



Philosophical Magazine

ISSN: 1941-5966 (Print) 1941-5974 (Online) Journal homepage: http://www.tandfonline.com/loi/tphm14

XXIII. On a proposition relating to the theory of equations

James Cockle M.A.

To cite this article: James Cockle M.A. (1846) XXIII. On a proposition relating to the theory of equations, Philosophical Magazine, 28:185, 132-133, DOI: 10.1080/14786444608645371

To link to this article: <u>http://dx.doi.org/10.1080/14786444608645371</u>

Published online: 30 Apr 2009.

Submit your article to this journal

View related articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tphm14

- XXIII. On a Proposition relating to the Theory of Equations. By JAMES COCKLE, M.A., of Trinity College, Cambridge; of the Middle Temple, Special Pleader*.
- 1. **T**ET x be the root of the general equation of the nth degree, and

$$y = \Lambda' x^{\lambda} + \Lambda'' x^{\lambda} + \Lambda''' x^{\lambda} + \Lambda''' x^{\lambda''};$$
 (a.)
also let _mY be composed of symmetric functions of, and be
homogeneous and of the *m*th degree with respect to y; then,
if $n > 2$, ₂Y may be reduced to the form

 $(a'_1\Lambda' + a''_1\Lambda'' + b')^2 + (a''_2\Lambda'' + b'')^2$, . . (b.) where b' and b'' are not both zero.

2. For, let

b

$$\Lambda^{\prime\prime\prime} x_n^{\lambda^{\prime\prime\prime}} + \Lambda^{\iota v} x_n^{\lambda^{\iota v}} = l' x_n^{\lambda'} + l'' x_n^{\lambda^{\prime\prime}}, \quad . \quad . \quad (c.)$$

then if
$$y_r = (\Lambda' + l') x_r^{\lambda'} + (\Lambda'' + l'') x_r^{\lambda''} + l_r$$
, . (d.)

(e.) Now $_{2}$ Y is to be reduced, by means of (d.), to the form (b.), independently of Λ , or, what is the same thing, of $\Lambda + l$; but + $_{2}\mathbf{Y} = (\mathbf{b}.) + [\mathbf{l}_{1} \dots \mathbf{l}_{n-1}]^{2}, \dots \dots (\mathbf{f}.)$

 $[]^m$ denoting a homogeneous function of the enclosed quantities of the *m*th degree. And, if n - 1 > 1,

 $[l_1 \dots l_{n-1}]^2 = 0 \dots$ (g.) may be satisfied without making the I's zero.

3. Following a notation similar to that used in my last paper \ddagger , let (p, q) represent the coefficient of $\Lambda^{(p)} \Lambda^{(q)}$ in the development of

$$\dots + \dots + b' = \sqrt{-1} \cdot b'' = 0; \dots (i.)$$

and both the values of the above expression can only vanish when b' = 0 = b''. Substitute for b' and b'', equate each expression to zero, and eliminate $\frac{\Lambda^{\prime\prime\prime}}{\Lambda^{_{1\gamma}}}$ between the two; then we $(1, 3)(2, 4) - (1, 4)(2, 3) = 0, \ldots$ have (j.) where, for instance,

$$(1, 3) = t \Sigma \left(x_1^{\lambda'} x_2^{\lambda''} \right) - 2 s \Sigma \left(x_1^{\lambda'} \right) \cdot \Sigma \left(x_1^{\lambda''} \right); \quad . \quad (k.)$$

* Communicated by the Author.

† For the process, see par. 3 of the place which I have before cited, at the first line of p. 126 of vol. xxvii. of the Phil. Mag. S. 3.

[†] Phil. Mag. S. 3. vol. xxvii. p. 292.

so that, on developing, we shall have on writing $\lambda' \cdot \lambda''$ for $\Sigma(x^{\lambda'}) \cdot \Sigma(x^{\lambda''})$, &c.,

$$\begin{split} \mathbf{\hat{O}} &= (t - 2s) \times \{\lambda^{t} \cdot \lambda^{y} \cdot (\lambda^{ll} + \lambda^{ll}) + \lambda^{ll} \cdot \lambda^{ll} \cdot (\lambda^{t} + \lambda^{xv}) \\ &- \lambda^{t} \cdot \lambda^{ll} \cdot (\lambda^{ll} + \lambda^{yv}) - \lambda^{ll} \cdot \lambda^{yv} \cdot (\lambda^{t} + \lambda^{ll}) \} \\ &+ t\{(\lambda^{t} + \lambda^{ll}) \cdot (\lambda^{ll} + \lambda^{yv}) - (\lambda^{t} + \lambda^{yv}) \cdot (\lambda^{ll} + \lambda^{ll}) \}. \quad . \quad (1.) \end{split}$$

Let t = 2n, and s = n - 1, then, if n < 3, the last equation is identically true, but not in any other case. The method of the two first paragraphs, consequently, detects every case of failure; the last-mentioned instance of which is connected with the fact that, implicitly at least, every expression of the form (a.) contains in its right-hand side a term free from x which, with the above values of t and s, vanishes from ₂Y. These values are those which occur in exterminating the 2nd, 3rd, and rth terms of an equation.

4. If, in the case of n=2, t=4, and s=1, we reject in (g.) the solution $l_1=0$, we are conducted to

$$(x_{2}^{\lambda'} - x_{1}^{\lambda'})^{2} (x_{2}^{\lambda''} - x_{1}^{\lambda''}) = 0, \qquad \dots \qquad (m.)$$

having multiplied by the coefficient of $\Lambda^{\prime 2}$ before commencing our operations. This agrees with what we have inferred from (l.).

5. It seems to follow from this, that biquadratics can be reduced to a binomial, and equations of the fifth degree to a trinomial form, by an expression for y consisting of four terms, determinable by one linear*, one quadratic, and one cubic equation.

6. At p. 384 of the 26th vol. of this work, I have only alluded to the equation (3.), which, for cubics, conducts to the reducing equation

$$\xi^{2} + \xi \Sigma \left(\frac{\varphi_{1}'}{\varphi_{1}}\right) + \frac{\varphi_{1}' \varphi_{2}'}{\varphi_{1} \varphi_{2}} = 0; \quad . \quad . \quad (3.)'$$

and to a similar one for biquadratics; but if we discuss the equation $\varphi \{(\Lambda x^{\lambda} + M x^{\mu})^{-1}\} = 0, \ldots (3.)^{\prime\prime}$ it will be found that, though in appearance more complicated, it is in reality simpler than the former, inasmuch as the case of $\lambda = 0$ is not excluded; and if $\lambda = 0$ and $\mu = 1$, we have the form actually taken by the reducing equation in my solution of a perfect cubic at p. 248 of vol. ii. of the Cambridge Mathematical Journal.

Devereux Court, Temple Bar, December 29, 1845. JAMES COCKLE, Jun.

* The 'base' equations are linear, as will be seen on referring to my definition at note \dagger of p. 126 of this (27th) vol. If the roots of the trinomial equation of the fifth degree are given by the expression $b \psi(a)$, then ψ is contained in the solutions of the functional equation $\psi^2(a) - a = 0$.