nowhere dense therefore in an interval
in which the points of non-uniform convergence form a set of the first
category. Thus the conditions of the corollary hold good, since this is
true for all values of 6.

21. To prove the uniqueness of the expansion in a non-harmonic
Fourier cosine oi sine series, we state and prove the theorem in a form
which 18 practically the most general possible, though, by employing a
less simple method the words ‘‘countable set of points ” might be re-
placed by *‘ totally imperfect set,”” that is a set containing no perfect sub-
set. We give the proof for the cosine series, but it will be seen that we
may in it substitute the sine for the cosine. The theorem is as follows :—

L . (cosime .
TreorEM.—No two distinct non-harmonic {sine series of the type

2 a,cos(n+k)x, with the same k, which converge to the same value at

N=—wn

each pownt of (0, 2m), with the exception at most of a countable set of
points, can exist.

Suppose, if possible, that there were two such series, and let their
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difference be denoted by X @, cos(n+%)z: then this latter series must

nN=-—-u

converge to zero, except at a countable set of points.

Since a countable set is a set of the first category, it follows from the
Cor. 2 of § 20, that the coefficient @, tends to zero.

If we then write

G@) =— i n+k)"*a,cos (n+k)z,

we see that G(z) is & continuous function, satisfying the two conditions that
B {Ge+d+Gz—t)—2G @)} =0,
except at the countable set of points; and further, without exception
(i) {Ge+t+G@—N—2G@)t—->0 (t—0).

Hence by the extension of Schwartz’s theorem,* G(z) is a linear function
of z, and we may write

Az+B = — % (n+%)?a, cos (n+k)z,

the convergence being uniform.

Multiply by sin (n+ k)(27—z) and integrate from O to 2w, and we get,
since term-by-term integration is allowable,

L (4z+ B) sin (n+ k) @7 —2) dz = — (n+ k) "2 a, 7 sin 2k,
whenece

S:T(Ax+B) d cos m+-k) 27 —z) = (n+ k) @, sin 2k,
that is, integrating by parts,

27 2
[(Ax-l—B) cos (n+k)(27r—:z')]o - L A cos (n+k)(2m—z) dr
= (n+k)~' a, T sin 2k,
that is,

(274 +B)— B cos 2km+n+k) "' 4 sin 2k% = (+£k)"! @y sin 2k .

* Hobson's Theory of Functions of a Real Variable, p. 211.
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Now let n — o, then, since 4 sin 2k is finite, and a, — 0, we get
(27 A4+ B)—B cos 2kr = 0.
Therefore also, by the preceding equation,
A sin 2k = a7 sin 2k,
Now again letting n— @, we get
Asin 2kr = 0;
and therefore 4 =0.
Hence also from the former equation
B =0.

Thus, by the above expression for (n-%)~! a,w sin 2k, we have, for alf

values of n, 0 =0
n 1]

which proves the theorem.

22. The considerations above exposed lead naturally, as in the case of
harmonic series,* from the theory of non-harmonic Fourier series to-that
of restricted non-harmonic Fourier series. The definition is as follows :

The p-th derived series of a non-harmonic Fourier cosine or sine series
of F(x) is satd to be a non-harmonic restricted Fourier cosine or sine
series of the p-th class, and to be restricted to one or more intervals (a, 8),
if, throughout each completely open tnterval in (a, B8), F(z) is a p-th in-
tegral. The p-th differential coefficient of F(x) ts then said to be the
associated function of the restricted Fourier series in any of these inter-
vals of restriction.

If, in addition, the coefficients of the restricted Fourier series tend to
zero as we advance along the series, it is said to be ‘‘ ordinary,” and is
denoted briefly as a non-harmonic R. F. series.

We have already seen that a non-harmonic Fourier sine or cosine series
satisfies both these conditions in the closed interval (0, 2w).
One of the fundamental properties of non-harmonic restricted Fourier

* W. H. Young, ‘‘ On the Convergence of the Derived Series of Fourier Series’’ (1916),
Proc. London Math. Soc., Ser. 2, Vol. 17 (1919), pp. 195-236 ; *‘ On the Ordinary Conver-
gence of Restricted Fourier Series’’ (1917), Proc. Roy. Soc., (A), Vol. 93, pp. 276-292; *“On
Restricted Fourier Series and the Convergence of Power Series '’ (1917), Proc. London Math.
Soc., Ser. 2, Vol. 17 (1919), pp. 353-366.
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series* is embodied in the following theorems : —

TreoREM.—The upper and lower functions at any point internal to
the interval of restriction are independent of the nature of the associated
Sunction, except in an arbitrary small neighbourhood surrounding the
point, provided the individual terms of the series tend to zero at the point
as we advance along the series ; indeed the part of the expression for the
n-th partial summation depending on the remaining values of the func-
tion tends uniformly to zero.

TrEOREM.—INn the case when the typical coefficient itself converges to
zero so that the series is “ ordinary’’, we can go still further and asser!
that the series behaves at any wnternal point of its interval of restriction
precisely like the Fourier series of a function equal to the associated
Sfunction of the series in the neighbourhood of the point and having any
convenient values elsewhere.

These theorems remain true at the end-points, provided the associated
Sfunction satisfy at the point in question the appropriate ** continuation”
Sformula applying to the point.

28. For the proof of these theorems we require a modified form of the
expressions (A’) and (B’). These expressions involve only the values of
f(@) in the interval (0, 27). We shall now suppose that f(z) is * con-
tinued”’ according to the appropriate.law. The formule (A”) and (A'")
obtained are identical for the sine and cosine series, only varying in these
“ continuation ’ formule, and in the meaning of the symbol A,fk). Taking,
for example, the formula (A') with the corresponding ‘ continuation

formul=e £ = f(—),

32 f@r+ 8O +f2r—1t)} = cos 2km . f(¥),

we may transform (A’) as follows :
Writing in the first term of the bracket

z+t=2r—u,

and in the second term z—t = u—2m,

* These theorems were given by me in the communication to the Royal Society quoted
above. The proof is reproduced here, slightly adjusted so as to agree with the present point
of view, and so as to include the end-points.
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we get for (A'), omitting the factor 1/(27 sin 2k~),

r.-z S@+u) sin k(27 —u) cosec du sin(n+3) udu

~L

2r 43
—j fuw—z) sin k(u—2) cosec 3u sin (n+3) udu.
T

Adding and subtracting the integrals requisite to change the limits of in-
tegration in both these terms to (0, 27), and then making the obvious
changes of the independent variable in the superfluous integrals, we get

2
j {fe4+w)+fw—=z)} sin k(2r—u) cosec 3u sin (n+3) udu
0

-l—j [ f(x—u) sin k(27 +u)—f(w—2z)sin k(27w —w)
—{flz—u+2m)+f2r+u—z)} sin ku| cosec 3u sin (e +43)udu.

Since f satisfies the ““ continuation ”’ formule appropriate to a cosine series,
the superfluous integral will be zero, and we get

2m
Sy = 7?12]17 jﬁ 3 {fletw)+fl@—u)} sin k(27 —u)cosec Jusin(n+§)uwdu
(A"
= :r_m_nlm s-"% {fle4u)+flx—w)} sin k(27 —) cot 3w sin nu du
0

a 8in 2k Jo

3 F"% Jf@tu)+fl@—u)} sin k(27 —u)cos nudu.

The last of these integrals, being one half the sum of the n-th and the
—n)-th coefficients in the non-harmonic Fourier cosine series of
3 {fe+uw)+flz—w)} is, as will be shewn in the next article, equal to

A I . . . . .
31 Aﬁb)-i—A( )\ Thus the partial summation s, of our series is given by

- .

Sy = X Af."’)= 2 a,cos(r+k)z .
. 1 2m
= 1AV +4%) + 2 [0+ e—u)

7 sin k7w
X sin k(27 —uw)cot 3 sinnudw, (A'')

in which formula {f(z-+w)+f(@—u)} must be supposed to obey the ‘“ con-

@
tinuation ”’ laws appropriate to the cosine series, since = A% is a
r=—mn

cosine series. If this series is a sine series the same formula holds, but
the continuation is that appropriate in this case (15) and (16).



830 Pror. W. H. Youne [March 14,

24. Indeed, supposing f(t) = f(—¢t), we have

5 {fe+w+fe—u)! sin(n+k)Qr—u)du

ll

ll

r’m (@) sin(n+k)2r—t+2) dH—th /@) sin (n+-Ek)27r—t—2) dt
j f(@® sin (n+4k) (2w ~-¢) cos (n+k)z dt

'—j {f@®) sin(n+k) @7 —t+2)—f () sin(n+k) @7+t —z)
0
—f@7+1t) sin (n4k) (x— )+ f 2m—1) sin (n+k) (¢ —x) } dt

=cos (n+k)z rﬂf(t) sin(n4k&) 27 —1t) dt, (19)
0 4

supposing the “ continuation ”’ formula (4) to hold.
If on the other hand the ‘ continuation ” formule (15) and (16) holds,
we get, similarly,

j’% 3 fletw)+fe—uw + sin(n+ %) (27 —1) due
2
= sin (n+%) :vj f(t)cos (n+Ek) (2w —t)dt. (20)
0

. . . (cosine .
Thus supposing known the non-harmonic Fourier | sing  SeTies of f(x), say

f@ ~ 2 4D = 5 4,° ‘. ® 4k,

n= nN=-—xn

we have 1 fetw+flz—u)! ~ by Aff‘) cos(n+k) u. (21)

n=—

25. We proceed now to the proof of the theorems enunciated in § 22.
Writing for the second integrated series,

G ~— = M AY =~ L @t Ca o bz,

N= =D n=—"xr

we have seen that, by (A'"”), and § 25,
— 3 +H7AY = =3B AP +4%,)
r=-n

1 2 ] _ Lo . _ . ’
+min—2k; So {G@+u)+G—u)} sink (2m—u)cotFu sinnu du.
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Thus the upper and lower functions of the non-harmonic restricted
Fourier series in question, are the upper and lower limits, when n— @,
of the second differential coefficient of this expression. Since 4% ’+A‘_",{

tends by hypothesis to zero, we have only to consider the upper and
lower limits of

d

IEEEZ

2m
5 Q4w+ Glx—u)} sink Q7 —u) cot Ju sin nudu.
{

In treating this expression, the first step is to introduce in place of
sin k(27 —at) cot 3u,

a function ¢(u), defined equal to it in (¢ << u < 27), and having at the
origin the value —2%, while its differential coefficient is zero there. In
(0, ¢) we suppose ¢(u) to be the iutegral of an integral, with the same
value and the same left and right hand differeniial coefficients at the
point ¢, and to be otherwise subject to no counditions. The function
[¢(w)+2k) then satisfies the conditions imposed on A(x) in the extension
of Riemann’s Third Theorem (§ 19).
We thus have
d?

JFJ: {Gz4+w)+Gar—uw)! {pw)+2k} sinnudu —>0 (n—> ©).

Hence we may replace (I) in our investigation by

%5 ) ‘G(z+zo)+G(uc——u) 181 k(27 —u) cot u—¢p (1) — 2k | sin nudu

f 5 'Grtuw+G—uw} sin k(27— u) cot 3u—p(u)} sin nudu

2 dr
jﬁj {Gle+uw)+Gx—u)} sinnudu.
" Jo

We see then we only need to prove that the last term tends to zero.
For this purpose we introduce a new function Y- («), detined as equal to

l—cosk@mr—u) (e<<u<<2m),

and having at the origin zero for its value and for that of its differential
coefticient. This function when suitably filled in from O to e, satisties the
conditions imposed on A(x) in the extended form of Riemann’s Third
Theorem. Therefore, omitting for the moment the factor —2k%, we may
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replace the last term in question by

Zi(%r” 1Ge+w+G—u)} [1—y0)]sin nudu
2 ), _

2

= (%ljc 1Gz+w+Ge—uw} {1—yY@)—cos k(2r—u)} sinnudu
T Jo
&

21
+ — g {G(z+u)+Gx—w)} cos k (27 —w) sin nudu.
0

da?
The last term is equal to
zf’. 2 . . R
d(—zjj 3G+ +Gx—w} {sin(k+n) @r—u)—sin (k—n)(2r—u)} du
(1]
= 7sin 2k7 {A(,f')—/lﬁ,l:‘ - 0.

Thus, finally, writing now ¢ () instead of
¢ W)+ 2k {1— (W) —cos k(2r—w)},

we see that the partial summation s, of our non-harmonic restricted
Fourier series is given by the formula

2 i
s =o(1) 4+ (;—ZI;LJ_ 'Gle+n)+Gx—u);
X 18in k(27 —wu) cot 3u— ¢ (u)} sin nudu/T sin 2k, (22)

where ¢ () is the integral of an integral, with the value —2k cos 2km at
the origin, and sin k(27 —e¢)cot 3¢ at the point e. If the point z is in-
ternal to the interval (0, 27), we can, in this formula, choose ¢ so small
that no ‘ continuation” is necessary. Butif z = 0, we have to regard
G as an even function, and, if x = 2, we have to assume that the ‘‘ con-
tinuation ” formula used is that appropriate to a { (s:?s;ne

Since our upper and lower functions are the upper and lower limits of
Sy, this proves the first theorem of § 22.

series.

25. Now if in the interval (x—e, z+¢) the function G is the integral
of the integral of f, we may in the expression (22) perform the differentia-
tion under the integral sign, writing f in place of G. By the theorem of
Riemann-Lebesgue, the part of the integral involving the arbitrary fune-
tion ¢ then tends to zero. Thus we are left with

sin k(27 —u)

- cot +u sin nudu.
sin 2k 2

s =o()+ % EZ{f(z+u)+f(z-u)}
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Now, when u— 0,

i 8in k(27w) ) [sm k (2w —u)—sin 2k7r] cos 3u k cot 2k=
1 ———5— —1 cot 32 ->—
sin 2k J sin 2k sin du 3

and is therefore bounded in the neighbourhood of the origin.
By the theorem of Riemann-Lebesgue, therefore, we may replace
our expression by

Sy = 0(1)-4-5e fletw)+flz—u)} cot 3w sin nudu,
0

which is the Fourier expression.
This completes the proof of the second of the theorems of § 22.

26. We come now to the application of the results of the present paper
to the theory of Bessel series. In particular we are now able to obtain
the conditions of convergence at the end-point z =1 of the interval of
restriction cf the Bessel series.

The asymptotic approximation

L2

—1 — _- ;
\/(JZ‘TQ) Jn(x) = cos ‘7’/‘+ ! on % gin \/, %ﬁ [ \l’+9?’; o ]

where |0| < 1 and ¢ = —z+3(2m~+1) 7, holds ap to and including the
point = = 1.

Consequently we may regard as valid up to and 'anludmg z=1, the
formal restrictions (21) and (29) obtained in my paper on “ Series of
Bessel Functions”, viz., firstly, the relation (21),

S

T ATk 2) = 274 {84218, 42728, ),
r=0

where Sy, and the first integrated series of S,;, and the second integrated
series of S|, are convergent series whose sums are integrals; while the
second integrated series of the Bessel series on the left of this formal
identity is a uniformly convergent series whose sum is the integral of an
integral ; and, secondly, the relation (29),

S = T+ByT+Ty y=7m01—2),

where Ty and the first integrated series of T, converge uniformly to in-

tegrals, while ®
-5 era i

) cos(k+7)y.
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We recall also the fact that, apart from an irrelevant factor, S, and T, are
the first integrated series of S, and T' respectively.

Now, by hypothesis AP 50 (ro ),
and, integrating twice with respect to y = m(1—2), the series
Sl—ﬁyTl—Tm l

we get the integral of an integral. Thus T is a non-harmonic restricted
Fourier series in (0 <y <1), and therefore in this interval T, the first
integrated series of T, converges to an integral, the convergence being
uniform in every closed interval inside (0 <y < 1). Similarly now we
see that S, converges uniformly to an integral.

Thus we get from the given relations

S A, Juken) = 24 T+ ()},
r=0

where ¢ (2) 18 an integral in (0 < 2z < 1).

Hence, denoting the function associated with the Bessel series by f(2),
and that associated with the series T by ¢(y), where y = w(1—2), we get,
after maltiplying by 2* and integrating twice with respect to z = 1—y/=,

jdzjz*f(z) dz = Idzjg {r(1—2)} dz-l—j dzfq&(z)dz,

whence, differentiating twice, and choosing the funetion g suitably at the
set of content zero at which the differentiation does not work,

gir(l—2)} = 2f(2)—¢(2).

Thus, by our theory, the non-harmonic restricted Fourier series T
behaves at the point 7 (1 —2z) like the Fourier series of a function which
in the neighbourhood of the point considered has the form

2Af(2)—¢(2),

provided the point z is internal to the interval (0, 1); and at the point
z =1 [which is the same as 7 (1—2) = 0], the function bas this form,
and on the right is reflected in the point 2 = 1. This will be satisfied if
2 f(2) and ¢(2) separately have this “ continuation” property. Now ¢(2)
is an integral up to and including the point z =1, and is therefore, when
“continued ” by reflection in this point, still an integral in the whole
neighbourhood considered. Therefore its Fourier series converges uni-
formly, and, consequently, the term ¢(z) may be suppressed in the ex-
pression for our auxiliary function. Also the Fourier series of 2*f(z)
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behaves in (0 < # < 1) like the Fourier series of f(z), and the Fourier
series of the function which in the neighbourhood of z =1 is equal to
23f(2) on the left and is reflected on the right, behaves like that of the
function equal to f(z) on the left and reflected on the right, for in each
case the factor removed represents a bounded function.

Thus, finally, observing that, in virtue of the relations found, the Bessel
series behaves in respect of convergence, and so forth, according to the
behaviour of the series T, we see that the Bessel series converges, osctllates,
or diverges, under precisely the same conditions and in precisely the same
manner (uniform, bounded, &c.) as the Fourier series of a function which
in a neighbourhood enclosing the pownt z considered is equal to f(2), if

(0 < 2<), and, of z =1, has this form on the left of the point and s
reflected in the point.



