A Prototype for Maritime Event Forecasting

Elias Alevizos! and Alexander Artikis?-!

! Tnstitute of Informatics & Telecommunications, NCSR Demokritos
2 Department of Maritime Studies, University of Piraeus

1 Introduction

We have built a prototype for complex event forecasting and applied it to the maritime
domain [[1]. The problem may be stated as follows: given a stream of input events and a
pattern defining relations between such events, in the form of a regular expression, the
goal is to estimate at each new event arrival the number of future events that we will
need to wait for until the expression is satisfied, and therefore a match be detected.

2 Approach

Event patterns are first converted to deterministic finite automata (DFA) through stan-
dard conversion algorithms. As an example, see Fig.[Ta] which depicts the DFA for the
pattern R = a-b-b-b, i.e., an occurrence of a must be followed by three occurrences of
b. Next, we derive a Markov chain that will be able to provide a probabilistic descrip-
tion of the DFA’s run-time behavior. If the input events are independent and identically
distributed (i.i.d.), then there is a direct mapping of the states of the DFA to states of
a Markov chain and the transitions of the DFA to transitions of the Markov chain. The
transition probabilities of the Markov chain are the occurrence probabilities of the var-
ious event types. If the input events are dependent on some of the previous events seen
in the stream, i.e., the stream is generated by an m*" order Markov process, we per-
form a more complex transformation. The transition probabilities are then conditional
probabilities on the event types. We call such a derived Markov chain a Pattern Markov
Chain (PMC) of order m and denote it by PMCp*, where R is the initial pattern and
m the assumed order of the Markov process. After constructing a PMC, we can use it
in order to calculate the so-called waiting-time distributions. Given a specific state of
the PMC, a waiting-time distribution gives us the probability of detecting a full match
of the original regular expression in & events from now. Forecasts are in the form of
intervals, like I = (start, end). The meaning is that the DFA is expected to reach a
final state sometime in the future between start and end with probability at least some
constant threshold 6. (provided by the user). These intervals are estimated by a single-
pass algorithm that scans a waiting-time distribution and finds the smallest (in terms of
length) interval that exceeds this threshold. See, e.g., Fig. which shows distributions
for the states of the DFA of Fig.[Ta|when m = 0. The dashed green line is the forecast
interval produced when the DFA is in state 1, with 07, = 50%, i.e., this is the smallest
interval whose probability is above 50%.

We implemented a forecasting system, Wayeb, based on Pattern Markov Chains.
Algorithm (1] presents in pseudo-code the steps taken for recognition and forecasting.

II

+ state:0
state:1
interval:3,8

= state:2

o state:3

o
™

o
o

o
o

+— ¥ ¢ & 45—

Completion Probability
o
IS

o

i1 2 38 4 5 6 7 8 9 10 11 12
Number of future events
(a) DFA. (b) Waiting-time distributions.

Fig. 1: DFA and waiting-time distributions for R = a - b - b - b, alphabet X' = {a,b}, m =

ALGORITHM 1: Forecasting algorithm

Input: Stream S, pattern R, order m, maximum spread ms, forecasting threshold Py,
Output: For each event e € S, a forecast I = (start, end)
DFAs+.r =BuildDFA(R, m);
PMCR =WarmUp(S, DFAs+«.Rr);
Fiapie = BuildForecastsTable(PMCR', Pyc, ms);
CurrentState = 0
RunningForecasts = @
repeat
e = RetrieveNextEvent(S);
CurrentState = UpdateDFA(DFA s+ g, €);
if CurrenState not final then
I = Fiopie (CurrentState);
RunningForecasts = I U RunningForecasts

o X N R W N -

—-
]

else
UpdateStats(RunningForecasts);
RunningForecasts = @

—
s W o

15 end
16 until true;

Wayeb reads a given pattern R in the form of a regular expression, transforms this
expression into a NFA and subsequently, through standard determinization algorithms,
the NFA is transformed into a m-unambiguous DFA (line [T] in Algorithm [I). For the
task of event recognition, only this DFA is involved. At the arrival of each new event
(line[7), the engine consults the transition function of the DFA and updates the current
state of the DFA (line[8)). Note that this function is simply a look-up-table, providing the
next state, given the current state and the type of the new event. Hence, only a memory
operation is required.

There are three metrics that we report in order to assess our module’s performance
and the quality of its forecasts:

— Precision = % Of correct forecasts - At every new event arrival, the new state of the
of forecasts

DFA is estimated (line[§]of Algorithm[T). If the new state is not a final state, a new
forecast is retrieved from the look-up-table of forecasts (line[I0). These forecasts
are maintained in memory (line[IT)) until a full match is detected. Once a full match

I

|©Precision
—f(x)=x

Q 100
§ 0.6 3 08 80
g g 0.6 60
©04 e
8 =
& é 0.4 40
02 5
202 2
o
0 0
0 0.2 0.4 0.6 0.8 1 e W g qq18 1505 14080 1508 10587 00N g OO 19095 p GRS
Prediction threshold State
(a) Precision (all states). (b) Precision (per state).

o

®
bl
@

b4

=Y
o
=Y

o

~
o
IS

Q

o
e
o

Prediction Threshold
Prediction Threshold

3l 7W g {115 13050 1405n 5O 1GUSS7GeN g OO 1085 oo o8 310 7W QN {115 {30501405n150SW G055 17 00N gdOW 1gQeS 5 ge0
State State

(c) Spread (per state). (d) Distance (per state).

Fig. 2: Results for the pattern Turn - GapStart - GapEnd - Turn with m = 1.

is detected, we can estimate which of the previously produced forecasts are satis-
fied, in the sense that the full match happened within the interval of a forecast (line
[13). These are the correct forecasts. All forecasts are cleared from memory after a
full match (line[T4).

— Spread = end — start.

— Distance = start — now. This metric captures the distance between the time the
forecast is made (now) and the earliest expected completion time of the pattern.
Note that two intervals might have the same spread (e.g., (2,2) and (5,5) both
have Spread equal to 0) but different distances (2 and 5, assuming now = 0).

Precision should be as high as possible. With respect to Spread, the intuition is
that, the smaller it is, the more informative the interval. For example, in the extreme
case where the interval is a single point, the engine can pinpoint the exact number of
events that it will have to wait until a full match. On the other hand, the greater the
Distance, the earlier a forecast is produced and therefore a wider margin for action is
provided. Thus, “good” forecasts are those with high precision (ideally 1.0), low spread
(ideally 0) and a distance that is as high as possible (ideal values depend on the pattern).
These metrics may be calculated either as aggregates, gathering results from all states
(in which case average values for Spread and Distance over all states are reported), or
on a per-state basis, i.e., we can estimate the Precision, Spread and Distance of the
forecasts produced only by a specific state of the DFA.

3 Demo for Maritime Event Forecasting.

Wayeb was tested against a real-world dataset that came from the field of maritime
monitoring. When sailing at sea, (most) vessels emit messages relaying information

v

about their position, heading, speed, etc.: the so-called AIS (automatic identification
system) messages. AIS messages may be processed in order to produce a compressed
trajectory, consisting of critical points, i.e., important points that are only a summary of
the initial trajectory, but allow for an accurate reconstruction [2]. The critical points of
interest for our experiments are the following:

— Turn: when a vessel executes a turn.

— GapStart: when a vessel turns off its AIS equipment and stops transmitting its
position.

— GapEnd: when a vessel turns on its AIS equipment back again (a GapStart must
have preceded).

We used a dataset consisting of a stream of such critical points from ~ 6.500 vessels,
covering a 3 month period and spanning the Greek seas. Each critical point was enriched
with information about whether it is headed towards the northern, eastern, southern or
western direction. For example, each Turn event was converted to one of TurnNorth,
TurnFEast, TurnSouth or TurnWest events. We show results from a single vessel,
with ~ 50.000 events.

Figure 2] shows results for the pattern

Turn - GapStart - GapEnd - Turn (D
where Turn is shorthand notation for
(TurnNorth + TurnFEast + TurnSouth + TurnWest)

with + denoting the OR operator. Similarly for GapStart and GapEnd. With this
pattern, we would like to detect a sequence of movements in which a vessel first turns
(regardless of heading), then turns off its AIS equipment and subsequently re-appears
by turning again. Communication gaps are important for maritime analysts because they
often indicate an intention of hiding (e.g., in cases of illegal fishing in a protected area).

The aggregate precision score (Figure[2a)) is very close to the baseline performance.
This precision score is calculated by combining the forecasts produced by all states of
the PMC. In order to better understand Wayeb’s behavior, a look at the behavior of
individual states could be more useful. Figures [2b] - [2d] depict image plots for various
metrics against both the forecast threshold and the state of the PMC. The metrics shown
are those of precision (on the recognized matches), spread and distance. In each such
image plot the y axis corresponds to the various values of Py.. The x axis corresponds
to the states of the PMC. The x axis shows how advanced we are in the recognition pro-
cess, when moving from one state to the next. The black areas in these plots are “dead
zones”, meaning that, for the corresponding combinations of Py, and state, Wayeb fails
to produce forecasts (i.e., it cannot guarantee, according to the learned transition prob-
abilities, that the forecast intervals will have at least Py, probability of being satisfied).
On the contrary, areas with light colors are “optimal”, in the sense that they have high
precision, low spread (the colorbar is inverted in the spread plots) and high distance in
their respective plots. A look at the per-state plots reveals something interesting (Fig-
ures[2b] [2c] 2d). Note that, in order to avoid cluttering, we have removed duplicate states

Precision score

[0} 0.2 0.4 0.6 0.8 1
Prediction threshold

Fig. 3: Results for the pattern TurnNorth - (TurnNorth + TurnEast)* - TurnSouth.

from the per-state plots. In addition, the superscript of each state in the x axis shows
the last event seen when in that state. For example, the superscript te corresponds to
TurnFEast, tw to TurnWest, tn to TurnNorth and ts to TurnSouth (states 3,7, 9 and
11 respectively). Similarly for GapStart for which superscripts start with gs (states
13-16) and for GapEnd (ge and states 17-20). These per-state plots show that there is
a distinct “cluster” of states (13—17) which exhibit high precision scores for all values
of Py, (Figure and small spread for most values of Py, (Figure. Therefore, these
states constitute what might be called “milestones” and a PMC can help in uncovering
them. By closer inspection, it is revealed that states 13—16 are visited after the PMC
has seen one of the GapStart events (we remind that GapStart is a disjunction of the
four directional sub-cases). Moreover, GapEnd events are very likely to appear in the
input stream right after a GapStart event, as expected, since during a communication
gap (delimited by a GapStart and a GapEnd), a vessel does not emit any messages.
State 17, which also has a similar behavior, is visited after a GapEndNorth event. Its
high precision scores are due to the fact that, after a GapFEnd event, a Turn event is
very likely to appear. It differs from states 13—16 in its distance, as shown in Figure
[2d} which is 1, whereas, for states 13-16, the distance is 2. On the other hand, states
18-20, which correspond to the other 3 GapEnd events, fail to produce any forecasts.
The reason is that there are no such GapFEnd events in the stream, i.e., whenever this
vessel starts transmitting again after a Gap, it is always headed towards the northern
direction.
Figure [3] shows results for the pattern

TurnNorth - (TurnNorth + TurnEast)* - TurnSouth

This pattern is more complex since it involves a star closure operation on a nested
union operation. It attempts to detect a rightward reverse of heading, in which a vessel
is initially heading towards the north and subsequently starts a right turn until it ends
up heading towards the south. Such patterns can be useful in detecting maneuvers of
fishing vessels.

Figure 3] shows that a model with m=1 is unable to approximate well-enough the
correct waiting-time distribution. Increasing the order to m=2 improves the precision
score, but it still remains under the baseline performance. One could attempt to further
increase the value of m, but this would substantially increase the cost of building the
PMC. For m = 1, the generated PMC has =~ 30 states. For m = 2, this number rises to

VI

[0.0] mins| prob: 81%

228017700/

RE.51 mins, prob: 30%
228017700

(a) Same vessel, two routes, (b)Same vessel, two routes, late
early snapshot. snapshot.

Fig. 4: withinArea event (Google Earth).

~2 600 and the cost of creating an unambiguous DFA and then its corresponding PMC
rises exponentially. When stationarity is assumed (as in our case) and the model does
not need to be updated online, an expensive model can be tolerated.

We also demonstrate our method on the so-called withinArea event, which reports
whether a vessel is located within the boundaries of a designated area, defined as a
polygon, e.g., a protected area or a port. Forecasting arrival times at ports can help re-
duce the operating cost and emissions footprint of ships, as they are typically required
to wait outside a port when there is a high traffic volume. Maritime monitoring com-
panies currently rely on manual information in the AIS messages to forecast arrival at
ports, which is very often wrong. Thus a forecasting method that does not rely on hu-
mans is highly desirable. In order to produce forecasts in terms of time, we sample each
trajectory at regular intervals. We finally enrich each message with spatial information
about whether the vessel is located within the area, whether it is close to the area and
whether its heading points towards a direction that intersects with the area. Fig. #aland
[b] show the behavior of our prototype, where two different routes of the same vessel
are shown, at different times, and the red rectangle is the area of interest. The left arrow
corresponds to a route that never crosses the area and the right arrow a route that does
cross it. The size of the arrow is proportional to the probability of entering the area
and its color becomes more red as the start of the forecast interval becomes smaller,
i.e., red indicates that the vessel will enter the area very soon. As can be seen, the left
route never produces forecasts because the model has learned that this route never leads
to a withinArea event, whereas, for the right route, as the vessel approaches the area
(compare Fig. [#a]and [4b)) the forecasts become more confident and focused.

References

1. Alevizos, E., Artikis, A., Paliouras, G.: Event forecasting with pattern markov chains. In:
Proceedings of DEBS. pp. 146-157. ACM (2017)

2. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online
event recognition from moving vessel trajectories. Geolnformatica (2016)

	A Prototype for Maritime Event Forecasting

