
 

 

 

 

 

 

 

 
 

 

 

 
 
 

D4.2: Semantic integration and reasoning of 
environmental data 

 

WP4 – Data fusion model and reasoning services 

 
 

 

 

 

 

 

 



D4.2: Semantic integration and reasoning of environmental data 

     2 | 98    

Document Information 

Grant Agreement Number 688363 Acronym hackAIR 

Full Title Collective awareness platform for outdoor air pollution 

Start Date 1st January 2016 Duration 36 months 

Project URL www.hackAIR.eu 

Deliverable D4.2 – Semantic integration and reasoning of environmental data 

Work Package WP4 – Data fusion model and reasoning services 

Date of Delivery Contractual 30th June 2017  Actual 28th June 2017 

Nature Report Dissemination Level Public 

Lead  Beneficiary CERTH 

Responsible Author Marina Riga (CERTH) 

Contributions from Anastasia Moumtzidou (CERTH), Stefanos Vrochidis (CERTH), Ioannis Kompatsiaris 

(CERTH), Panagiota Syropoulou (DRAXIS) 

Document History 

Version Issue Date Stage Description Contributor 

0.1 31/03/2017 Draft Template provided Panagiota Syropoulou (DRAXIS) 

 07/04/2017 Draft Document Structure Marina Riga, Stefanos Vrochidis (CERTH) 

0.2 24/04/2017 Draft Writing content Marina Riga (CERTH) 

0.3 02/06/2017 Draft Sent for internal review 

(CERTH) 

Marina Riga, Anastasia Moumtzidou, 

Stefanos Vrochidis (CERTH) 

1.0 16/06/2017 Draft Revised draft  Marina Riga (CERTH) 

1.0 16/06/2017 Draft Sent for internal review 

(DRAXIS) 

Panagiota Syropoulou (DRAXIS) 

2.0 26/06/2017 Draft Review feedback, revised draft Marina Riga (CERTH) 

3.0 27/06/2017 Final Final version Marina Riga (CERTH) 

Disclaimer 

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any use that 
may be made of the information it contains. 

Copyright message 

© hackAIR Consortium, 2016 

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously 

published material and of the work of others has been made through appropriate citation, quotation or both. Reproduction is 

authorised provided the source is acknowledged. 



D4.2: Semantic integration and reasoning of environmental data 

     3 | 98    

Table of Contents 

Glossary ........................................................................................................................................................................... 7 

1 Executive summary ....................................................................................................................................................... 9 

2 Introduction ................................................................................................................................................................ 10 

3 hackAIR ontological framework .................................................................................................................................. 12 

3.1 Ontology engineering process ............................................................................................................................. 12 

3.1.1 Ontology Requirements Specification Document (ORSD) ............................................................................. 13 

3.1.2 Domains of interest ...................................................................................................................................... 22 

3.1.3 Existing ontologies and standards ................................................................................................................ 22 

3.2 Technologies and Tools ....................................................................................................................................... 26 

3.2.1 Ontology language ........................................................................................................................................ 26 

3.2.2 Third-party frameworks ................................................................................................................................ 27 

3.3 Architecture of the hackAIR ontology .................................................................................................................. 27 

3.4 Main ontology concepts ...................................................................................................................................... 28 

3.4.1 The hackAIR TBox and ABox .......................................................................................................................... 28 

3.4.2 The hackAIR SPIN Rules ................................................................................................................................ 40 

3.4.3 Mapping hackAIR ontology into existing concepts ....................................................................................... 41 

3.5 A use case scenario .............................................................................................................................................. 43 

3.6 Ontology metrics and evaluation ......................................................................................................................... 45 

3.6.1 Evaluating the structure ............................................................................................................................... 45 

3.6.2 Evaluating the consistency and quality ......................................................................................................... 47 

4 Problem Description Language (PDL) ......................................................................................................................... 49 

4.1 User needs with respect to decision support ...................................................................................................... 49 

4.2 Definition of the hackAIR PDL .............................................................................................................................. 49 

4.2.1 Main entities ................................................................................................................................................. 50 

4.2.2 User – PDL interaction .................................................................................................................................. 51 

4.2.3 A step-by-step-process ................................................................................................................................. 51 

4.3 A use case scenario described with hackAIR PDL ................................................................................................. 52 

5 Dynamic ontology population ..................................................................................................................................... 54 

5.1 State of the Art .................................................................................................................................................... 54 

5.2 hackAIR web-service for ontology population ..................................................................................................... 55 

5.2.1 Details of the hackAIR API ............................................................................................................................. 57 

5.2.2 Example request to the hackAIR API ............................................................................................................. 60 

6 Rule-based reasoning framework ............................................................................................................................... 63 



D4.2: Semantic integration and reasoning of environmental data 

     4 | 98    

6.1 hackAIR recommendation requirements ............................................................................................................. 64 

6.1.1 Tips of the day requirements ........................................................................................................................ 64 

6.1.2 Personalised recommendations requirements ............................................................................................. 64 

6.2 Reasoning techniques: State of the art ................................................................................................................ 72 

6.2.1 DL Reasoning ................................................................................................................................................ 72 

6.2.2 Rule-based Reasoning ................................................................................................................................... 73 

6.2.3 Uncertainty Reasoning .................................................................................................................................. 73 

6.2.4 Design choices in hackAIR ............................................................................................................................. 74 

6.3 hackAIR rule-based reasoning implementation ................................................................................................... 75 

6.3.1 First Layer Rules – Low-level derivations ...................................................................................................... 75 

6.3.1.1 Age groups ............................................................................................................................................. 75 

6.3.1.2 Observation values ................................................................................................................................ 76 

6.3.1.3 Activities ................................................................................................................................................ 77 

6.3.1.4 Other user groups .................................................................................................................................. 77 

6.3.2 Second Layer Rules – Higher-level interpretations ....................................................................................... 79 

6.3.2.1 Tips of the day ....................................................................................................................................... 79 

6.3.2.2 Personalised recommendations ............................................................................................................ 80 

6.4 A use case scenario for rule-based reasoning ...................................................................................................... 80 

6.5 Technical evaluation of the reasoning framework............................................................................................... 85 

7 Conclusions and Future work ..................................................................................................................................... 88 

References ..................................................................................................................................................................... 90 

8 Appendix ..................................................................................................................................................................... 94 

8.1 hackAIR Tips of the day ........................................................................................................................................ 94 

8.2 hackAIR Personalised recommendations ............................................................................................................. 96 

 

Table of Figures 

Figure 1 – User triggered processing pipeline ............................................................................................................... 10 

Figure 2 – Architecture of the hackAIR ontology ........................................................................................................... 27 

Figure 3 – Excerpt of the hackAIR TBox ontology (screenshot from TopBraid Composer) ............................................ 29 

Figure 4 – Available assertions on individuals of the class Person ................................................................................. 32 

Figure 5 – Available assertions on an individual of MeanOfTransport type .................................................................. 35 

Figure 6 – Instantiation of the class Recommendation, covering a specific case scenario ............................................ 40 

Figure 7 – Ontology mapping between hackAIR and existing notions ........................................................................... 42 

Figure 8 – Main entities involved in the hackAIR PDL .................................................................................................... 50 

Figure 9 – The input and output data of the RESTful API............................................................................................... 56 

Figure 10 – An excerpt of pom.xml document where project dependencies to external libraries are stated ............... 57 

Figure 11 – An excerpt of Java code from the RESTful API for dynamic ontology population ....................................... 58 



D4.2: Semantic integration and reasoning of environmental data 

     5 | 98    

Figure 12 – JSON details of specific requests from: (a) Karl and his related profile (Anna), and (b) Stephan ................ 61 

Figure 13 – POST request as arrived to the GlassFish server ......................................................................................... 62 

Figure 14 – Sub-classes of CombinedCategoriesPerson for covering the 27 basic user profiles for which  single 

recommendations are provided (screenshot from TopBraid Composer) ...................................................................... 71 

Figure 15 – Division of complex profile into basic profiles for assigning relevant recommendations. .......................... 71 

Figure 16 – SPIN rule for assigning a user with age between 17-40 years old into the class AdultPerson .................... 76 

Figure 17 – SPIN rule for assigning a “bad” AQ index to an instance of location that has an AOD value above 0.44 .... 77 

Figure 18 – SPIN rule that assigns the sports_general_activity as preferred activity of the user, under specific 

assumptions ................................................................................................................................................................... 77 

Figure 19 – SPIN rules handling cases for categorising an instance of type Person into an OutdoorJobPerson class ... 78 

Figure 20 – SPIN magic property  (a) and SPIN rule (b) implemented in the hackAIR SPIN ontology, for assigning a 

relevant user into a specific uniquely combined category ............................................................................................ 79 

Figure 21 – SPIN rule (a) and SPIN function (b) implemented in the hackAIR SPIN ontology, for assigning a tip of the day 

to a user ......................................................................................................................................................................... 80 

Figure 22 – SPIN rule implemented in the hackAIR SPIN ontology, for assigning a personalised recommendation to a 

specific user profile, with respect to existing AQ condition ........................................................................................... 80 

 

Table of Tables 

Table 1 – Comparison of existing Ontology Engineering Methods ................................................................................ 13 

Table 2 – The ORSD for the hackAIR ontology ............................................................................................................... 14 

Table 3 – hackAIR URIs and prefixes of the ontological framework............................................................................... 28 

Table 4 – Sub-classes of Person in hackairTBox ontology .............................................................................................. 30 

Table 5 – Object and data properties that are connected to the class Person .............................................................. 31 

Table 6 – Object and data properties that are connected to the class Location ........................................................... 34 

Table 7 – Object properties that are connected to the class EnvironmentalData ......................................................... 35 

Table 8 – Empirical matching between air pollutant indices and air pollutant levels .................................................... 37 

Table 9 – Excerpt of official units of measurement that are represented in hackAIR ontology .................................... 37 

Table 10 – Object and data properties that are connected to the class Recommendation .......................................... 39 

Table 11 – Conversion of unstructured text into relevant hackAIR ontology notions, with respect to the user profile’s 

details ............................................................................................................................................................................ 43 

Table 12 – Ontology metrics produced by OntoMetrics tool ........................................................................................ 45 

Table 13 – Ontology’s pitfalls detected by OOPS. .......................................................................................................... 48 

Table 14 – Conversion of unstructured text into relevant hackAIR ontology notions, with respect to the problem 

description (request) of the user for recommendation ................................................................................................. 52 

Table 15 – JSON parameters of the POST request body ................................................................................................ 58 

Table 16 – A binary matrix representing disjoint classes for each specific user category (sub-classes of Person) ........ 65 

Table 17 – Indicative example of all possible combinations of the class ElderlyPerson with its non-disjoint classes .... 66 

Table 18 – Numerical ranges of AQ observations and their corresponding qualitative values...................................... 76 

Table 19 – Declared and inferred triples regarding Berlin (involvedLocation) and its current  AQ observation 

(involvedEnvironmentalData) ........................................................................................................................................ 81 

Table 20 – Declared and inferred triples regarding user named Karl ............................................................................ 82 

Table 21 – Declared and inferred triples regarding indirect user named Anna ............................................................. 83 

Table 22 – Declared and inferred triples regarding user named Stephan ..................................................................... 84 

Table 23 – Triples inferred and response time of reasoning process ............................................................................ 86 

Table 24 – A list of tips of the day instantiated in the hackAIR ontology ....................................................................... 94 



D4.2: Semantic integration and reasoning of environmental data 

     6 | 98    

Table 25 – A list of personalised recommendation instantiated in the hackAIR ontology for Elderly class and all possible 

combinations with the main user categories ................................................................................................................. 96 

Table 26 – A list of personalised recommendation instantiated in the hackAIR ontology for MixChild class and all 

possible combinations with the main user categories ................................................................................................... 97 

  



D4.2: Semantic integration and reasoning of environmental data 

     7 | 98    

Glossary 

Abbreviation/Acronym Meaning 

AOD Aerosol Optical Depth 

API Application Programming Interface 

AQ Air Quality 

AQI Air Quality Index 

CQ Competency Question 

DS Decision Support 

DSS Decision Support System 

JSON JavaScript Object Notation 

GUI Graphical User Interface 

HTML HyperText Markup Language 

HTTP HyperText Transfer Protocol 

KB Knowledge Base 

MOT Mean Of Transport 

ORSD Ontology Requirements Specification Document 

OWL Web Ontology Language 

PM Particulate matter 

PM2.5 Particulate matter up to 2.5 micrometres in diameter 

PM10 Particulate matter up to 10 micrometres in diameter 

PDL Problem Description Language 

RDF Resource Description Framework 

RESTful Representational State Transfer 

RS Recommendation System 

SME Small and Medium-sized Enterprises 

SPARQL Simple Protocol and RDF Query Language 

SPIN SPARQL Inferencing Notation 

SWRL Semantic Web Rule Language 

UI User Interface 



D4.2: Semantic integration and reasoning of environmental data 

     8 | 98    

W3C World Wide Web Consortium 

XML Extensible Markup Language 

 

  



D4.2: Semantic integration and reasoning of environmental data 

     9 | 98    

1 Executive summary  
This document reports the research and implementation that has been conducted for the task of semantic integration 

and reasoning of environmental and user-profile data. More specifically, the deliverable covers the following: 

 The creation of an ontological framework for the formalisation of heterogeneous data that are targeted to be 

stored in the hackAIR knowledge base (KB); the latter aims to serve as a storage module of the content and 

existing relations, representing information about the user profile and needs, as well as the existing 

environmental data of areas of interest (Section 3). 

 The formulation of a problem description language that defines the structure and concepts for translating a 

request for recommendation from the user into a representation expressed in terms of ontology concepts and 

relations (Section 4). 

 The development of a service that handles the dynamic population of the KB at run time (i.e. when a user 

submits the request for recommendation); the input data will be delivered by the hackAIR User profile module 

and the Data fusion module (Section 5). 

 The implementation of a reasoning mechanism for providing personalised decision support services, with 

respect to specific characteristics of user profiles and to existing air quality (AQ) conditions (Section 6). 

We investigate how involved data are generally represented as ontological concepts in existing domains of common 

interest with the project domains (environmental-, people-, health-, location-, recommendations- related) and we 

build our own integrated schema for the alignment of heterogeneous data in an ontological KB. Environmental and 

user-specific data are considered as heterogeneous due to their difference in nature (textual and numerical) and 

source (i.e. derived from different modules).   

On the basis of the ontological framework, we specify which entities can be utilised in the process of transforming the 

unstructured data content of a user request for recommendation into an ontology-based representation for further 

utilisation by the reasoning module. The mapping between unstructured and structured content is made 

automatically, with the use of an implemented web-service, without interfering the user in such a complex task that 

requires specific technological expertise.  

We discuss different approaches for performing reasoning on top of the newly populated data in the hackAIR ontology 

and we outstand why a SPIN 1  rule-based reasoning implementation is more efficient for the inference of new 

knowledge, by taking advantage of the data and semantics represented in the ontological framework. For the need of 

inferring user-profile driven recommendations, we specify which characteristics of the user profiles are considered as 

more important in the recommendation process, as well as what kind of suggestions and tips will be provided to the 

users, with respect also to existing environmental issues.  

 

 

  

                                                           
1 http://spinrdf.org/ 



D4.2: Semantic integration and reasoning of environmental data 

     10 | 98    

2 Introduction 
One of the main targets of hackAIR project is to develop a methodology for synthesising heterogeneous air quality 

data collected in order to generate meaningful information, personalised to the requirements of citizens. This objective 

involves: a) the development of a data fusion algorithm for merging air quality information from various sources to 

provide value-added map products of air quality to citizens and to offer air quality-aware personalised services to the 

public, b) the semantic integration of environmental and user-specific data, and c) the reasoning and decision support 

strategies involved data for the generation of personalised recommendations. The first part is targeted in Deliverable 

4.1 “Developed and tested data fusion algorithm for use in the pilot study activities WP7”, while the remaining define 

the main objectives of this deliverable - D4.2 “Semantic Integration and reasoning of environmental data”. Both the 

semantic representation and the reasoning framework of the current deliverable will be of significance to the final 

services of WP5 “Development of the hackAIR platform”. 

To achieve the objectives of this deliverable, it is necessary to represent in a common way the heterogeneous 

information captured by hackAIR including the user profile and needs (User profile Module) and environmental data 

(Data fusion Module) in order to provide personalized decision support services. This task involves a set of steps that 

should be considered and which are discussed in the current deliverable. Specifically, a) the design of an ontological 

framework, b) the formulation of a problem description language (PDL), c) the dynamic population at run time of the 

knowledge base (KB) and d) the development of reasoning techniques. The main workflow that involves processes 

related to the objectives of the current deliverable is presented in Figure 1. 

 

Figure 1 – User triggered processing pipeline 

More specifically, in Figure 1 we present all involved hackAIR modules, as well as their between communication, for 

performing semantic integration of user-profile and environmental data and reasoning processes for providing 

personalised recommendations to the user. The main workflow involves the following steps: (1) the requests for 

decision support through the use of the hackAIR platform; it is considered that the user has specified his/her 



D4.2: Semantic integration and reasoning of environmental data 

     11 | 98    

preferences and characteristics beforehand in a different process (create user profile), which is out of the scope of the 

current task; (2) all significant data for decision support (i.e. user profile and fused AQ data) are gathered at run-time 

(when the user submits the request) from corresponding hackAIR modules. These data are aimed to be populated in 

the hackAIR KB for further manipulation; (3) through the adoption of PDL guidelines by relevant hackAIR services, 

previously collected data are transformed into relevant ontology notions; (4) then, the recommendation system (RS) 

is triggered and rules stored on top of the ontology perform the inference at run-time; (5) inferred recommendation(s) 

are returned to the user through the visualisation module of the hackAIR UI.  

In order to cover the aforementioned functionality, specific research and development has been conducted and 

presented in the current deliverable. Initially, we present the most established methodologies used for designing and 

implementing ontological frameworks and based on their characteristics as well hackAIR needs and we select the 

method that covers our needs. Then, we present the scope, intended uses and requirements of the hackAIR ontology. 

Based on the outcome of the analysis we define the entities and concepts that the ontology covers, together with 

standards and parts of existing ontologies that can be aligned to the hackAIR concepts. Finally, we present some 

ontology metrics and results to evaluate the structure, quality and consistency of the developed ontology.  

In the sequel, we present the hackAIR Problem Description Language (PDL), giving in detail the structure and details 

on how the request of the user is formulated so as to be properly submitted for decision support by the hackAIR RS. 

We describe the requirements that were taken into account in the design process of the PDL, the main entities of the 

PDL and we conclude with example PDL representations in real use case.  

Then, we discuss the process of manipulating a user request for decision support. In order for the hackAIR RS to 

efficiently operate the reasoning process, the user-profile data (user characteristics, details and needs, provided by 

the User profile Module) and environmental data (provided by the Data fusion Module) should be populated in the 

ontology-based KB upon request. For this reason, we develop a web-service that performs real-time conversion of 

data into relevant ontology representations and dynamic population (i.e. when the user submits a request) of the KB, 

by efficiently adopting the hackAIR PDL and ontology notions.  

Next, we present the reasoning requirements and framework. We specify the nature and context of recommendations 

provided for decision support; two types of recommendations are supported: (i) tips of the day, i.e. general daily advice 

on how to improve the ambient air quality (AQ) and to reduce individuals’ air pollution production, and (ii) personalised 

recommendations, i.e. user profile-driven advice with respect to its characteristics (age, health sensitivity, preferred 

activity (-ies)) and to existing AQ conditions (expressed in 4 different quality states), on how to protect from air 

pollution.  

Since the recommendation process takes into account the user profile needs as well as the environmental data, the 

reasoning framework has to operate on top of the semantic relations (ontology schema) and individuals (populated 

data) that are represented in the KB. So, in order for the hackAIR RS to comply with the nature of the hackAIR KB, 

ontology-rules are developed with an extensive use of SPIN (SPARQL Inferencing Notation) standard.  

The document is structured as follows: Section 3 presents the ontological framework developed for hackAIR; Section 

4 discusses the problem description language, its functionality and characteristics; Section 5 discusses the dynamic 

population of heterogeneous data (user profile characteristics, environmental measurements) at the time that the 

user submits a request for decision support; Section 6 presents the reasoning techniques, with details on the 

architecture, methodology and implementation followed. Finally, Section 7 concludes this deliverable with a summary 

of results and future work. 

  



D4.2: Semantic integration and reasoning of environmental data 

     12 | 98    

3 hackAIR ontological framework 
To support the understanding, sharing and reuse of knowledge (information) among systems, it is useful to define a 

common vocabulary in which shared knowledge is represented in a formal way. The specification of a representational 

vocabulary for a shared domain of discourse is called ontology [Gruber, 1993]. The ontology enables the modelling of 

knowledge by defining a set of representational primitives, which typically are: classes (objects, concepts and other 

entities) that are assumed to exist in some area (domain) of interest, and their properties (attributes, i.e. relationships 

that hold among them). Their expressivity and level of formalisation depend on the knowledge representation 

language used. 

Within the Semantic Web, i.e. extension of the current Web that aims to augment web resources by attaching to them 

metadata that describe meaning in a formal, machine-understandable way, ontologies play a key role. In this effort, 

the Web Ontology Language (OWL) has emerged as the official W3C recommendation for creating and sharing 

ontologies on the web [Bechhofer, 2009]. OWL is the most well-established ontology language, since it facilitates 

greater machine interpretability of represented content than that supported by XML, RDF, and RDF Schema (RDF-S), 

by providing additional vocabulary, along with formal semantics [W3C, 2004].   

This chapter presents the scope, intended uses and requirements of the hackAIR ontology. We then describe in detail 

the structure, the entities and concepts that the ontology covers, together with standards and parts of existing 

ontologies that the hackAIR ontology can potentially adopt. We demonstrate how unstructured data are described 

according to defined hackAIR ontology notions, and finally, we present some well-known ontology metrics and results 

to evaluate the structure, quality and consistency of the developed ontology.  

3.1 Ontology engineering process 

For the design and implementation of the hackAIR ontological framework we studied the most established 

methodologies and approaches, including Sensus [Swartout et al., 1997], KACTUS [Bernaras et al., 1996], DOGMA 

[Jarrar and Meersman, 2008], METHONTOLOGY [Fernandez et al., 1997], DILIGENT [Pinto et al., 2004], On-To-

Knowledge [Sure et al., 2004], Cyc [Lenat and Guha, 1989], Unified [Uschold, 1996], Grüninger and Fox [Grüninger and 

Fox, 1995], and others. While all examined methodologies presented interesting perspectives towards building 

ontologies either from scratch or by additionally inheriting existing ones, we decided to select and apply the NeOn 

ontology development methodology [Suárez-Figueroa et al., 2009]. NeOn is a scenario-based methodology that covers 

various cases of ontology development. In detail, the methodology (i) guides the ontology engineer to define efficiently 

the requirements and characteristics of the ontology, (ii) takes into account the existence of multiple ontologies in 

ontology networks, and (iii) supports the reuse/reengineering of knowledge resources. It consists of the following 

components: 

 The NeOn Glossary - a well-established glossary that includes 59 predefined processes and activities. Its 

purpose is to provide a standard vocabulary, created by ontology experts that can be used for well-described 

and structured processes. 

 Scenarios for building ontologies and ontology networks - unlike other methodologies, NeOn approaches a 

variety of scenarios for ontology engineering, while each scenario is decomposed into different processes or 

activities. 

 Two ontology network life cycle models - these models, named the Waterfall Model and the 

Iterative/Incremental Model indicate how to establish the development processes and activities. 

 A set of methodological guidelines for processes and activities - These are specific guidelines in order to fulfil 

the activities and processes mentioned in the NeOn Glossary. 



D4.2: Semantic integration and reasoning of environmental data 

     13 | 98    

The selection of NeOn was based on a thorough comparison among methodologies, using a diverse set of criteria. 

These criteria, along with the comparison results (Table 1) are presented below, in order to document our decision: 

 Well-documented - shows the depth and details provided for each process and guideline of the methodology; 

 Reusability - shows whether the reuse/reengineering of existing ontologies is supported by the methodology; 

 Dynamic /Adaptive  - defines the level of adaptability to various cases of development; 

 Structured representation of requirements - shows whether the methodology incorporates a structure that 

formally describes the development requirements. 

Table 1 – Comparison of existing Ontology Engineering Methods 

Methodology Well-
documented 

Reusability Dynamic/ 
Adaptive 

Structured 
representation 
of requirements 

Sensus Medium Yes Low No 

KACTUS Low Yes Low No 

DOGMA High No Low Tuples2 

METHONTOLOGY Medium Yes Low No 

DILIGENT Medium No Low No 

On-To-Knowledge High No Low No 

Cyc Medium Yes Low No 

Unified Low No Low No 

Grüninger and 

Fox 

High No Medium CQs3 

NeOn High Yes High ORSD4 

3.1.1 Ontology Requirements Specification Document (ORSD) 

To elicit the requirements that the hackAIR ontology should satisfy, we followed the guidelines proposed in [Suárez-

Figueroa et al., 2009] for the NeOn methodology. A key process in the aforementioned method is to identify 

beforehand which requirements and specifications the ontology should fulfil. In other words, it leads the ontology 

expert to specify in systematic way information about:  

                                                           
2 In DOGMA framework, a tuple is a description of conceptual relations in the form <γ: Term1, Role, InvRole, Term2>, where Term1 
and Term2 are linguistic terms, γ is a context identifier, and Role/InvRole are lexicalisations of the paired roles in any binary 
relationship; for each pair (γ, Term) is assumed to refer to a uniquely identifiable concept [Jarrar and Meersman, 2008].  
3 CQs stands for the term Competency Questions, i.e. a list of questions that the ontology should be competent to answer 
[Grüninger and Fox, 1995]. These CQs are just a sketch and there is no need to be exhaustive. 
4 ORSD is the abbreviation of the Ontology Requirements Specification Document, which is explained in detail in Section 3.1.1. 



D4.2: Semantic integration and reasoning of environmental data 

     14 | 98    

 the purpose, i.e. the main goal of the ontology;  

 the scope, meaning the general coverage and the degree of detail in the ontology; 

 the intended end-users; 

 the potential uses of the ontology and its relevant features; 

 the functional and non-functional requirements, attributed in detail, with the use of competency questions 

(CQs) and the analysis of their answers; 

 a glossary of terms, significant for defining the ontology main entities to be represented.  

This requirement specification methodology is documented in a template-based report called Ontology Requirements 

Specification Document (ORSD). For the needs of the project, and for developing the first version of the hackAIR 

ontology, we developed the ORSD presented in Table 2. The requirements of the hackAIR ontology were specified 

through relevant consortium discussions in cooperation with the user partners and are also aligned to user and 

technical requirements analysis presented in D2.2 [hackAIR D2.2, 2016].  

Table 2 – The ORSD for the hackAIR ontology 

hackAIR Ontology Requirements Specification Document                        version 1.0 

1 Purpose 

 
The overall goal of the hackAIR ontology is to provide an operational framework for the 

orchestration of heterogeneous (environmental-, health-, user profile- related) data in order 

to support user-oriented decision support services. The hackAIR platform aims to integrate an 

ontology-based reasoning module for environmental information and recommendations 

delivery, with respect to: (i) personal health and user preferences (activities, daily routine, 

etc.), and (ii) current AQ conditions of the location of interest.  

The ontology will provide the vocabulary and semantics that represent and generate all 

information needed in order for the hackAIR system to afford its end-users’ services.  

2 Scope 

 
The hackAIR ontology will be the basic framework of the hackAIR knowledge base (KB), for 

storing user profile data coming from the User Profile Module and air quality observations 

coming from the Data Fusion Module. The decision support (DS) module will directly 

communicate with the KB in order to gather relevant information and to infer proper 

recommendations to the users. Based on these facts, the ontology should formally represent: 

 environmental content, and especially air quality related data, such as air pollutant 

measurements, air quality index values, etc.;  

 user profile details, including age, gender, health status or any health sensitivity that 

can be aggravated by severe air quality conditions;  

 relationship data, i.e. connections between different user profiles; 

 geographical location data;  

 user interested activities, meaning daily or systematic or preferred outdoor activities;  



D4.2: Semantic integration and reasoning of environmental data 

     15 | 98    

 description of the user’s request for decision support, i.e. query related to a preferred 

activity, or related to his/her exposure to existing air quality conditions, etc.; 

 general warnings, tips or more personalised recommendations to be reported to the 

users; 

 knowledge of environmental and health experts, in terms of existing environmental 

conditions and their impact on public health. The need is to efficiently encode their 

expertise, in the form of rules and recommendations, through the relevant ontology 

concepts. 

3 Implementation Language 

 
The ontology should be implemented in OWL 2, the officially recommended language for 

knowledge representation in the Semantic Web. 

4 Intended End-Users 

 
The main end-user categories as well as their main characteristics are briefly reported below:  

 User 1. General public, individuals interested in receiving information about existing 

environmental conditions, and in supporting their actions/decisions during severe 

environmental conditions that can be  potentially harmful to their personal health or 

the health of third parties; 

 User 2. People with health sensitivities and people who perform outdoor activities, who 

are particularly interested in receiving up-to-date air quality measurements for their 

place of interest, and also getting feedback in the form of guidance (advice messages) 

for limiting their exposure to hazardous conditions; 

 User 3. Public administrators, policy/decision makers, interested in receiving 

information on air quality for professional reasons, i.e. public health, legal issues, 

protection or proactive purposes, environmental awareness raising, environmental 

activists; 

 User 4. Environmental experts, interested in: (i) being informed with respect to the 

evolving air quality conditions, (ii) notifying interested groups when needed, (iii) 

monitoring short- and long- term effects for estimating potential health risks, and (iv) 

defining accurate action plans according to actual air quality observations on the 

location of interest; 

 User 5. Communities of citizens and activists organisations, interested in being timely 

and accurately informed about AQ conditions, and to motivate their members.  

 User 5. Data contributors, interested in utilizing hackAIR services so as to provide 

relevant air quality information (measurements from sensors, images, social media 

data, etc.);  

 User 6. Technological experts, researchers, individual app developers or SMEs, 

interested in adopting the ontology model and to expand relevant decision support 

systems. 



D4.2: Semantic integration and reasoning of environmental data 

     16 | 98    

It should be noted that the user groups considered in the hackAIR system, i.e. end-users 

(general public, health sensitive persons, data contributors) and stakeholders (public 

administrators, environmental experts) will not utilise directly the hackAIR ontology; their 

position is to take advantage of ontology utilities through relevant services (AQ information, 

recommendations, etc.) of the hackAIR platform. On the other hand, technological experts 

could be in position to use directly the hackAIR ontology, according to their needs. 

5 Intended Uses 

 
Since the end-users will not necessarily interact with the hackAIR ontology, in a direct way, the 

intended uses are mainly application or service oriented. We identify the following ones: 

 Use 1. To store and retrieve the details of the profile of the users.  

 Use 2. To store and retrieve the detailed measurements of air quality related data, for 

the monitored locations.  

 Use 3. To store the details of the DS problem (request for recommendation) that is 

submitted to the recommendation system (RS).  

 Use 4. To map existing measurements into established air quality standards (AQI, AOD 

data, etc.). 

 Use 5. To serve as the conceptual model for the representation of the significant 

characteristics of individuals that may group them as sensitive health persons. 

 Use 6. To retrieve, adopt or extend the sensitive health groups that are supported by 

the RS, as well as their relation to profile-based recommendations.  

 Use 7. To provide a shared vocabulary for the representation, communication and 

exchange of information related to the resources of (i) air quality and observations, (ii) 

users’ profiles and interested activities, and (iii) recommendations for behavioural 

change and for limiting people’s exposure to air pollution.  

6 Ontology requirements 

 

a. Non-Functional Requirements 

 
 NFR1. The ontology needs to be based on well-established technologies and ontology 

engineering methodologies. 

 NFR2. The ontology should reuse existing ontologies and available standards, 

whenever possible.  

 NFR3. The implemented ontology should be well documented, adaptable and 

extensible for future use.  

 NFR4. The ontology should support representation of its content in the English 

language. 

 

b. Functional Requirements: Groups of Competency Questions (61 CQs) 



D4.2: Semantic integration and reasoning of environmental data 

     17 | 98    

 

CQs Group 1: Environmental data 

 
 CQ1. What are the main categories of environmental data? Air pollutants and related 

AQI values. 

 CQ2. What types of air pollutants are considered in the hackAIR system? Only 

measurements of particulate matter (PM2.5 and PM10). 

 CQ3. What is the nature of the environmental data considered? Numerical data 

(measurements), images, text, fused data.  

 CQ4. What is the source of the environmental data considered? Sensors, open services 

from existing air quality stations, social media, sky-depicting images uploaded to the 

hackAIR mobile app. 

 CQ5. What is the type of environmental node? Stations, web-sites and social media 

platforms, web-services and applications, sensors.  

 CQ6. What is the type of area where the environmental node is located? It could be 

almost anywhere: rural, suburban, urban, sea regions, high-traffic areas, industrial, 

etc.  

 CQ7. Which type of air quality data are provided to the hackAIR KB and RS? Single 

values for air pollutant (PM) concentrations or relevant aerosol optical depth (AOD) 

values, derived from the Data Fusion Module.  

 CQ8. What is the unit measurement for numerical values of considered air pollutants? 

Micrograms (one-millionth of a gram) per cubic meter (μg/m3). 

 CQ9.  How many qualitative scales (indices) are considered for describing air quality? 

Four (4). 

 CQ10. Which are the qualitative values of air quality indices? Very good, good, 

medium, bad. 

 CQ11. To what numerical value range do very good PM2.5/PM10 index correspond? 0-

10 μg/m3 and 0-20 μg/m3 correspondingly. 

 CQ12. To what numerical value range do good PM2.5/PM10 index correspond? 11-25 

μg/m3 and 21-50 μg/m3 correspondingly. 

 CQ13. To what numerical value range do medium PM2.5/PM10 index correspond? 26-

35 μg/m3 and 51-70 μg/m3 correspondingly.   

 CQ14. To what numerical value range do bad PM2.5/PM10 index correspond? Equal or 

above 36 μg/m3 and 71 μg/m3 correspondingly. 

 CQ15. To what numerical value range do very good AOD PM index correspond? Above 

0 and less or equal to 0.14 value. 

 CQ16. To what numerical value range do good AOD PM index correspond? Above 0.14 

and less or equal to 0.34 value. 

 CQ17. To what numerical value range do medium AOD PM index correspond? Above 

0.34 and less or equal to 0.44 value.   

 CQ18. To what numerical value range do bad AOD PM index correspond? Above 0.44 

value. 

 

CQs Group 2: User profile data 



D4.2: Semantic integration and reasoning of environmental data 

     18 | 98    

 
 CQ19. What kind of information does the platform request from the users when 

creating a user profile? Demographic data, health related data, activity related data.  

 CQ20. What kind of information is collected from users automatically? IP, location, 

language, mobile device info, … 

 CQ21. Which demographic data are collected? Name, username, year of birth, gender, 

city/country of interest (user location). 

 CQ22. Which health related data are collected? Health sensitivity (true/false), 

pregnant (true/false).  

 CQ23. Which activity related data are collected? The user may select one or more 

preferred outdoor activities from a predefined list, which will be included in a request 

to the RS.  

 CQ24. Any other data requested for the user profile? Email, which is mandatory for 

registration. 

 CQ25. What is the gender of the user? Male, female or other. 

 CQ26. Which are the general user categories that are considered for providing 

recommendations from the hackAIR system? Direct and indirect users.  

 CQ27. Which are considered as direct users in the hackAIR RS? Individuals that create 

the profile and request for personalised recommendations for themselves.  

 CQ28. Which are considered as indirect users in the hackAIR RS? Individual(s) for whom 

a direct user creates additional profile(s) and requests for additional 

recommendations according to their characteristics. 

 CQ29. Which are the main categories a direct/indirect user may belong to, according 

to his/her year of birth? Infant, toddler, child, young, adult, middle-aged, elderly.  

 CQ30. Which are the main categories a direct/indirect user may belong to, according 

to his/her health sensitivity? The user may or may not belong to sensitive health group. 

He/she will be considered as a sensitive-health person to the system.  

 CQ31. Which are the main categories a direct/indirect user may belong to, according 

to his/her preferred activities? Sports general, Sports walking, Sports picnic, Outdoor 

working person. 

 CQ32. Will the user belong into only one user category? No, the user may belong into 

one or more user categories. For example a user may be an adult, female, pregnant 

and outdoor working person.  

 CQ33. To what numerical age do infant users correspond? Less or equal to 1 year old.  

 CQ34. To what numerical age do toddler users correspond? Above 1 and less or equal 

to 3 years old.  

 CQ35. To what numerical age do child users correspond? Above 3 and less or equal to 

10 years old.  

 CQ36. To what numerical age do young users correspond? Above 10 and less or equal 

to 17 years old.  

 CQ37. To what numerical age do adult users correspond? Above 17 and less or equal 

to 40 years old.  

 CQ38. To what numerical age do middle-aged users correspond? Above 40 and less or 

equal to 60 years old.  

 CQ39. To what numerical age do elderly users correspond? Above 60 years old.  



D4.2: Semantic integration and reasoning of environmental data 

     19 | 98    

 CQ40. Which types of user could be considered as the target audience of the hackAIR 

recommendation services? People with a health problem or with higher health risk 

related to air pollution, user groups with an interest in air quality and public health, 

parents with children, elderly people, pregnant women, elderly people, athletes or 

people exercising outdoors, people working outdoors, those who commute to work 

on a bike or walk, scientific communities, environmental activists, teachers and 

students, policy makers, etc. 

 

CQs Group 3: Location data 

 
 CQ41. At which granularity the location information is considered? It depends on the 

source.  

 CQ42. Does hackAIR system takes into account the exact location coordinates of the 

user when creating a user profile? No. 

 CQ43. Does any other hackAIR service takes into account the coordinates of user’s 

location? Coordinates are taken into account only when collecting user-generated 

data (open hardware measurements or sky-depicting images).  

 CQ44. What type of information related to user’s location is requested for creating the 

user profile? City name and country name.  

 

CQs Group 4: Activities data 

 
 CQ45. Which are considered as physical outdoor activities? Jogging, walking, biking, 

picnic, playing in the park, playing tennis, working, travelling, etc.  

 CQ46. What is the travel modality the user can choose? By car, by bicycle, by foot, by 

public means of transport, etc.   

 CQ47. Which are the activities the user can request for decision support? Making some 

physical outdoor activity (working outdoors, walking, having picnic, doing outdoor 

sports in general). 

 

CQs Group 5: Problem Description and Request data 

 
 CQ48. How a request for Decision Support (DS) is applied to the hackAIR system? The 

request is submitted by the user through a relevant interface of the hackAIR system.  

 CQ49. What is the process for submitting a request to the DS system? The user firstly 

defines specific characteristics of his/her profile (health status, interested activities, 

etc.) and of involved persons’ profile (e.g. mother and young child, father and pregnant 

daughter, etc.); the hackAIR Problem Description Language (PDL) module will 

transform the information defined by the user into relevant ontology entities and, 

together with observation air pollutant values for the location of interest, the 

ontology-based reasoning module will handle the request as needed. 

 CQ50. Which users are considered in one single request? One direct-user (individual) 

and none or up to one indirect user (additional person/profiles of interest). 



D4.2: Semantic integration and reasoning of environmental data 

     20 | 98    

 CQ51. Are the aforementioned users contained in one single request? Yes, they can be 

considered in one request. This way, the direct user can get recommendation(s) not 

only for his/her profile but also for other persons of his/her interest; for the latter, 

relevant hackAIR user profiles should be described through the system. 

 CQ52. What is the geographic area associated to the request? Requests can be made 

and recommendations will be provided at a city level, or even more local, depending 

on the spatial resolution of the provided data.  

 CQ53. Do air quality observations are given separately or combined? Air quality data 

are fused into one single numerical value, for the location of interest.    

 CQ54. Which types of data are relevant to a request? User(s) profile data, user(s) 

location, activities of interest, air pollutant measurement from fused data for the 

location of interest. 

 CQ55. Do the requests for direct and indirect user are handled as one? Every request 

is handled as one, but recommendation(s) are returned separately for every single 

user profile. 

 CQ56. Does the request have any focus on specific environmental type? Yes, in 

particulate matter (PM) or aerosol optical depth (AOD) data provided by the Data 

Fusion Module for the location of interest.   

 

CQs Group 6: Recommendation data 

 
 CQ57. Which data are relevant or can affect the decision inferred by the system? Age, 

health status, environmental condition to the requested location, 

preferred/requested outdoor activities. 

 CQ58. What types of recommendations the system will support? (i) General tips of the 

day for motivating a change towards more pro-active and environmental friendly 

behaviour and (ii) personalised recommendations related to user’s personal profile for 

limiting exposure to hazardous AQ condition.  

 CQ59. What is the nature of tips of the day? Alternative ways to trigger behavioural 

change and to limit potential non-ecological activities will be suggested to the users, 

through tips of the day. 

 CQ60. What is the nature of personalised recommendations? Suggestions with respect 

to the user’s health status and linked with different types of preferred activities 

(walking, eating outside, jogging, etc.), will be provided to the users through 

personalised recommendations.  

 CQ61. What is the message associated to the recommendation provided by the 

system? “You should reduce prolonged outdoor activity”, “You may postpone the 

picnic for another day”, “Ideal air quality for working outdoors”, …  

7 Pre-Glossary of Terms 

 

a. Terms from Competency Questions & their Frequency 



D4.2: Semantic integration and reasoning of environmental data 

     21 | 98    

 

user (or users) 

PM 

data 

request 

numerical value 

index 

age 

environmental 

31 

12 

10 

9 

8 

8 

7 

6 

type 

hackAIR system 

air quality 

user profile 

indirect user 

categories 

environmental data 

recommendation 

5 

4 

4 

4 

4 

5 

3 

3 

 

b. Terms from Competency Questions Answers & their Frequency 

 
user (or users) 

data 

health 

activity (or activities) 

air 

profile 

location 

request (or requests) 

outdoor 

working 

recommendation 

air quality 

sports 

picnic 

outdoors 

24 

13 

10 

9 

9 

8 

8 

8 

7 

6 

5 

4 

4 

4 

4 

walking 

pregnant 

personalised recommendations 

health status 

air pollutant 

direct user 

working outdoors 

elderly 

measurements 

tips 

system 

AOD 

sensitive health 

outdoor activities 

elderly people 

4 

4 

3 

3 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

 

c. Objects 

 
user, data, request, air quality, air pollutant, health, activity, recommendation, 

environmental data, measurement, sports, tips, system, … 



D4.2: Semantic integration and reasoning of environmental data 

     22 | 98    

3.1.2 Domains of interest 

To accurately define the domains of interest that the hackAIR ontology should conceptualise, we took into 

consideration: 

 details specified in the hackAIR use cases [hackAIR D2.2, 2016] - the hackAIR scenarios define two pilot use 

cases with different personas (end-users that act as the main characters in a scenario) and different 

characteristics/requirements, the details of which specify efficiently the main entities that should be covered 

by the ontology schema;   

 information derived from the ORSD analysis (intended uses, CQs and their answers) - the ORSD contains all 

detailed requirements of such representation.  

The ontological representation has to be as much comprehensive as possible and to adequately cover the hackAIR use 

case domains and requirements of interest. From these, the following domains of interest were derived: 

 Environmental and AQ monitoring, covering concepts like air pollutant types, observation values, units of 

measurement, air quality indexes (AQI) and air quality levels, etc.  

 User profile information, covering concepts like gender, age, preferences, etc. 

 Human health, covering mostly environmental affected and caused diseases, like asthma, cardiovascular 

diseases, allergic symptoms, etc.  

 Human activities, meaning any type of outdoor activities that people perform on a daily basis, like exercising, 

or even working, travelling, etc.  

 Location, considering information about an area of interest, like geographical coordinates, names of cities, 

countries, etc.  

 Recommendation and Decision Support, covering concepts from pure texts to entities for structuring the 

problem at hand (request for support, recommendation provided, etc.). 

3.1.3 Existing ontologies and standards 

Ontology reuse is the process of adopting and efficiently integrating available ontological knowledge when developing 

a new ontology. It is generally considered as a key factor for developing cost-effective, high-quality and interoperable 

ontologies, since (a) it avoids “re-inventing the wheel”, i.e. rebuilding existing ontologies and resources from scratch, 

and (b) takes advantage of already formalized ways of representing specific entities in domains of interest. However, 

ontology engineers have to face the challenges that new ontologies might partially be aligned with the full potential 

of existing domain-relevant knowledge sources [Bontas et al., 2005].  

In the phase of designing and building the hackAIR ontology, requirements are subjected to constant refinements in 

order to ensure that it adequately covers the knowledge that the ontology is expected to capture. We selected and 

briefly summarise in the following sub-sections, some of the most motivated existing ontologies and standards that 

address parts of the hackAIR ontology requirements and of domains of interest. We describe the context of each 

external module and we refer those classes and properties that could be adopted/specialised/served as building blocks 

in our ontology, to model information specific to the hackAIR KB and RS. We preferred to adopt and extend parts of 

existing ontologies and patterns, and not their schema as a whole, since most of the times the external modules 

diverge from the hackAIR ontology requirements: either only few parts of the external schema are relevant to our 

context, or some other parts are extensively analysed without adding any value in our ontology semantics but on the 

contrary affecting significantly the size of the final outcome. Section 3.4.3 presents the exact mapping between existing 

and implemented concepts in the hackAIR ontology. 



D4.2: Semantic integration and reasoning of environmental data 

     23 | 98    

PESCaDO 

The PESCaDO ontology [Rospocher, 2010; Rospocher, 2014] is a modular domain-ontology exploited for personalized 

environmental decision support that enables to formally describe: (i) the user decision support request, (ii) the 

environmental data relevant to process the request, as well as (iii) the decisions and conclusions to be produced. As 

the ontology conforms to the scope and the basic requirements of the hackAIR ontology, it can be broadly adopted in 

several concepts of our domains of interest. More specifically, concepts like pescadoPDL:Activity 5 , 

pescadoPDL:User, pescadoPDL:Request, pescadoDiseases:Disease 6 , 

pescadoData:EnvironmentalData 7 , pescadoData:IndexValue, etc. align to concepts aimed to be 

represented in the hackAIR ontology.   

FOAF 

The FOAF (Friend-Of-A-Friend) ontology [Brickley and Miller, 2014] describes persons, activities and their relations to 

other people and objects. FOAF integrates three kinds of network: (i) social networks of human collaboration, 

friendship and association, (ii) representational networks that describe a simplified view of a cartoon universe in factual 

terms, and (iii) information networks that use Web-based linking to share independently published descriptions of this 

inter-connected world. Main FOAF terms that can potentially be adopted by the hackAIR ontology are classes 

foaf:Person8,  foaf:Organization, and properties foaf:name, foaf:age. 

Dublin Core 

The Dublin Core Schema9 is a small set of vocabulary terms that can be used to describe several kinds of resources. 

Dublin Core Metadata may be used for multiple purposes, from simple resource description, to combining metadata 

vocabularies of different metadata standards, and to providing interoperability for metadata vocabularies in the Linked 

Data cloud and Semantic Web implementations. Metadata entities that can be potentially applicable to the hackAIR 

concepts are classes dce:Agent 10 , dce:Location, and properties dce:description, dce:date, 

dce:identifier, etc.  

PROV-O 

The PROV ontology (PROV-O) [Missier et al., 2013] provides a set of classes, properties, and restrictions that can be 

used to represent and interchange provenance information generated in different systems and under different 

contexts11. It can be specialized to create new classes and properties to model provenance information for different 

applications and domains. PROV-O entities that are of special interest within the context of the hackAIR ontology are: 

prov:Agent12 (and its subclasses prov:Person and prov:Organization), prov:Activity, prov:Location, 

as well as their involved properties.   

SWEET 

SWEET (Semantic Web for Earth and Environmental Terminology) is an ontology developed by NASA’s Jet Propulsion 

Laboratory, which describes relevant knowledge in Earth Science and Environmental domains [Raskin and Pan, 2003]. 

                                                           
5 pescadoPDL: is the prefix of the URI <http://www.pescado-project.eu/ontology/pescadoPDL.owl#> 
6 pescadoDiseases: is the prefix of the URI <http://www.pescado-project.eu/ontology/pescadoDiseases.owl#> 
7 pescadoData: is the prefix of the URI <http://www.pescado-project.eu/ontology/pescadoData.owl#> 
8 foaf: is the prefix of the URI <http://xmlns.com/foaf/0.1/> 
9 Available at: http://dublincore.org/documents/dcmi-terms/ 
10 dce: is the prefix of the URI <http://purl.org/dc/elements/1.1/> 
11 Available at: https://www.w3.org/TR/prov-o/ 
12 prov: is the prefix of the URI <http://www.w3.org/ns/prov#> 



D4.2: Semantic integration and reasoning of environmental data 

     24 | 98    

The ontology is highly modular with 6,000 concepts in 200 separate ontologies. It is structured in modules arranged 

hierarchically, covering from more abstract to more applied concepts; these include a great variety of representations 

of physical and ecological phenomena, meteorological conditions, processes, activities, etc. Within the hackAIR 

context, we consider meteorological relevant concepts as most relevant to the domains of interest. Some identical 

concepts (grouped into modules) of the latest version (v2.3) of SWEET13 are given below: 

 The Atmosphere module 14  contains different atmospheric and meteorological phenomena, such as sky 

condition (ClearSky, CloudCover, PartlySunny, PartlyCloudy, etc.), weather condition, precipitation 

(Drizzle, Rain, Snowfall, Storm, etc.), and many more.  

 The PhysicalProperty module and its sub-classes describe, among others, concepts like pressure, temperature, 

speed as well as height, population and size.  

 The Units module15 contains concepts for representing units of measurement, covering: simple units (kilo, 

micro, milli, nano, meter, second, etc.), units defined by product (kilogramPerMeterSquared, meterPerKelvin, 

etc.), units defined by scaling (millimeter, nanometer, degrees, percent, hour, minute, day, etc.), units defined 

by raising to power (perMeter, perMeterSquared, perKilogram, perSecond, etc.), and many more. Each 

definition contains the symbol description (property hasSymbol), the numerical value of the scale (property 

hasNumericalValue), the operands of their calculation function (property hasOperant) and other 

descriptive details.  

 The EnvironmentalImpact module provides descriptions for concepts related to air quality16 (AirQuality – 

subclass of AirPollution – subclass of Pollution, Smog, BrownCloud, etc.), air pollutants17 (among 

them, both PM10 and PM2.5, ozone – O3, nitrogen oxides – NO and NO2, sulphur dioxide – SO2), environmental 

indicators18 (AirQualityIndex – subclass of EnvironmentalIndex). 

 The EnvironmentalStandards module19 provides definitions of different environmental related standards: e.g. 

AcceptableLevel, AirQualityStandards, AmbientAirQualityStandards, 

NationalAmbientAirQualityStandards, etc.  

GeoNames Ontology 

The GeoNames ontology20  provides elements of description for geographical features defined in the GeoNames 

database, which contains over 10,000,000 geographical names corresponding to over 7,500,000 unique features. The 

GeoNames toponyms have a unique URL with a corresponding RDF web service that allows accessing the geospatial 

semantic information attached to them. Concepts like country, capital, population, languages, city, etc. are covered 

with both structural (schema) and actual (instances) details, which could be of special interest for current and future 

functionalities of the hackAIR ontology. Details for every interested city/country could be potentially derived through 

the use of the GeoNames services.  

LinkedGeoData 

                                                           
13 Available at: https://sweet.jpl.nasa.gov/sweet2.3 
14 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18689 
15 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18835 
16 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18707 
17 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18665, https://sweet.jpl.nasa.gov/filebrowser/download/18670  
18 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18751 
19 Available at: https://sweet.jpl.nasa.gov/filebrowser/download/18658 
20 http://www.geonames.org/ontology/documentation.html 



D4.2: Semantic integration and reasoning of environmental data 

     25 | 98    

The LinkedGeoData knowledge base21 [Stadler et al., 2012] provides a rich integrated and interlinked geographic 

dataset for the Semantic Web. The majority of their data is obtained by utilising freely available spatial data from 

OpenStreetMap22, which is a collaborative project to create a free editable map of the whole world. Among others, 

concepts of the LinkedGeoData ontology enable the explicit discretization of common concepts City/Country, by 

providing, for example, notions like Village, NationalPark, Shop, Cafe, ResidentialHighway, etc. It could be 

useful to adopt such notions in the hackAIR ontology, in case that we want to handle location-observation information 

in more detail – not only at a city/country level.  

DOLCE 

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [Gangemi et al., 2002] aims at capturing the 

ontological categories underlying natural language and human common sense. DOLCE does not commit to a strictly 

referentialist metaphysics related to the intrinsic nature of the world. Rather, the introduced categories are thought 

of as cognitive artifacts, which are ultimately depending on human perception, cultural imprints and social 

conventions. DOLCE definitions represent abstract concepts that could be utilised in any domain-specific ontology. 

Entities like PhysicalRegion (i.e. physical space, area, etc.), AgentivePhysicalObject (i.e. a human person), State (i.e. 

being sitting, being happy, doing something, etc.), AmountOfMatter (i.e. quantity of something), etc. could be of 

interest to the hackAIR domains context as well.  

Ontology Design Patterns  

Ontology Design Patterns (ODPs) [Gangemi and Presuttin, 2009] are components, methods and ontology snippets that 

support pattern-based ontology design. Several ODPs have been examined while designing the hackAIR ontological 

framework. Indicatively: 

 Place23 – this pattern is aimed at representing the location of an entity, which might be physical, partial, 

metaphorical, social, etc. 

 Action24  – this pattern is to model actions (i.e. activities) that are proposed, planned and performed or 

abandoned, together with their status and duration in time.   

 Activity reasoning25 – it incorporates two perspectives of activities: a workflow perspective, which is often 

observed in planning-related applications, and a spatiotemporal perspective, which is often found in 

geographic activity analysis. 

 PartOf26 – this pattern addresses the mereology of entities; it is used to represent entities and their parts, i.e. 

part-whole relations, with transitivity. 

 Class Union27 – this pattern represents cases where a class denoted in an ontology is the union of two classes 

in another ontology. This pattern is agnostic as to whether the correspondence is unidirectional or 

bidirectional.  

 EventProcessing28 – this pattern intends to model event objects, their attributes, and their relations actual 

events, and sensor readings producing the events. Different types of event objects, such as complex, 

                                                           
21 http://linkedgeodata.org/About 
22 http://www.openstreetmap.org/ 
23 http://ontologydesignpatterns.org/wiki/Submissions:Place 
24 http://ontologydesignpatterns.org/wiki/Submissions:Action 
25 http://ontologydesignpatterns.org/wiki/Submissions:An_Ontology_Design_Pattern_for_Activity_Reasoning 
26 http://ontologydesignpatterns.org/wiki/Submissions:PartOf 
27 http://ontologydesignpatterns.org/wiki/Submissions:Class_Union 
28 http://ontologydesignpatterns.org/wiki/Submissions:EventProcessing 



D4.2: Semantic integration and reasoning of environmental data 

     26 | 98    

composite, and simple events are modelled, properties for expressing relations between event objects, such 

as constituency and componence are expressed, and attributes of event objects, such as timestamps and other 

data values.  

 Policy29 – the pattern intends to model policies, their characteristics and their associated entities, such as 

processes and agents. 

 Observation30 – the intent of this pattern is to represent observations of things, under a set of parameters. 

Common parameters may be the time and place of the observation, but may also be any feature that is 

observed concerning the specific observed entity. 

3.2 Technologies and Tools 

3.2.1 Ontology language 

The ontology language deployed for developing the hackAIR ontologies is OWL 2 (Web Ontology Language), an 

ontology language for the Semantic Web with formally defined meaning. It was published by the W3C OWL Working 

Group in 2012 [W3C, 2012a] and is now a W3C recommendation. OWL 2 is based on a strong mathematical background 

(i.e. Description Logics31).  

OWL 2 ontologies can be used along with information written in RDF, and themselves are primarily exchanged as RDF 

documents.  Data is structured in RDF triples, which, in other words, are statements in the form <subject predicate 

object>. Each entity within a triple is associated with a uniform resource identifier (URI) usually in the form of http:// 

address, which is a unique identification that serves the principles of the Semantic Web. URIs involve two parts: 

 the base URI (the leftmost) part of the URI which is common across multiple entities in a specific ontology. 

Since URIs can be long, a short form (prefix) can be specified to represent the commonly used part of the URI.  

 the URI fragment part which is the part of the URI after a delimiter (usually #). This part denotes a recognizable 

name for the described entity which should follow the basic rules and guidelines for naming and labelling 

ontologies [Noy and McGuinness, 2001].  

OWL 2 offers the following essential modelling building blocks [W3C, 2012b]: 

 Classes - an abstraction mechanism for grouping objects with similar characteristics and denote the set of 

objects comprised by a concept. There may be diverse criteria for grouping objects/individuals and also one 

individual may simultaneously belong to several classes. Classes can also form a hierarchy of more generic 

(super-classes) and more specific (sub-classes) notions. 

 Individuals - the objects belonging to one or more classes and are also referred to as the classes’ instances. 

Individuals are formed by taking into account things that are abstract (classes) and establishing values so that 

they become real assertions.  

 Properties - indicators of existing relationships between entities. Domain and Range are two key notions that 

restrict the type of entity to be used on each side of a relationship. Properties are further classified as: 

o Object properties, which describe how classes and their individuals can be related to each other; 

o Data properties, which attribute data values to individuals, either using default data types (e.g. string, 

integer, boolean, etc.) or within pre-defined data range expressions; 

                                                           
29 http://ontologydesignpatterns.org/wiki/Submissions:Policy 
30 http://ontologydesignpatterns.org/wiki/Submissions:Observation 
31 https://en.wikipedia.org/wiki/Description_logic 



D4.2: Semantic integration and reasoning of environmental data 

     27 | 98    

o Annotation properties, which give additional description to the domain being modelled, without 

having any effect on the logical aspects of the ontology. 

3.2.2 Third-party frameworks 

The following third-party software tools and frameworks were used during the development and utilisation of the 

hackAIR ontologies: 

 TopBraid Composer32 – it is a visual modelling environment for creating and managing domain models. Its 

graphical user interface (GUI) enables the fast design and development of ontologies; it offers a convenient 

drag-and-drop, form-based user interface with the ability to view and edit ontologies in a variety of 

serialization formats. Moreover, TopBraid Composer seamlessly integrates logical and rule-based reasoning 

engines, which is of most importance for the development, consistency checking and proper functioning of 

the hackAIR RS. 

 SPIN – SPARQL Inferencing Notation33 – it is a state-of-the-art framework and W3C recommendation for rule-

based reasoning in ontologies. The SPIN standard is used to represent SPARQL rules and constraints on 

ontology-based models. It allows also defining new SPARQL functions and querying templates for reusability 

and extensibility issues. Reasoners integrated in TopBraid Composer support SPIN inference.  

 Apache Jena34 – it is an open source Java framework for developing web-applications and services. It includes: 

(a) the Ontology API for manipulating ontology models, and (b) the Inference API for reasoning over 

populated/modelled data stored in the hackAIR ontology-based KB. 

 yEd Graph Editor35 and Graffoo36 – yEd is a free general-purpose diagramming program with a multi-document 

interface. It can be used to draw many different types of diagrams with ease, via an intuitive user interface. 

Graffoo [Falco et al., 2014] is a graphical framework for ontologies that can be loaded as a separate section in 

the yEd palette. We use both technologies to visualise information modelled in the hackAIR ontologies with a 

well-established, recognisable and easily interpretable way.     

3.3 Architecture of the hackAIR ontology 

The current version of the hackAIR ontology (version 1.0 – June 2017) consists of three interconnected sub-ontologies 

(see Figure 2): 

 

Figure 2 – Architecture of the hackAIR ontology 

                                                           
32 http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/ 
33 http://spinrdf.org/ 
34 https://jena.apache.org/ 
35 https://www.yworks.com/products/yed 
36 http://www.essepuntato.it/graffoo 

hackAIR TBox 

hackAIR ABox 

SPIN Rules 



D4.2: Semantic integration and reasoning of environmental data 

     28 | 98    

 the hackAIR TBox37 formalises information relevant to the hackAIR concepts (user profile, AQ measurements, 

recommendations, etc.) in a detailed schema with classes, properties and relations;  

 the hackAIR ABox38 formalises information relevant to membership/attribute assertions, i.e. actual users, 

observations, etc.; 

 the hackAIR SPIN Rules formalise sets of rules for reasoning (inferencing) low-level derivations (age groups, 

user groups, AQ levels, etc.) as well as high-level interpretations (user-profile driven recommendations).  

The aforementioned sub-ontologies are interconnected, in the sense that the lower layers are imported/adopted by 

the higher layers; for example the hackAIR ABox imports the hackAIR TBox, and the hackAIR SPIN Rules imports both 

hackAIR ABox and TBox.  

According to ontology best practices, it is preferred to maintain a relative split between instances (ABox) and the 

conceptual entities (TBox) which describe the domain of interest [AI3, 2009]. Within hackAIR, the key reason to follow 

such a multi-layered approach is to keep concepts and rules in distinct schemas. We selected to distinguish the basic 

structure (concepts, hierarchy) from instances (individuals) and from dynamic rule-based operations (reasoning and 

decision support), in order for the overall hackAIR ontology to be more modular, adaptable and easily extensible in 

any of the three layers, i.e. three different ontology modules.  

3.4 Main ontology concepts 

In the current section, we thoroughly present the first stable version of the hackAIR ontological framework. We 

describe in detail the entities that the ontology includes, thus showing how information related to user profiles, AQ 

observations, requests, recommendations, etc. can be populated in the ontology and how instances are related to 

each other. The base URI as well as the defined prefix for each of the three sub-ontologies defined in the hackAIR 

ontological framework is listed in Table 3. Ontologies are not publicly available yet but they will be released by M20, 

together with the implementation of the 1st hackAIR pilot framework. 

Table 3 – hackAIR URIs and prefixes of the ontological framework 

prefix Base URI 

hackairTBox: http://mklab.iti.gr/hackair/hackairTBox# 

hackairABox: http://mklab.iti.gr/hackair/hackairABox# 

hackairSPIN: http://mklab.iti.gr/hackair/hackairSPIN# 

It should be noted that for the sake of brevity, whenever a class or property or individual is referred in the text or in 

graphs with only a single name, within the following sections of the document, then the prefix or the complete URI of 

the entity is not mentioned; on the contrary, prefix named hackairTBox: is implied for the class/property 

references, prefix named hackairABox: is implied for the populated individuals (instances) and prefix named 

hackairSPIN: is implied for the SPIN rules implemented in the ontology. 

3.4.1 The hackAIR TBox and ABox 

In the current section, we present the main concepts implemented in the hackAIR TBox ontology and we describe the 

modelling schema (hierarchy, relations) that the ontology supports. We additionally present indicative instantiations 

                                                           
37 The letter “T” in TBox stands for the terminological knowledge (i.e. terms/schema). 
38 The letter “A” in ABox stands for the assertions (facts). 



D4.2: Semantic integration and reasoning of environmental data 

     29 | 98    

of the ontology classes, in the form of graphs, in order to describe how main concepts are realised as actual instances 

in the hackAIR ABox ontology. An excerpt of the taxonomy behind the hackAIR TBox ontology is presented in Figure 3.  

 

Figure 3 – Excerpt of the hackAIR TBox ontology (screenshot from TopBraid Composer) 

Class Person 

This class can be used to identify details of personal profiles of people involved in the hackAIR system. Assertions on 

individuals of Person type allow representing information about the hackAIR user-profile. Distinct sub-classes of the 

class Person cover different hackAIR user profiles with respect to specific parameters: 

 the direct access/use of the system: a person can be either a DirectUser or an IndirectUser;  

 the individual’s age: users can be classified into one of the relevant Person sub-classes InfantPerson, 

ToddlerPerson, ChildPerson, YoungPerson, AdultPerson, MiddleAgePerson, ElderlyPerson; 

 the individual’s health condition: users may be classified into classes PregnantFemalePerson, 

SensitiveHealthPerson;  



D4.2: Semantic integration and reasoning of environmental data 

     30 | 98    

 the defined preferred activities: individuals of Person type can be further classified as OutdoorJobPerson, 

SportsGeneralPerson, SportsWalkingPerson and SportsPicnicPerson.  

Table 4 – Sub-classes of Person in hackairTBox ontology 

hackairTBox class name Description 

DirectUser corresponds to the user of the system 

IndirectUser 
his/her user profile is related to an individual of DirectUser 

type 

InfantPerson age less or equal to 1 year old 

ToddlerPerson age between (1,3] years old 

ChildPerson age between (3,10] years old 

YoungPerson age between (10,17] years old 

AdultPerson age between (17,40] years old 

MiddleAgePerson age between (40,60] years old 

ElderlyPerson age more than 60 years old 

PregnantFemalePerson female person who is pregnant 

SensitiveHealthPerson person with health sensitivities 

OutdoorJobPerson person who works outdoors 

SportsGeneralPerson person who prefers doing sports (in general)  

SportsWalkingPerson person who prefers walking outdoors 

SportsPicnicPerson person who prefers eating outside (picnic)  

CombinedCategoriesPerson39 person belonging into combination(s) of Person sub-classes. 

Relevant sub-classes of this class exist, i.e. 

Elderly_OutdoorJob_Person (person more than 60 years old 

that declares he/she has a daily outdoor job), 

Pregnant_SportsPicnic_Person (woman that she is 

pregnant and she prefers to go for picnic outside), etc. 

The aforementioned classes of Person type implicitly define the types of users that are considered by the hackAIR 

system as most vulnerable to hazardous AQ conditions, and for which the RS will support the inference of relevant 

recommendations.  

                                                           
39 This class is useful for the reasoning task and is described in detail in Section 6 



D4.2: Semantic integration and reasoning of environmental data 

     31 | 98    

Apparently, an individual of class Person may belong to more than one of Person sub-classes; for that reason a sub-

class named CombinedCategoriesPerson is created in the ontology to gather all types of individuals belonging into 

any of the possible combinations of main sub-categories (see example description in last row of Table 4). 

The instantiation of an individual of Person type, and thus of the relevant user profile, is feasible with the declaration 

of the associated object/data properties, as presented in both Table 5 and Figure 4. 

Table 5 – Object and data properties that are connected to the class Person 

Object property Domain Range Description 

hasGender Person Gender gender of the user 

hasLocation Person Location default location of the user; 

considered for potential 

recommendations 

isSensitiveTo Person HealthProblem indicates that the user suffers from 

a specific health problem; either 

general or a 
DiseaseRelatedHealthProblem 

hasPreferred 

Activity 
Person Activity defines one or more activities that 

the user may defined as preferred 

ones and for which he/she may 

receive relevant recommendations 

usesAvailableMOT Person MeanOfTransport correlate possible means of 

transport which individuals of class 

Person use throughout their daily 

routine40 

hasRelatedPerson Person Person an individual of type Person is 

linked to one or more individuals of 

the same type, who are indirect 

users of the system  

isProvidedWith 

Recommendation 
Person Recommendation association between a user and a 

derived recommendation from the 

hackAIR RS 

Data property Domain Range Description 

hasName Person ∪ 

Location41  

xsd:string name of the user 

                                                           
40 This information is not directly asked to the user; on the contrary it is implied, if user defines an activity that involves a mean of 
transport (e.g. biking activity implies the use of bike) 
41 the symbol ∪ is used to denote the union of two classes, i.e. the hasName property can have as domain either the Person or 
the Location class.  



D4.2: Semantic integration and reasoning of environmental data 

     32 | 98    

hasAge Person xsd:integer the age of the user 

isPregnant Person xsd:boolean true/false if a female user 

declares that she is pregnant 

worksOutdoors Person xsd:boolean true/false if the user declares 

that he/she has an outdoor job. The 

true value can be assigned 

automatically if the user defines 

WorkingActivity as a preferred 

activity in his/her profile.  

isDoingSports Person xsd:boolean true/false if the user states that 

he/she is interested in doing sports 

(in general). The true value can be 

assigned automatically if the user 

defines SportsGeneralActivity 

as a preferred activity in his/her 

profile. 

belongsTo 

SensitiveGroup 
Person xsd:boolean true/false if the user defines 

that he/she has a general health 

sensitivity  

 

 

Figure 4 – Available assertions on individuals of the class Person 

Class Activity 



D4.2: Semantic integration and reasoning of environmental data 

     33 | 98    

This class can be used to represent the possible activities users can specify as preferred activities in their hackAIR 

profile. The class Activity is further divided into: 

 OutdoorActivity, which includes all hackAIR system -specified activities that are performed outdoors, as 

given in its following sub-classes: 

o JoggingActivity 

o PlayingInParkActivity 

o TennisActivity 

o SwimmingOutdoorsActivity 

o MovingByOpenMOTActivity, meaning the activity of mobility by using a specific MOT while being 

exposed in open air (e.g. by bike, motorcycle, etc.) 

o SportsGeneralActivity 

o WorkingActivity 

o WalkingActivity 

o PicnicActivity 

One important aspect is that a person can define one or more preferred activities in his/her hackAIR profile; the RS 

will then provide one relevant recommendation for every specified activity in user’s profile. It should be additionally 

noted that in the current version of the hackAIR ontology and of the DSS capabilities, all activities are considered as of 

SportsGeneralActivity type, except from activities related to working, walking or eating outdoors (picnic), for 

which specialised activity-related recommendations have been specified (for more details, see Section 6.1.2). 

Class HealthProblem 

The individuals of this class represent possible health problems the users may specify into their hackAIR profile. The 

HealthProblem class is divided into: 

 DiseaseRelatedHealthProblem, which includes individuals related to cardiovascular, circulatory or 

respiratory diseases.  

Though shallow, the discretisation of the aforementioned class is due to the fact that we should avoid recording any 

sensitive information from the user, such as the health status. Hence, in the ontology population process we either 

create a link between an individual of Person type with an individual of HealthProblem type, in general, or a 

boolean value of the belongsToSensitiveGroup object property will be sufficient. In both cases the RS will 

acknowledge the semantics behind these relations and provide the user with a recommendation relevant to his/her 

sensitivity under poor air quality conditions. 

Class Location 

Concerning the location of the user, the hackAIR ontology and thus the RS will track/utilise only information about the 

city and country of the area of interest. The Location class describes the default location of the user, with additional 

use of its sub-classes named LocationCity and LocationCountry. An individual of type Location (and thus of 

its sub-classes) may be linked to other individuals/values with the use of specific object/data properties (see details in 

Table 6). 

 



D4.2: Semantic integration and reasoning of environmental data 

     34 | 98    

Table 6 – Object and data properties that are connected to the class Location 

Object property Domain Range Description 

hasEnvironmentalData Location Environmental 

Data 
an individual of 

EnvironmentalData type 

which corresponds to the 

actual/aggregated measurement 

for specific AQ parameter, can be 

assigned to an individual of 

Location type 

hasRelatedIndex Location Index an individual of Location type 

is linked to an individual of 

Index type, according to the 

numerical value of the 

EnvironmentalData individual 

Data property Domain Range Description 

hasName Location 

∪ Person 
xsd:string name of the location, either of 

the city or of the country 

 

Individuals of class LocationCity and LocationCountry are linked between them via the properties hasCountry 

(domain: LocationCity, range: LocationCountry, inverseProperty: isCountryOf) and hasCity (domain: 

LocationCountry, range: LocationCity, inverseProperty: isCityOf).   

Class MeanOfTransport 

An individual of MeanOfTransport class could be any public or private mean of travel modality, i.e. bike, car, train, 

tram, metro, bus, etc. Such individuals can be attached to:  

 instances of type Person via the property usesAvailableMOT (sub-property of availableMOT), so as to 

define one or more preferred means of transport that  the user uses throughout his/her daily routine;  

 instances of type Activity (outdoor activity) via the property modalityMean, so as to define the mean by 

which the mobility activity (MovingByOpenMOTActivity) is performed.  

A detailed depiction of such concepts and relations is given in Figure 5. 



D4.2: Semantic integration and reasoning of environmental data 

     35 | 98    

 

Figure 5 – Available assertions on an individual of MeanOfTransport type 

In the current version of the ontology, we focus only on those means of transport that are related to activities, e.g. 

bike and biking activity, motor and motorcycling activity, etc. We present the relation between Person and 

MeanOfTransport only for semantic purposes; such a relation (if exists) is implying from the predefined activities, 

e.g. if someone selects biking_activity as preferred one, then a relation like <person_x usesAvailableMOT 

bike> is defined in the ontology. Potentially, information related to public/private MOT could be used for providing 

alternative recommendations to the users regarding their mean of mobility (e.g. prefer moving by bus instead of bike 

when AQ is hazardous) in future versions of the RS. Such a utility requires the request of user for which type of MOT 

he/she owns/uses, or even more, the knowledge and recording of all available public MOT in the ontology, for any 

location (city) of interest, in order to suggest alternative MOT that eliminates the outdoor exposure or the production 

of pollution. 

Class EnvironmentalData 

This class represents all environmental related measurements that are considered in the hackAIR system, meaning 

observations from sensors, monitoring stations, AQ related values from fused or forecasted data or from sky-depicted 

images, etc. The main definitions of the linked properties and classes were adopted from the PESCaDO-Environmental 

Data Ontology [Rospocher, 2010; Rospocher, 2014]. Assertions that can be made on individuals of the described class 

are mentioned in Table 7. 

Table 7 – Object properties that are connected to the class EnvironmentalData 

Object property Domain Range Description 

hasEnvironmental 

DataType 
Environmental 

Data 
Environmental 

DataType 
connects the individual of class 

EnvironmentalData with the 

type of data that it represents 

hasEnvironmental 

DataNature 
Environmental 

Data 
Environmental 

DataNature 
creates a reference to the 

nature of the environmental 

data (observed, forecasted, 

fused, etc.) 



D4.2: Semantic integration and reasoning of environmental data 

     36 | 98    

hasNumericalValue Environmental 

Data 
Value the actual measurement 

(numerical value) of the 

environmental data  

hasRelatedIndex Environmental 

Data ∪ 

Location42 

Index links an individual of 

EnvironmentalData to a 

relevant instance of AQ related 
Index 

Class EnvironmentalDataType 

The individuals of this class represent all possible types of environmental data that are considered in the hackAIR 

system. The individuals are further categorised in sub-classes: 

 AirQualityDataType, which includes as sub-class the AirPollutantDataType type;  

 AODDataType, the individuals of which will be relevant to the AOD measurements provided by the hackAIR 

system; 

 PollenDataType, for pollen related measurements (designed not to be taken into account in the current 

version of the hackAIR system); 

 WeatherDataType, for weather related measurements, i.e. wind, precipitation, temperature, etc. (designed 

not to be taken into account in the current version of the hackAIR system). 

Class AirPollutantDataType 

This class, as being a sub-class of AirQualityDataType and of EnvironmentalDataType, it represents individuals 

of specialised AQ related type. Individuals of class AirPollutant could be any relevant air pollutant that is monitored 

in the hackAIR system. Thus, individuals of AirPollutant will represent specific types of particulate matter (i.e. PM10 

and PM2.5).  

Class EnvironmentalDataNature 

This class is used to represent the nature (i.e. observed, forecasted, fused, historical, etc.) of EnvironmentalData. 

Every individual of EnvironmentalData should have exactly one EnvironmentalDataNature assertion.  

Class Index 

This class can be used to indicate a qualitative value of a quantifiable entity, like e.g. index levels for air pollutant 

measurements. Such qualitative values are represented as individuals of class Index and they correspond to specific 

ranges of their relevant quantitative measurements; for example, a value of PM10 between [0-20] μg/m3 corresponds 

to and index of very good AQ condition. 

The Index class is further divided into sub-classes: AirPollutantIndex, AODIndex and AirQualityIndex, for 

all of which relevant individuals are initialised in hackAIR ontology that represent the very good, good, medium and 

bad AQ condition. The property hasIndexValue targets to the relevant entry of xsd:string type that defines the 

aforementioned index values. More details on AQ indexes and their corresponding scales are given in Section 6.3.1.2, 

while an empirical matching between AQ indices and qualitative levels of air pollutants is given in Table 8.  

                                                           
42 An individual of Location type could also be linked to a relevant Index via the property hasRelatedIndex, to represent the 
same relation, i.e. that a specific location has an AQ level of type Y, where Y is the specific AQ index (very good, medium, good, 
bad) 



D4.2: Semantic integration and reasoning of environmental data 

     37 | 98    

Table 8 – Empirical matching between air pollutant indices and air pollutant levels 

Index Pollutants’ level 

very good very low 

good low 

medium moderate 

bad high / very high 

Class Value 

This class represents quantitative values of hackAIR entities that are measurable. Any type of EnvironmentalData 

(defined by EnvironmentalDataType) that has specific numerical measurement can be instantiated via the class 

Value; thus, relevant sub-classes exist in the ontology, like for example: AirPollutantValue, PollenValue, 

AODValue, WeatherValue (RainValue, HumidityValue, WindSpeedValue), etc.    

Individuals of class Value may have the following assertions: 

 hasUnit, which connects a specific value with its corresponding unit of measurement; 

 hasValueValue, which defines the actual numerical (xsd:double) value associated to the individual.  

Class Unit 

This class encapsulates information about the units of measurement of hackAIR related entities. Every numerical value 

of type Value should be asserted with an individual of type Unit. The data property that describes the unit symbol 

of the individual of Unit class is named hasUnitSymbol and targets to a value of xsd:string type. Example target 

values instantiated in hackAIR ABox, are given in Table 9: 

Table 9 – Excerpt of official units of measurement43 that are represented in hackAIR ontology 

Unit individual Unit symbol  
(hasUnitSymbol) 

Target measurement 

microGramsPerCubicMeter ”μg/m3”^^xsd:string PM concentration 

grainsPerCubicMeter ”grains/m3”^^xsd:string Pollen count 

degreesC ”C”^^xsd:string  Temperature in degrees Celsius 

second ”s”^^xsd:string Time is seconds 

kilometresPerHour ”km/h”^^xsd:string Wind speed 

                                                           
43 Defined by the SI – International System of Units, available at: http://www.bipm.org/en/measurement-units/  

http://www.bipm.org/en/measurement-units/


D4.2: Semantic integration and reasoning of environmental data 

     38 | 98    

percent ”% ”^^xsd:string Percentage (number or ratio expressed as a fraction 

of 100); useful for declaring Humidity or 

Precipitation values 

Class Request 

This class represents the actual user requests expressed according to the hackAIR problem description entities (more 

details in Section 4.2); a request could be submitted by the user, through the use of the hackAIR platform and its 

represented information will be of significance in order to provide representative/personalised recommendations. The 

aforementioned class is further divided into sub-classes that correspond to the nature of the request, i.e. querying for 

the tip of the day, requesting for advice that takes into account a health issue, or preferred activity (-ies), or querying 

for decision support of the primary (direct) user or of the involved (indirect) users. 

An individual of Request type can be instantiated for: 

 one specific user profile with its additional linked profile (if any), 

 one defined location,  

 one specific (current) AQ observation, and  

 none/one/more than one preferred user activities.  

The individual of the aforementioned type can be linked to other individuals of the hackAIR ABox via the following 

object properties: 

 involvesPerson: targets to the individual of class Person that specifies the user and his/her profile; 

 involvesLocation: targets to the individual of class Location, which specifies the current location of the 

user; 

 involvesEnvironmentalData: targets to the individual of class EnvironmentalData that specifies the 

actual numerical observation of air pollution for the location of interest; 

 involvesActivity: targets to one or more individuals of class Activity that specifies the type of activities 

for which the user desires to get a relevant recommendations.  

The individual of type Request can have the following datatype property assertions: 

 hasSubmissionDateTime: every request can have exactly one of this declarations, which indicates the 

date/time (xsd:dateTime) when the request is submitted by the user. 

Class Recommendation 

This class formalises information about the notion of recommendations that are generated by the DSS according to 

user’s profile and his/her request. The Recommendation class is divided into two sub-classes, which are in line with 

the supported types of recommendation by the hackAIR DSS. These are: 

 TipOfTheDay: individuals of this class represent specific messages in the form of small tips that are 

potentially helpful knowledge for reducing the production of pollution or improving he ambient air quality, 

through behavioural change within everyday life.  

 LimitExposureRecommendation: individuals of this class contain specific messages that will be provided 

to the user in the form of short advice with a more personalised expression. Texts contained on individuals of 

such type reflect to the characteristics of the user profile (age, health sensitivity, preferred activities) and of 

the existing AQ conditions, and usually are suggestions for limiting the exposure to air pollution.  



D4.2: Semantic integration and reasoning of environmental data 

     39 | 98    

An individual of type Recommendation can have the following property assertions (Table 10): 

Table 10 – Object and data properties that are connected to the class Recommendation 

Object property Domain Range Description 

isAssignedTo 

PersonCategory 
Recommendation Person ∪ 

Combined 

CategoriesPerson 

each recommendation is 

assigned into one or more 

individuals of target (Range) 

class 

isAssignedTo 

LevelOfAQ 
LimitExposure 

Recommendation44 
Index each recommendation of 

LimitExposure 

Recommendation type is 

assigned to specific 

individuals AQ index type 

Data property Domain Range Description 

hasDescription Recommendation xsd:string contains the actual text of 

the Recommendation that 

is provided to the user as 

advice 

The aforementioned representation plays a significant role in the DSS; rules (see Section 6.3) implemented on top of 

the ontology infer automatically the appropriate individual of Recommendation type to the user(s) that is/are 

involved in a Request, with respect to:  

 the classes/sub-classes of Person type where the user belongs to, according to his/her profile specifications; 

 the value of individuals of Index type where the individual of EnvironmentalData type is categorized, 

according to the recorded/observed numerical value of the latter. 

In the current version of the hackAIR ontology a sufficient number of recommendations has been specified as 

individuals of both sub-classes of Recommendation type. The list of all defined tips of the day in the hackAIR ontology 

is given in Appendix 8.1, while the corresponding list of all defined recommendations per different AQ condition and 

different user profile is given in Appendix 8.2. An indicative example of recommendation of 

LimitExposureRecommendation type is given in Figure 6. 

                                                           
44 Individuals of TipOfTheDay type do not declare the isAssignedToAQIndex property, since tips of the day are provided to 
any direct user (upon request) regardless of the existing AQ condition. 



D4.2: Semantic integration and reasoning of environmental data 

     40 | 98    

 

Figure 6 – Instantiation of the class Recommendation, covering a specific case scenario 

This visualisation represents the linked classes and relations of a specific hackAIR recommendation that is intended 

for: an elderly person (age above 60 years old) who declares to the system that he/she is interested to go for a picnic. 

According to the hackAIR ontology, this person will be an individual of both hackairTBox:ElderlyPerson and 

hackairTBox:SportsPicnic Person type. If the user performs a request (hackairTBox:Request) to the 

hackAIR system and, at the same time, the air quality in his/her area is in moderate condition 

(<hackairTBox:AOD_medium rdf:type hackairTBox:AODIndex>) then a specific individual of 

hackairTBox:LimitExposureRecommendation type will be asserted to the user’s request for recommendation 

(via the property hackairTBox:involvesRecommendation), with the message “You can still go on a picnic but 

pay attention for changes in air quality” as a relevant advice from the hackAIR system. More details about the 

recommendation process are given in Section 6. 

3.4.2 The hackAIR SPIN Rules 

The basic functionality that the ontology rule layer aims to cover is the interpretation of information stored in lower 

levels of the ontology (TBox and ABox) in a uniform, automatic and semantically related way. In summary, 

interpretations in ontology-based frameworks have the following characteristics: 

 they involve several concepts and their representations (individuals, relations, etc.); 

 they describe data in different terms (additional classification, assertion to qualitative values, new values from 

rules that are met, etc.), by taking into account the context and conceptual knowledge represented on each 

concept and each individual in the ontology;  

 they infer knowledge and facts that are not explicitly defined in the data but in the form of rules. 

Thus, for the semantic interpretation and inference of new knowledge, we proceed with the implementation of a rule-

based reasoning layer that fully adopts and implements the SPARQL Inferencing Notation (SPIN)45 framework. SPIN is 

                                                           
45 http://spinrdf.org/ 



D4.2: Semantic integration and reasoning of environmental data 

     41 | 98    

a well-established standard to represent SPARQL rules and constraints on Semantic Web models [Knublauch et al., 

2011]. Implemented SPIN rules run on top of both abstract ontology declarations (TBox) and actual assertions (ABox), 

which in turn serve as the basic knowledge (data, relations, semantics) fed into the rule-based framework for reasoning 

new assertions.  

SPIN utilities are available for use by importing the SPIN vocabulary46. In the hackAIR ontology, we import/adopt and 

extend specific SPIN components (SPIN rules, SPIN magic properties and SPIN functions) in the hackAIR SPIN Rules 

layer. A detailed description about the specifications and implementation of SPIN rules as well as the use cases that 

the rules cover within the context of the hackAIR reasoning framework, is given in Section 6.3. 

3.4.3 Mapping hackAIR ontology into existing concepts 

In the current section we describe the results of integrating the hackAIR concepts with existing relevant concepts from 

external ontologies/vocabularies, presented in Section 3.1.3. We have concentrated in classes and properties that 

could be considered as similar, in terms of semantics, relations and the context where they are defined. The so called 

ontology mapping enables the establishment of semantic interoperability between new and existing sources, by 

defining the direct linking of classes/properties with third party ontologies and standards. 

For the discrete definition of ontology mappings, we create a separate ontology document (presented in Figure 7) that 

contains the mappings between the hackAIR ontology concepts and those of third party vocabularies/ontologies. This 

document facilitates the direct alignment and easy comprehension of terms, data and relations from multiple domains. 

The linking between existing and new classes and properties is established via the declaration of rdfs:subClassOf 

and rdfs:subPropertyOf relations correspondingly. By linking concepts with the aforementioned relations, we 

inherit all involved semantics declared in external ontologies of the involved entities. For example, considering a 

declaration like the following:  

<myOntology:ClassA rdfs:subClassOf externalOntlology:ClassB> 

means that myOntology:ClassA, as being sub-class of externalOntlology:ClassB, is a more specialised 

concept that its superclass which is more general). Also, semantics and relations asserted in 

externalOntlology:ClassB can be also asserted in myOntology:ClassA and in all of its subclasses. This way, 

we achieve to not only adopt existing classes but to also extend them, with respect to the context of our domain.  

Information of the ontology mapping document (Figure 7) is presented in TURTLE format and relations can be 

considered as valid at the date of publication of this document.  

                                                           
46 http://spinrdf.org/spl 



D4.2: Semantic integration and reasoning of environmental data 

     42 | 98    

 

Figure 7 – Ontology mapping between hackAIR and existing notions 



D4.2: Semantic integration and reasoning of environmental data 

     43 | 98    

3.5 A use case scenario 

For demonstrating the hackAIR ontology and the way unstructured data is transformed into ontology-based structured 

data, we decided to follow a real scenario called Personas scenario I, as described in the hackAIR user and technical 

requirements analysis [hackAIR D2.2, 2016]. In the following paragraph, we focus in those parts of the scenario that 

are essential to be represented in the hackAIR knowledge base and recommendation system via relevant ontology 

notions:   

“… Karl (63) is a retired teacher. Karl used to live in a highly polluted industrial area with his daughter Anna when 

she was a child. At the age of 10, Anna was diagnosed with Asthma. … When they moved to Berlin, Karl became 

a member of … Karl’s daughter, Anna, is a 32-year-old woman with asthma and also living in Berlin. She lives only 

a few streets away from her father. Anna is five months pregnant of her first child. Since her pregnancy, Anna 

would like to get current local air quality information on a daily basis. … Anna has a busy job as an architect and 

has little spare time left to fully engage in this. Anna has moderate technical skills, a cheap Android smartphone 

and . … Anna is married to Stephan, a 35-year-old graphic designer in a local communication agency. In his free 

time, Stephan trains to participate in an occasional half marathon. … He owns the latest iPhone and goes to work 

by bike. … Karl has created a profile on the platform, and he has indicated he has asthma. This way, when he gets 

an air quality notification on his tablet for people with asthma, he can inform his daughter on this. … Anna doesn’t 

like to install new applications on her phone because it has very little memory space left.” 

Table 11 presents how free text in natural language is converted into ontology triples, by following the schema 

described in hackAIR TBox ontology. Here, we focus only on information related to the user profile data.  

Table 11 – Conversion of unstructured text into relevant hackAIR ontology notions, with respect to the user profile’s details 

Unstructured text Triples (in TURTLE format47) 

About Karl 

Karl (63) hackairABox:Karl 

  rdf:type hackairTBox:Person ; 

  hackairTBox:hasAge 63^^xsd:integer ; 

  hackairTBox:hasGender hackairTBox:male ; . 

Berlin hackairABox:Berlin 

  rdf:type hackairTBox:LocationCity ;  

  hackairTBox:hasName “Berlin”^^xsd:string ; . 

moved to Berlin hackairABox:Karl hackairTBox:hasLocation hackairABox:Berlin . 

About Anna 

Anna, is a 32-year-

old woman with 

asthma 

hackairABox:Anna 

  rdf:type hackairTBox:Person ; 

  hackairTBox:hasAge 32^^xsd:integer ; 

                                                           
47 This is a more compact format of representing triples than rdf/xml or n-triples; though, they do have the same representation 
base which is to mention statements in the form of subject-predicate-object.   



D4.2: Semantic integration and reasoning of environmental data 

     44 | 98    

  hackairTBox:hasGender hackairTBox:female ; 

  hackairTBox:isSensitiveTo hackairTBox:Asthma ; . 

living in Berlin hackairABox:Anna hackairTBox:hasLocation hackairABox:Berlin . 

is 5 months pregnant hackairABox:Anna hackairTBox:isPregnant "true"^^xsd:boolean . 

goes to work by bike 

or subway 

hackairABox:Anna 

  hackairTBox:availableMOT hackairTBox:bike ; 

  hackairTBox:availableMOT hackairTBox:public_transport ; 

  hackairTBox:hasPreferredActivity hackairTBox:biking_activity ; 

. 

About Stephan 

Stephan, a 35-year-

old 

hackairABox:Stephan 

  rdf:type hackairTBox:Person ; 

  hackairTBox:hasAge 35^^xsd:integer ; . 

  hackairTBox:hasGender hackairTBox:male ; . 

trains to participate 

in an occasional half 

marathon 

hackairABox:Stephan 

  hackairTBox:hasPreferredActivity hackairTBox:jogging_activity 

. 

goes to work by bike hackairABox:Stephan 

  hackairTBox:hasPreferredActivity hackairTBox:biking_activity . 

Additional instantiations 

Karl creates involved 

profile for Anna 

hackairABox:Karl hackairTBox:hasRelatedPerson hackairABox:Anna . 

 

If we examine closer the information involved in the scenario, we see that Anna is not planning to be a direct user of 

applications such as the hackAIR platform; she does not want to install new apps in her mobile phone due to 

inadequate free memory space. On the other hand, Karl wants to keep her informed about current AQ condition in 

her area, so he is planning to create a profile with respect to her needs. Karl can create two hackAIR profiles that are 

interlinked, in order to distinguish his profile characteristics (elderly person) from her daughter’s ones (pregnant, 

asthma, etc.). Both profiles will be populated in the ontology as individuals of Person type, as seen above, and 

additional triples will be created to interlink the profiles (<hackairABox:Karl hackairTBox: 

hasRelatedPerson hackairABox:Anna>). This way we achieve to handle both profiles with one single request 

for recommendation. The RS will take into account the characteristics of each profile separately and infer useful 

recommendations with respect to them.  

Details on how information related to the requests for recommendation and the results from the reasoning process 

are presented in Sections 4.3 and 6.4 correspondingly.  



D4.2: Semantic integration and reasoning of environmental data 

     45 | 98    

3.6 Ontology metrics and evaluation 

The evaluation of ontologies is an emerging field of research in the Ontological Engineering community that deals with 

the problem of assessing a given ontology from the point of view of a particular criterion of application. Existing 

ontology evaluation methods generally propose automated or semi-automated approaches that focus in specific 

qualitative (number of classes, properties, axioms, etc.) or quantitative criteria (consistency, completeness, 

expandability, sensitiveness, etc.) used to assess the examined ontology. An integrated review of ontology evaluation 

methods is attributed in publications [Gangemi et al., 2005] and [Brank et al., 2005]. Such techniques will help uncover 

errors in implementation, and inefficiencies regarding the modelling, the complexity and size of the ontologies. 

Nevertheless, no evaluation method (either as stand-alone or in combination) can guarantee a good ontology; on the 

contrary, it can definitely recognize problematic parts of it in terms of structure and consistency [Vrandečić, 2009]. 

For the current task, we perform metric-based ontology quality analysis to examine from a quantitative perspective 

the ontology quality. We adopt specific techniques and tools that evaluate both the consistency and the structure of 

the hackAIR ontology, regardless of the domain that they describe. The main approach and results derived are 

described in the following sub-sections.  

3.6.1 Evaluating the structure  

For evaluating the structure of the hackAIR ontology, we used OntoMetrics48, a web-based tool that validates and 

displays statistics about specific parameters, like the following: 

 Base metrics 49 : counters for classes, object/data properties, class/equivalent class/disjoint class axioms, 

domain/range declarations, individuals, etc.  

 Schema metrics50: attribute/inheritance/relationship richness; and 

 Knowledgebase metrics51: average population, class richness. 

In the following table we present the results derived from the analysis of two specific layers in the hackAIR ontology: 

the Tbox (schema) and the SPIN layer (rules). The ABox (assertions) was excluded from metrics results since no 

structural data is included in the ontology but only instantiations referring to specific users, locations, observations 

and request. 

Table 12 – Ontology metrics produced by OntoMetrics tool 

 Metric name TBox layer SPIN layer 

B
as

e 
M

et
ri

cs
 

Class count 125 138 

Object property count 31 31 

Object property domain axioms count 27 27 

Object property range axioms count 27 27 

                                                           
48 Available at: https://ontometrics.informatik.uni-rostock.de 
49 Description of this type of metrics is available at: https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Base_Metrics 
50 Description and calculation formulas available at: https://ontometrics.informatik.uni-
rostock.de/wiki/index.php/Schema_Metrics 
51  Description and calculation formulas available at: https://ontometrics.informatik.uni-
rostock.de/wiki/index.php/Knowledgebase_Metrics 



D4.2: Semantic integration and reasoning of environmental data 

     46 | 98    

Data property count 14 14 

Data property domain axioms count 14 14 

Data property range axioms count 14 14 

Individual count 230 624 

Axioms count 1,106 14,447 

SubClassOf axioms count 124 114 

Equivalent classes axiom count 16 16 

Disjoint classes axiom count 75 75 

Class assertion axioms count 254 1,462 

Object property assertion axioms count 126 126 

Data property assertion axioms count 249 249 

DL expressivity ALCHOI(D) AL 

Sc
h

em
a 

m
et

ri
cs

 

Attribute richness 0.112 0.0 

Inheritance richness 0.992 0.826087 

Relationship richness 0.495935 0.0 

Kn
o

w
le

d
ge

b
as

e 

m
et

ri
cs

 

Average population 1.84 1.355072 

Class richness 0.544 0.173913 

 

As seen in Table 12, the hackAIR TBox ontology contains an adequate number of classes, and quite a number of object 

properties and datatype properties, used to make assertions on the individuals described in the ontology. SPIN imports 

the overall schema described in TBox and contains additional classes for the instantiation of SPIN rules; object and 

data properties are inherited from TBox. The analysed ontology layers contain a relevant number of individuals and 

assertions on them; these individuals are used in the schema to represent e.g. the types of environmental data, the 

levels of AQI, the units of measurement, attributes that characterise some ontological classes, etc., but the largest part 

is held by descriptions that carry messages and details of the defined tips of the day and personalised 

recommendations.  

Both examined parts of hackAIR ontology are quire rich in terms of class restrictions used to characterise the 

terminological knowledge to be represented, as shown by the axiom counters in Base metrics part of Table 12. Rules 

defined in SPIN layer ontology, which are attached in relevant classes, are categorised by OntoMetrics as axioms. To 

conclude with analysed base metrics, the DL expressivity information tells in which Description Logics (DL) variant the 



D4.2: Semantic integration and reasoning of environmental data 

     47 | 98    

ontology can be categorised. The expressivity is encoded in labels52; in our case, the following DL characteristics were 

identified: (i) “AL” or “ALC” stands for the attributive (base) language which allows atomic negation, concept 

intersections, universal restrictions and existential quantification, (ii) “H” stands for the existence of role hierarchy 

(subproperties – rdfs:subPropertyOf), (iii) “O” stands for the use of nominals (enumerated classes of object value 

restrictions), (iv) “I” stands for the definition of inverse properties, and (v) “(D)” stands for the use of datatype 

properties, data values or data types.  

Concerning schema metrics, quantitative values were estimated for expressing the attribute, inheritance and 

relationship richness (definitions explained in [Tartir et al., 2010]). More specifically, the attribute richness is the 

average number of attributes (object/datatype properties) per class. The number of attributes that are defined for 

each class can indicate the amount of information that is applicable, i.e. can be asserted, to instance data. This metric 

is not calculated for hackAIR SPIN layer since the ontology does not contain any new attributes declared. 

Inheritance richness is defined as the average number of subclasses per class; it is a good indicator of how well 

knowledge is grouped into different categories and subcategories in the ontology. This measure can distinguish a 

horizontal ontology (where classes have a large number of direct subclasses) from a vertical ontology (where classes 

have a small number of direct subclasses). The examined hackAIR ontologies are of deep (vertical) type which indicated 

that the ontology covers a specific domain in a detailed manner.  

Relationship richness is defined as the ratio of the number of non-inheritance relationships (i.e. object properties, 

equivalent classes, disjoint classes) divided by the total number of inheritance (i.e. subclass relations) and non-

inheritance relationships defined in the ontology. This metric reflects the diversity of the types of relations in the 

ontology. These relations are contained in both the TBox and the SPIN layer, but the tool seems not to be able to 

identify them in the SPIN rules layer. 

Finally, concerning knowledgebase metrics, TBox has an adequate class richness result, meaning that instances in the 

ontology are quite well distributed across classes; the ratio is smaller in SPIN layer, meaning that included data do not 

exemplify all the knowledge in the schema. The average population metric results has relevant interpretation, as being 

an indicator of the number of instances compared to the number of classes defined in the ontology.  

3.6.2 Evaluating the consistency and quality  

For the task of evaluating the consistency and overall quality of the hackAIR ontology we used the software named 

OOPS (OntOlogy Pitfall Scanner), which is a web tool for detecting the most common pitfalls53 in ontologies [Poveda- 

Villalón et al., 2009]. The results given by OOPS suggest how the ontology elements could be modified in order to 

improve the ontology quality; these suggestions should be interpreted manually so as to be revised properly. In the 

evaluation process we included only the schema (hackAIR TBox ontology) since the assertions (hackAIR ABox ontology) 

follow the same structure. The analysis of the hackAIR SPIN ontology was not applicable with this tool, since OOPS 

couldn’t conceive properly the rules expressed in SPIN standard.  

The system provides an indicator for each pitfall, according to their possible negative consequences: 

 critical pitfalls, the correction of which are crucial and will affect the ontology consistency and reasoning; 

 important pitfalls, which are not critical for ontology functioning, but are considered as important to be 

corrected; and  

 minor pitfalls, which do not cause any actual problem but by correcting them will make the ontology clearer 

and more compact. 

                                                           
52 More details available at: https://en.wikipedia.org/wiki/Description_logic#Naming_convention 
53 A catalogue of common pitfalls is given in http://oops.linkeddata.es/catalogue.jsp 



D4.2: Semantic integration and reasoning of environmental data 

     48 | 98    

In Table 13 we present the pitfalls appeared while evaluating our schema, along with a brief description of their 

meaning and together with the number of cases for which they were specified.  

Table 13 – Ontology’s pitfalls detected by OOPS. 

No. Pitfall description Results 

#1 Missing annotations (Minor) 
Ontology terms lack annotation properties that would improve the ontology 
understanding and usability from a user point of view. 

169 cases 

#2 Creating synonyms as classes (Minor) 
Classes whose identifiers are synonyms, could be defined as equivalent 

(owl:equivalentClass) in the same namespace.  

2 cases 

#3 Missing domain or range in properties (Important) 
Relationships and/or attributes without domain or range are included in the ontology. 

7 cases 

#4 Inverse relationships not explicitly declared (Minor) 
A relationship has no inverse relationship defined. 

27 cases 

#5 Using different naming conventions in the ontology (Minor) 
The ontology elements are not named following the same convention.  

ontology 

According to the OOPS tools, one important pitfall exists (see pitfall #3 in Table 13) in the hackAIR ontology that is the 

absence of domain and range declarations for 7 different cases. We solved this pitfall by carefully examining the 

derived object properties that had the aforementioned problem and we explicitly defined the relevant domain and 

range declarations in the ontology that were missing. The rest of the recognised pitfalls were categorized as minor and 

for handling them, specific actions were taken as described next. 

For pitfall #1 there were 169 cases spotted by the tool where annotations and descriptions were missing in our 

ontology; to overcome this pitfall and to improve comprehension and expressiveness of the ontology, we assigned 

human readable annotations to every defined concept in the ontology, with the adoption of properties rdfs:label, 

rdfs:comment or dc:decription. 

Concerning pitfall #2, we didn’t make any alteration in the ontology; the tool wrongly pointed out that two of the 

declared classes should be considered as the same concept; these classes were the 

hackairTBox:SportsWalkingActivity and the hackairTBox:SportsWalkingActivity, which obviously 

represent different concepts in our domain. 

Regarding pitfall #4, the missing declarations of inverse relationships were restored properly in order to improve the 

completeness of the ontology. Pitfall #5 arose due to the fact that some notions in our ontology (usually the instances 

of classes) have different naming convention that declared classes and properties. Since this pitfall does not affect the 

structure or comprehensibility of the ontology, there was no need to take any action. 

 

  



D4.2: Semantic integration and reasoning of environmental data 

     49 | 98    

4 Problem Description Language (PDL) 
A Problem Description Language (PDL) is an integral part of a decision support system, responsible for the 

representation of a problem (request) in a formal and comprehensible way. In the hackAIR system, the PDL should act 

as an intermediate module for the communication between the hackAIR UI and the DS module. The hackAIR PDL aims 

to specify the language and structure that is used indirectly by humans and directly by the system, in order to formulate 

a request regarding environmental aspects which is intended to be served by the hackAIR system.  

According to the design of the hackAIR KB and DSS architecture, the decision support to the user will be implemented 

by reasoning techniques and strategies based on the information stored in the ontologies; the schema, the assertions 

and the rules composing the hackAIR ontologies should be consistently orchestrated with the principles, the notions 

and the information formulated by the PDL. For that reason we selected to structure the hackAIR PDL on OWL Web 

Ontology Language, the notions and the schema of which will be part of the hackAIR TBox ontology.  

In the following sub-sections, we present the proposed hackAIR PDL, giving in detail the structure and details on how 

the request of the user is formulated so as to be properly submitted for decision support by the hackAIR RS. We 

describe the requirements that were taken into account in the design process of the PDL, the main entities of the PDL 

and we conclude with example PDL representations in real use case.  

4.1 User needs with respect to decision support 

Within the hackAIR context, every request for decision support is inextricably linked to specific characteristics and 

details of the user profile; the so called personalised (i.e. user-profile driven) recommendations should be the main 

functionality of the hackAIR RS (details in Section 6) and recommendations will be relevant to the needs of specific 

user profiles (details in Section 6.1.2). We ended up on these features, after: (i) having examined relevant decision 

support services available in the market that target in the environmental domain, (ii) a thorough analysis from experts 

of the consortiums as well as external ones, regarding the types/characteristics of vulnerable individuals to hazardous 

AQ conditions, and (iii) performing co-creation workshops [hackAIR D2.4, 2017] with potential users of the system. It 

was found out that personalised recommendations that are especially targeted to preferred outdoor activities and 

specific health sensitivities can be perceived as something motivating, or else of great impact, that would trigger them 

to use the hackAIR platform in order to be timely and accurately informed and to promote a behavioural change for 

the benefit of their health.  

Typical decision support scenarios, with respect to the aforementioned characteristics and thus within the context of 

the hackAIR personalised recommendation process, could be the following: 

 “I have asthma and I am planning to go for a long walk to the city centre today. Should I postpone my activity?” 

 “I am a teacher and I want to be pro-active for my children at school, in case of bad air quality conditions in this 

area.” 

 “My father who is an elder person with health sensitivities wants to go for picnic in the city park. What does the 

system recommend with respect to his health condition and to the existing air pollution levels?” 

In the above requests for recommendation, expressed in natural language text, we highlight in bold font those 

concepts that are significant and need to be covered by notions in the hackAIR ontology, for decision support by the 

hackAIR RS. Those use cases and concepts are primarily handled by relevant hackAIR PDL entities, as described next. 

4.2 Definition of the hackAIR PDL 

The specification of the first version of the hackAIR PDL is based on OWL, the established web ontology language which 

serves as the technological foundation for both the hackAIR KB and RS; the representation method of the PDL conforms 



D4.2: Semantic integration and reasoning of environmental data 

     50 | 98    

to the overall ontology-based approach made in hackAIR for semantic integration and reasoning purposes handled by 

the hackAIR system.  

In examples presented in Section 4.1, there are common concepts which are typically referred within the context of 

user requests for decision supports; these are: 

 information related to the user(s) or their related user profile; 

 details about the area of interest, for which the user requests for environmental related information or 

recommendations; 

 information of the kind of activity (or activities) the user wants to perform. 

In order to support the recommendation process, an additional type of information is needed: the actual observation 

value of monitored environmental data in the area of interest. This information is provided by the Data Fusion Module 

and should be supplementary included in the ontology representation of the request.  

All the above specify the main building blocks for representing the problem description as defined in the hackAIR PDL. 

Each of the components of the PDL is described below.  

4.2.1 Main entities  

The problem of formulating a user request within the hackAIR context, involves the following notions of the hackAIR 

PDL: Request, Person, Location, EnvironmentalData, Activity and Recommendation. The interlinking 

between entities is feasible via corresponding properties as depicted in Figure 8.  

 

Figure 8 – Main entities involved in the hackAIR PDL 

The generic concept that describes the problem is the class Request, details of which are already presented in Section 

3.4.1. The properties that can be asserted in an instance of Request type are: 

 involvesPerson: relates a specific request that arrives to the system with the user that performs the 

request for recommendation. The instance of class Person contains all user-profile related information that 



D4.2: Semantic integration and reasoning of environmental data 

     51 | 98    

determines the final result for decision support. Information about the user(s) submitting a request is clearly 

relevant to the capability of providing an adequate recommendation. 

 involvesLocation: relates a specific request to the area of interest, for which environmental data should 

be available by the Data Fusion Module.  

 involvesEnvironmentalData: relates the instance of Request with the current air quality conditions 

reported by the Data Fusion Module for the specific area of request.  

 involvesActivity: relates the specific request to the activity or activities that the user wants to perform; 

all activities supported by the hackAIR ontologies can be utilised here. Usually activities linked to a specific 

request are those that are defined as preferred activities in the involved user profile. It should be noted that 

assertion of this type is optional - there can be requests for decision support that do not include any specific 

type of activity (e.g. a request for recommendation for an elderly person with no preferred activity defined in 

the system, is still valid and processable.  

4.2.2 User – PDL interaction 

As already stated, the PDL is a formal description of a user request for decision support by the hackAIR RS. The PDL 

interferes between the hackAIR UI and the KB and RS modules. There is no direct interaction between the PDL and the 

user, thus no demand for the user to express his/her requests in the aforementioned ontology-based format. The 

syntax and complexity of the PDL is hidden under specific web forms of the hackAIR platform, provided for adjusting 

the different profile characteristics by the user.  

All information that is provided by the user via the hackAIR interface, together with the air quality data coming from 

the Data Fusion Module, are inserted into the KB, with the adoption of the PDL formalisation guidelines. The PDL 

facilitates a one-to-one mapping between sourced information (profile characteristics, AQ observation, requests, etc.) 

and data instantiated in the hackAIR ontology. This process enables the proper structuring of data for the rule-based 

reasoning system to perform user-profile driven decision support efficiently.  

Details on the communication between the hackAIR UI and the ontology-based hackAIR modules (data input, post-

process based on PDL utilities, data output) will be given in Section 5, while an abstract description of the step-by-step 

process of PDL-based information population follows next.  

4.2.3 A step-by-step-process 

Considering that all information relevant to a request is available, the following steps should be followed in order to 

formulate the problem of the user (request), according to PDL and ontology specifications: 

1. An individual belonging to the Request is defined in the hackAIR ABox ontology, to uniquely identify the 

current problem under formalisation. 

2. A linking between the individual of Request type and the individual of the involved person is instantiated via 

the property involvesPerson. If the user is already populated in the hackAIR ABox, the individual of Person 

type is recalled and used in that Request-Person relation. Either wise, an individual of class Person is 

populated, as demonstrated in Section 3.5, with instantiations of user-profile related information (such as age, 

health sensitivities, preferred activities, location of interest, other related profiles), wherever this is feasible.   

3. A linking between the individual of Request type and the individual of the involved location of interest is 

instantiated via the property involvesLocation. If the location is already populated in the hackAIR ABox, 

the individual of Location type is recalled and used in that Request-Location relation. Either wise, an 



D4.2: Semantic integration and reasoning of environmental data 

     52 | 98    

individual of class Location is populated, as demonstrated in Section 3.5, with instantiations of location 

related information (such as name of city or country), wherever this is feasible.   

4. An individual of EnvironmentalData type is populated, to represent information relevant to the current air 

quality condition for the location of interest. A linking between the individual of Request type and of newly 

populated EnvironmentalData individual is created via the property involvesEnvironmentalData. 

5. A linking between the individual of Request type and the individual(s) of the activity (-ies) considered as 

relevant to the involved user profile is/are instantiated via the property involvesActivity .This step is 

optional, because in any case data can be directly retrieved from the involved user profile details (see 

declaration of hasPreferredActivity property) via relevant SPIN rules; so before running any inference, 

no linking between request and involved activity(-ies) is provided.  

4.3 A use case scenario described with hackAIR PDL 

We present here a use case scenario where the problem is described in natural language, and we demonstrate how 

the contained information is formalised with the adoption of the hackAIR PDL. For demonstration purposes and for 

maintaining a continuation in the utilised content, we follow the Personas scenario I introduced in [hackAIR D2.2, 

2016], which was also was referenced in Section 3.5, for demonstrating the population process of user-profile related 

data in the ontology.  

As a reminder of the scenario details, we have three persons: Karl (elderly person, father of Anna), Anna (pregnant 

woman with health sensitivities, goes to work by bike, and has no interest in installing AQ-related apps; wife of 

Stephan) and Stephan (exercising intensively and goes to work by bike); all of them live in Berlin. Since it is mandatory 

to have observation data of the area of interest, for the PDL and the recommendation process, we consider deriving 

from the Data Fusion Module that the current AQ in Berlin for PM AOD is 1.2. 

Table 14 presents how the above information is converted into ontology triples, by following the schema represented 

in the hackAIR TBox ontology. We focus on data related to the problem description (request) for decision support.  

Table 14 – Conversion of unstructured text into relevant hackAIR ontology notions, with respect to the problem description (request) 

of the user for recommendation 

Triples (in TURTLE format) 

Request from Karl (including Anna)  

hackairABox:request_from_Karl 

  rdf:type hackairTBox:Request ; 

  hackairTBox:involvesEnvironmentalData hackairABox:AODEnvData_for_Berlin ; 

  hackairTBox:involvesLocation hackairABox:Berlin ; 

  hackairTBox:involvesPerson hackairABox:Karl ;   

  hackairTBox:involvesPerson hackairABox:Anna ; . 

Request from Stephan 

hackairABox:request_from_Stephan 

  rdf:type hackairTBox:Request ; 

  hackairTBox:involvesEnvironmentalData hackairABox:AODEnvData_for_Berlin ; 

  hackairTBox:involvesLocation hackairABox:Berlin ; 



D4.2: Semantic integration and reasoning of environmental data 

     53 | 98    

  hackairTBox:involvesPerson hackairABox:Stephan ; . 

Additional instantiations 

hackairABox:AODEnvData_for_Berlin 

  rdf:type hackairTBox:AODEnvironmentalData ; 

  hackairTBox:hasEnvironmentalDataType hackairTBox:PM_AOD ; 

  hackairTBox:hasNumericalValue hackairABox:AODValue_for_Berlin ; . 

hackairABox:AODValue_for_Berlin 

  rdf:type hackairTBox:AODValue ; 

  hackairTBox:hasValueValue "1.2"^^xsd:double ; . 

In the above instantiations, no direct declaration of the involvesActivity property is asserted to individuals of 

Request type; such information is automatically inferred data of SPIN rules, as explained in Section 6.3. However, all 

other relevant properties that link a request with the involved person, location and observation are mandatory in the 

population process of individuals of Request type, and otherwise the recommendation process cannot be supported 

efficiently due to missing data.  

  



D4.2: Semantic integration and reasoning of environmental data 

     54 | 98    

5 Dynamic ontology population 
In the following sub-sections we analyse the problem of ontology population and present the most established 

approaches found in literature. We focus on the requirements for dynamic population process of involved data in the 

hackAIR knowledge base, and we justify our proposed approach according to the defined needs. We present in detail 

the architecture, as well as the methods and tools adopted for the implementation of the hackAIR web-service and we 

conclude with some example results of the dynamic population process in real use cases.  

5.1 State of the Art 

Ontology population is the process of augmenting the ontology with instances of concepts and properties and is part 

of the ontology learning process, which refers to the automatic or semi-automatic construction, enrichment and 

adaptation of ontologies [Maedche and Staab, 2001]. Ontology population does not change the structure of an 

ontology itself but only its set of concepts and relations, and can be performed either manually or (semi)automatically 

via the use of respective software tools. The latter case is mostly appropriate when the number of instances to be 

inserted into the ontology is significantly high and a fully manual population process in this context would be extremely 

tedious and time-consuming. 

State of the art ontology population approaches are mostly addressed to retrieving instances from textual corpora (i.e. 

natural language text, like e.g. product catalogues) and mainly involve machine learning, text mining and natural 

language processing (NLP) techniques; indicative approaches are presented in [Buitelaar and Cimiano, 2008] and 

[Petasis et al., 2011]. Another stream of ontology population research attempts to retrieve instances from structured 

content, like e.g. spreadsheets [Han et al., 2008], XML files [Modica et al., 2001] and, more recently, Linked Data 

sources [Mitzias et al., 2016]. 

In this deliverable we focus on a very specific type of ontology population which we call dynamic ontology population 

and involves an ontology model being populated at run-time, contrary to the case of having a mostly static ontology 

that has been populated before the application was executed (e.g. during the ontology construction phase). Although 

not many relevant approaches currently exist in literature, this will most probably change due to the rapidly increasing 

use of ontologies in modern applications. For instance, the authors in [Niepert et al., 2008] propose the deployment 

of answer set programming to carefully-solicited expert feedback for dynamically populating and partially inferring an 

ontology. The paper focused on an appealing use case, the Stanford Encyclopedia of Philosophy (SEP), which is 

substantially complex and highly dynamic.  

Two other applied approaches include the UIMAST dynamic ontology population tool [Fiorelli et al., 2010], which is an 

output from the UIMAST project54, and the Magpie suite of semantic web tools55. In particular, Magpie’s dynamic 

population focus, i.e. “ontologies can be populated so that they reflect personalized constraints on a generic KB” [Dzbor 

and Motta, 2006], strongly coincides with our strategic aim to dynamically populate the ontology with personalised 

information, in order to develop a platform that is capable of addressing personalised decision support. 

Concerning the task of dynamic population of the hackAIR KB with heterogeneous data (user profile and environmental 

fused data), the need that arises is the communication of involved hackAIR modules in a direct, fast straightforward 

and interoperable way. By exploiting the nature and infrastructure of the hackAIR platform (mobile/web application), 

the required communication between the data providers (hackAIR User profile and Fused data modules) and the data 

receivers (hackAIR KB) can be accomplished with the development of relevant web-services; a web-service is any piece 

                                                           
54 UIMAST project: http://semanticturkey.uniroma2.it/extensions/uimast/ 
55 Magpie homepage: http://projects.kmi.open.ac.uk/magpie/main.html 



D4.2: Semantic integration and reasoning of environmental data 

     55 | 98    

of software that makes itself available over the internet and uses a standardised messaging system for exchanging 

data between applications, modules, or even different systems.  

For the exchange of information and the communication between involved modules, the need is to adopt a lightweight 

and concise data exchange language that is domain-independent, produces small data size and supports fast 

transmission speeds. It is important to keep hackAIR services as lightweight and efficient as possible because, usually 

mobile devices are bound by a monthly data cap or operate with slow connectivity speeds, both of which facts do 

directly affect the response time and efficiency of the application. Among the most popular data formats (JSON56, 

XML57, REBOL58, YAML59, etc.) for web-based data exchange, JSON format is preferable and widely accepted due to its 

simple, flexible and compact way of representing data in a structured and uniform way, covering thus the 

aforementioned needs for our designed web-service.  

Finally, for the process of mapping input (formatted) and targeted (ontology-based) data, an automated alignment of 

identical concepts will be performed, before the dynamic population process. This automatic process will hide the 

expert’s knowledge behind its execution, meaning that the initial alignment between entities of input data and 

classes/relation in the ontology will be designed and implemented in the context of the web-service’s functionality 

manually by the ontology expert. In our case, we are dealing with a small set of data with defined semantics, focused 

to the needs of the context of the current task. Any additional efforts for automating the process with machine learning 

and natural language processing techniques would be costly in terms of computational efficiency, transmission speed 

of data and response time of the application. In case the scale of the problem was bigger (multiple input data with 

diverse ontology concepts involved the transformation process) a more sophisticated approach would be examined.  

5.2 hackAIR web-service for ontology population 

For the process of dynamic ontology population, we selected to implement a RESTful API. The Representational state 

transfer (REST) is the style of software architecture that basically exploits the existing technology and protocols of the 

web [Fielding and Richard, 2002]. Thus, RESTful web services are built to work on the Web for establishing 

communication between different modules. Here, the need is to create a service that the hackAIR UI will be able to 

call, in order to pass data derived from the User profile module and the Data Fusion Module into the hackAIR ontology-

based KB. The ontology population process will be triggered and served dynamically, upon user request (http request) 

to the hackAIR system for providing decision support inferences. 

The hackAIR API should demonstrate the following functionality (Figure 9): 

 it takes as input textual data in a pre-specified format; these data will be instantiated in the ontology; 

 it handles each individual statement in input data, and maps their content into corresponding ontology notions 

and values; as a result, it transforms the initial statements ontology statements (triples); 

 the newly created triples are populated as new assertions in the existing ontology.  

The service has been implemented in Java (Java EE 7 SDK60), with the adoption of additional frameworks: 

 Apache Jena 61 : a free and open source Java framework for building Semantic Web and Linked Data 

applications. It includes the RDF API that facilitates the creation and manipulation of RDF graphs. It enables 

                                                           
56 http://www.json.org/ 
57 https://www.w3.org/XML/ 
58 http://www.rebol.com/ 
59 http://yaml.org/ 
60 https://docs.oracle.com/javaee/7/index.html 
61 https://jena.apache.org/ 



D4.2: Semantic integration and reasoning of environmental data 

     56 | 98    

also the serialization of the schema in any of the most popular ontology formats, such as RDF/XML, RDF/OWL, 

TURTLE, etc.  

 javax.ws.rs library 62 : a built-in package included in the Java Enterprise Edition (EE) distribution for the 

development of RESTful web-services.  

 GlassFish Server63: an open-source application server produced by Sun Microsystems for the Java EE platform, 

utilised for handling HTTP queries to the RESTful API.  

 json-simple64: a well-known java toolkit for parsing (encoding/decoding) JSON text.  

In Figure 10 we present the list of dependencies as configured in our Java project and handled by the Maven project 

management tool65.  

 

Figure 9 – The input and output data of the RESTful API 

                                                           
62 http://docs.oracle.com/javaee/6/api/javax/ws/rs/package-summary.html 
63 http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html 
64 https://github.com/fangyidong/json-simple 
65 https://maven.apache.org/ 



D4.2: Semantic integration and reasoning of environmental data 

     57 | 98    

 

Figure 10 – An excerpt of pom.xml document where project dependencies to external libraries are stated 

5.2.1 Details of the hackAIR API  

Here, we describe in detail the requirements and characteristics of the hackAIR web service developed within the 

scope of Task T4.2, for the orchestrations and dynamic population of user profile and fused data in the ontology. 

Currently, the API is not publicly available but runs as a local service; the public URI will be available for integrating the 

web-service with the 1st version of the hackAIR platform in M20 of the project (August, 2017). The API will respond 

under the URI: 

<http://{baseURI}/hackAIR_api/dynamicPopulation> 

For requests to the API we use the POST method, which is a request method supported by the HTTP protocol for 

submitting data to be processed by the service. The POST request method requests that the web server accept the 

data enclosed in the body of the request message, mostly for storing or further manipulation. POST method transfers 

information via HTTP headers, without any restriction on data size to be sent. An excerpt of the Java code implemented 

for handling the POST request can be seen in Figure 11. 



D4.2: Semantic integration and reasoning of environmental data 

     58 | 98    

 

Figure 11 – An excerpt of Java code from the RESTful API for dynamic ontology population  

As mentioned previously, the exchange of information between the involved components of the hackAIR platform will 

be based on JSON (JavaScript Object Notation), a text-based data interchange format that represents its content as 

simple key-value pairs, giving emphasis in both the content and the structuring of data. Thus, for describing the content 

of the request in JSON language, the following entities may be used: 

 Objects – an object is an unordered set of name/pair values, bounded within left and right brace { }. Each 

name is followed by colon : and the name/value pairs are separated by comma ,; 

 Arrays – an array is an ordered collection of values, bounded within left and right brackets [ ]. Values are 

separated by comma ,;  

 Values – a value can be a string in double quotes “”, or a number, or true/false value, or even another 

object or an array.  

On the basis of the aforementioned entities, we specify the mandatory and optional parameters that are accepted in 

the POST request of the developed hackAIR API, as summarised in Table 15: 

Table 15 – JSON parameters of the POST request body 

Parameter name Parameter 
type 

Mandatory 
/ Optional 

Accepted values 

username object M any string value 

gender object M One of the following: 

male 

female  

other 



D4.2: Semantic integration and reasoning of environmental data 

     59 | 98    

age object M any integer value 

locationCity object M any string value 

locationCountry object M any string value 

meansOfTransport array O One of the following: 

bike 

bus 

car 

motorcycle 

train 

tram  

publicTransport 

isPregnant object O any boolean value 

isSensitiveTo object O One of the following: 

Asthma 

Allergy 

Cardiovascular 

Circulatory 

GeneralHealthProblem 

isOutdoorJobUser object O any boolean value 

preferredActivities object O preferredOutdoorActivities 

preferredOutdoorActivities array O One of the following: 

biking 

jogging 

motorcycling 

tennis 

swimmingOutdoors 

picnic 

playingInPark 

walking 

working 

generalActivity 

airPollutant object M Both: 

airPollutantName 

airPollutantValue 



D4.2: Semantic integration and reasoning of environmental data 

     60 | 98    

airPollutantName object M One of the following: 

PM_AOD 

PM10 

PM2_5 

airPollutantValue object M any double value 

For utilising JSON input in the dynamic population process, we have developed relevant Java classes and methods that 

get the formatted input and map all available name/value pairs into corresponding classes/properties assertions in the 

ontology; new triples are added in the hackAIR ABox for further processing by the RS. The POST request returns either 

an error message, if something goes wrong with the format of the JSON text, or a successful message that the 

population process was completed.  

5.2.2 Example request to the hackAIR API 

Considering the same use case scenario, as this was already presented in Sections 3.5 and 4.2.3 for demonstration 

purposes of the developed utilities, we present here the JSON inputs as they are formatted for two user scenarios: 

 Karl, who is an elder person interested in getting recommendations for him and his daughter Anna, a 32-year 

old woman who is pregnant and has asthma.  

 Stephan, a physically active person who likes running; he is married to Anna, and he is also interested for air 

quality related information.  

Both JSON inputs include details about the different user profiles (pushed from the User Profile module) and existing 

AQ conditions (pushed from the Data Fusion Module). Visualisations in Figure 12 are produced with the use of the 

Online JSON Viewer66: 

                                                           
66 Online JSON Viewer available at: http://jsonviewer.stack.hu/ 



D4.2: Semantic integration and reasoning of environmental data 

     61 | 98    

 
 

 

(a) (b) 
Figure 12 – JSON details of specific requests from: (a) Karl and his related profile (Anna), and (b) Stephan 

In Figure 13 we present both POST queries as requested to the server for dynamic population. Both request resulted 

in HTTP Status: 201 Created response by the server, meaning that the request has been fulfilled and resulted in new 

created resources. The response time was approximately 850ms. Newly asserted entities that were populated in the 

ontology, were already presented in Section 4.3, where we examined the same use cases for forming user requests 

with the use of the hackAIR PDL.   



D4.2: Semantic integration and reasoning of environmental data 

     62 | 98    

 

Figure 13 – POST request as arrived to the GlassFish server 

 

  



D4.2: Semantic integration and reasoning of environmental data 

     63 | 98    

6 Rule-based reasoning framework 
In this section, we deal with the specification of the reasoning techniques that sketch the common framework 

proposed for the realisation of a personalised recommendation module for providing decision support to the users of 

the hackAIR system; the implementation of the recommendation module is planned to be achieved during T5.2 

“Component development and integration” of WP5 “Development of the hackAIR platform”. The basic aim of the 

hackAIR reasoning module is to handle user-profile and environmental related data, analyse the semantics behind 

such content and infer recommendation(s) to the user, by selecting automatically the relevant ones from a list of pre-

defined messages.  

In the hackAIR, we select to provide to the users two types of recommendations: (a) tips of the day (see details in sub-

section 6.1.1), which are useful daily advice on how to improve the ambient AQ and to reduce individual sources of air 

pollution, regardless of the user-profile content or of existing environmental conditions; (b) personalised 

recommendations (see details in sub-section 6.1.2), which can be conceived as pro-active measures (upon user 

request) on how to protect oneself from hazardous health effects of air pollution, targeting to specific characteristics 

of the user profile, like for example age, health status, preferred activities, etc.; users will be able to indicate certain 

options on their profile such as “I am pregnant”, or “I have health sensitivities”, or “I am an outdoor job worker”, or 

even their everyday activities (e.g. running, walking, biking, etc.) and next, the recommendation system should take 

into account all the aforementioned factors, together with the existing environmental conditions for the location of 

the user.  

Specific messages with fixed content were defined by hackAIR environmental experts for both types of 

recommendation, together with details on: (i) how and when recommendation messages will be provided, and (ii) 

which type of user such messages concern. The text of these messages will be instantiated in the ontology as individuals 

of Recommendation class, accompanied with information relevant to the aforementioned details: regarding the first 

aspect (how/when), tips of the day will be selected randomly to be presented to the user, while personalised 

recommendation will be provided upon request for decision support. Regarding the second aspect (which type of 

users), tips of the day could be provided to every direct user of the hackAIR system, while personalised 

recommendations only to valid types, i.e. a user with health sensitivities and with a specific preferred outdoor activity 

will get different recommendation from a health person that has the same preferred outdoor activity. Instantiations 

of personalised recommendations will carry such information that relates the message with the types of user for which 

the recommendation is valid. 

Therefore, the problem of providing personalised inferences is transformed in a classification task where different 

recommendations are given to the users according to a specific set of classes in the ontology that they belong; for 

example, if a user belongs to Class_A and Class_B and the current AQ level has value AQ_xyz, then recommendation_X 

will be provided, or if a user belongs to Class_A, Class_B and Class_C and the same AQ condition exists, then 

recommendation_Y and recommendation_Z will be provided. The fixed types of users where an individual may belong, 

the strict declaration of involved semantics that describe their type, together with details describing each valid case 

per recommendation, do not leave any vague notions to affect the efficiency of the recommendation process. The 

absence of any type of uncertainty in information involved in the recommendation process rejects any uncertainty 

reasoning approach, as being non-applicable to the specified needs (Section 6.2.4).  

Considering the context of requirements and functionality of the hackAIR recommendation system, we follow a hybrid 

reasoning approach with rules and ontologies, where an individual reasoner (Section 6.2.1) ensures the consistency of 

declared relations (hierarchy, domain, range, etc.), while for complex reasoning tasks we implement ontology rules, 

formulated according to the established SPIN standard (Section 6.3). The developed rules handle the data, semantics 

and relations represented in the ontology-based knowledge base and infer new relations between involved entities, 

to finally match personalised recommendations according to user needs and to existing AQ conditions.  



D4.2: Semantic integration and reasoning of environmental data 

     64 | 98    

In the following sub-sections we present the following: in Section 6.1 we give detailed specifications of the 

recommendation mechanism and utilities as defined within the context of the hackAIR project. We analyse the 

different use cases that the recommendation process should support and we give details about the set of user profiles 

and of the process of classifying a user into one or more relevant user classes (Section 6.1.2). In Section 6.2 we discuss 

the main characteristics of existing reasoning techniques and we justify our decision for SPIN rule-based 

implementation of the reasoning process. In Section 6.3 we continue with the analysis of the multi-layered reasoning 

approach, together with a detailed reference of example rules developed for the aforementioned task. We conclude 

in Section 6.4 with a real case scenario of requesting/providing recommendations, and we technically evaluate the 

results of the implemented rule-based reasoning framework in Section 6.5.  

6.1 hackAIR recommendation requirements 

The idea behind the hackAIR RS is to provide recommendations to the users in order to better inform citizens about 

(a) general facts/guidelines that lead to proven reduction of the individuals’ emitted pollutants in the atmosphere, and 

(b) existing AQ conditions and what actions should be made in order to avoid hazardous effects to their health 

condition. The first case is covered in the document and in the hackAIR RS under the concept named “tips of the day” 

and the latter under the “personalised recommendations”. For both cases, the recommendation text is statically 

defined in the ontology; no synthesis of recommendation texts will be provided by the hackAIR RS. Nevertheless, the 

dynamic part of the RS lies in the automated reasoning process, i.e. “which recommendation(s) should be provided to 

whom, whenever a new request arrives in the hackAIR system”. Special characteristics and requirements, as well as 

implementation details of the RS and results are presented in the following sections.  

6.1.1 Tips of the day requirements 

The first type of recommendations, i.e. tips of the day, are useful daily advice on how to improve the ambient AQ and 

thus to reduce individual’s air pollution production. The aim of such messages is to foster environmental-friendly 

behaviour and to disseminate best practices that could be followed in order to improve air quality or bad practices 

that should be avoided since they are inherently damaging the atmosphere.  

Currently, in the project we have defined a list of 38 tips (see Appendix 8.1) which could potentially be enriched in 

updated versions of the ontology. The hackAIR tips were created by taking into account that messages should 

essentially be informative prompts which additionally deal with one or more of the following issues: (1) they 

demonstrate ease of use/acting/execution, (2) they provide alternatives, (3) they offer information of the impacts of 

past/future habits related to AQ, and (4) they use terms of equivalency for better comprehension. Overall, these tips 

should not prohibit behaviour, but give alternative ways to trigger behavioural change [hackAIR D2.4, 2017].  

Tips are instantiated in the hackAIR ontology under the class TipsOfTheDay (sub-class of Recommendation). 

According to schema presented in Section 3.4.1, individuals of this class are connected to the actual text of the tip via 

the hasDescription data property. Tips do not take into consideration any of the personal details stored in user 

profiles; they are provided randomly to each user upon request. Details behind the rule-based reasoning framework 

and its implementation for handling and providing tips of the day to the users are given in sub-sections of Section 

6.3.2.1. 

6.1.2 Personalised recommendations requirements 

The second type of recommendations, i.e. personalised recommendations, target specific groups of people who are 

considered by hackAIR experts as the most vulnerable ones, either because of their sensitivity to hazardous AQ 

conditions or because their outdoor activity leads to increased oxygen uptake (e.g. during jogging outdoors), a state 

which could incrementally be harmful for their health, especially in severe AQ conditions.  



D4.2: Semantic integration and reasoning of environmental data 

     65 | 98    

Based on the user needs expressed in D2.2 [hackAIR D2.2, 2016] and D2.4 [hackAIR D2.4, 2017] and on results from a 

performed market analysis, we identified 9 main categories of users who represent the most vulnerable to air pollution 

individuals and correspond to 9 different user profiles; these are: 

 Infant – profile with defined age less or equal to 1 year old.   

 Toddler, child or young – profile with defined age more than 1 and less or equal to 17 years old.  

 Elderly – profile with defined age more than 60 years old.  

 Pregnant female – profile with defined value true for parameter of pregnancy. 

 Sensitive health – profile with defined value true or specific health disorder (asthma, cardiovascular, etc.) for 

parameter of health sensitivity. 

 Outdoor job – profile with defined activity of interest for getting recommendations the working_activity. 

 Outdoor sports (general) – profile with preferred activity any activity that is considered as general in the 

hackAIR system (biking, jogging, playing tennis, etc.) 

 Outdoor sports walking – profile with specified preferred activity the walking_activity. 

 Outdoor sports picnic – profile with specified preferred activity the picnic_activity (like eating outside).  

The above user categories are correlated to relevant user profiles, and thus relevant classes under the class Person. 

Any of the above categories can be assigned either to direct or to indirect users of the system, except from categories 

related to persons with age between 0-17 years old, who can potentially be considered only as indirect users of the 

system. 

From the semantics behind these classes, it becomes evident that real individual user may belong in more than one of 

the above categories; hence, he/she belongs to combinations of them, unless these potential combinations make 

sense. For example, a user cannot belong to both the Elderly and Infant categories as in real word such a case 

does not exist. On the other hand, a user may belong to both PregnantFemale and OutdoorSportsWalking 

categories or even additionally to OutdoorSportsPicnic and OutdoorJob.  

In order to include such information in the ontology and to represent restriction in combinations, we define a set of 

disjoint classes per case. Thus, disjoint classes cannot be combined and produce real case user types. The definition of 

all disjoint classes of each user profile category can be seen in Table 16; disjoint classes are declared with 1 (true) 

values and non-disjoint classes with 0 (false) values. 

Table 16 – A binary matrix representing disjoint classes for each specific user category (sub-classes of Person) 

 hackAIR TBox class 

hackAIR 
TBox 
class 

Infant 

Person 

Mix 

Child 

Person67 

Elderly 

Person 
Pregnant 

Female 

Person 

Sensitive 

Health 

Person 

Outdoor 

Job 

Person 

Sports 

General 

Person 

Sports 

Walkin

g 

Person 

Sports 

Picnic 

Person 

Infant 

Person 0 1 1 1 0 1 1 1 1 

Mix 

Child 

Person 

1 0 1 1 0 1 0 0 0 

                                                           
67 MixChildPerson class is equivalent to ToddlerPerson or ChildPerson or YoungPerson, which profile categories are 
considered and treated the same in the hackAIR RS. 



D4.2: Semantic integration and reasoning of environmental data 

     66 | 98    

Elderly 

Person 
1 1 0 1 0 0 0 0 0 

Pregnant 

Female 

Person 

1 1 1 0 0 0 0 0 0 

Sensitive 

Health 

Person 

0 0 0 0 0 0 0 0 0 

Outdoor 

Job 

Person 

1 1 0 0 0 0 0 0 0 

Sports 

General 

Person 

1 0 0 0 0 0 0 0 0 

Sports 

Walking 

Person 

1 0 0 0 0 0 0 0 0 

Sports 

Picnic 

Person 

1 0 0 0 0 0 0 0 0 

The representation of disjoint classes in the ontology give us the basis to define all possible combinations of types of 

user profiles, for which recommendations should be carried out by the hackAIR RS. In Table 17, we present an example 

of how a single class (here, class ElderlyPerson) is combined with all of its non-disjoint classes to result into 

meaningful complex profiles.  

Table 17 – Indicative example of all possible combinations of the class ElderlyPerson with its non-disjoint classes 

Combinations per two (2) 

#1 ElderlyPerson SensitiveHealthPerson 

#2 ElderlyPerson OutdoorJobPerson 

#3 ElderlyPerson SportsGeneralPerson 

#4 ElderlyPerson SportsWalkingPerson 

#5 ElderlyPerson SportsPicnicPerson 

total 4 cases 

Combinations per three (3) 

#6 ElderlyPerson SensitiveHealthPerson OutdoorJobPerson 

#7 ElderlyPerson SensitiveHealthPerson SportsGeneralPerson 

#8 ElderlyPerson SensitiveHealthPerson SportsWalkingPerson 

#9 ElderlyPerson SensitiveHealthPerson SportsPicnicPerson 



D4.2: Semantic integration and reasoning of environmental data 

     67 | 98    

#10 ElderlyPerson OutdoorJobPerson SportsGeneralPerson 

#11 ElderlyPerson OutdoorJobPerson SportsWalkingPerson 

#12 ElderlyPerson OutdoorJobPerson SportsPicnicPerson 

#13 ElderlyPerson SportsGeneralPerson SportsWalkingPerson 

#14 ElderlyPerson SportsGeneralPerson SportsPicnicPerson 

#15 ElderlyPerson SportsWalkingPerson SportsPicnicPerson 

total 10 cases 

Combinations per four (4) 

#16 Elderly 

Person 
SensitiveHealt

h 

Person 

OutdoorJob 

Person 
SportsGeneral 

Person 

#17 Elderly 

Person 
SensitiveHealt

h 

Person 

OutdoorJob 

Person 
SportsWalkingP

erson 

#18 Elderly 

Person 
SensitiveHealt

h 

Person 

OutdoorJob 

Person 
SportsPicnic 

Person 

#19 Elderly 

Person 
SensitiveHealt

h 

Person 

SportsGeneral 

Person 
SportsWalkingP

erson 

#20 Elderly 

Person 
SensitiveHealt

h 

Person 

SportsGeneral 

Person 
SportsPicnic 

Person 

#21 Elderly 

Person 
SensitiveHealt

h 

Person 

SportsWalking 

Person 
SportsPicnic 

Person 

#22 Elderly 

Person 
OutdoorJob 

Person 
SportsGeneral 

Person 
SportsWalking 

Person 

#23 Elderly 

Person 
OutdoorJob 

Person 
SportsGeneral 

Person 
SportsPicnic 

Person 

#24 Elderly 

Person 
OutdoorJob 

Person 
SportsWalking 

Person 
SportsPicnic 

Person 

#25 Elderly 

Person 
SportsGeneral 

Person 
SportsWalking 

Person 
SportsPicnic 

Person 



D4.2: Semantic integration and reasoning of environmental data 

     68 | 98    

total 10 cases 

Combinations per five (5) 

#26 Elderly 

Person 
Sensitive 

Health 

Person 

OutdoorJob 

Person 
SportsGenera

l 

Person 

SportsWalkin

gPerson 

#27 Elderly 

Person 
Sensitive 

Health 

Person 

OutdoorJob 

Person 
SportsGenera

l 

Person 

SportsPicnic 

Person 

#28 Elderly 

Person 
Sensitive 

Health 

Person 

OutdoorJob 

Person 
SportsWalkin

gPerson 
SportsPicnic 

Person 

#29 Elderly 

Person 
Sensitive 

Health 

Person 

SportsGenera

l 

Person 

SportsWalkin

gPerson 
SportsPicnic 

Person 

#30 Elderly 

Person 
OutdoorJob 

Person 
SportsGenera

l 

Person 

SportsWalkin

gPerson 
SportsPicnic 

Person 

total 5 cases 

Combinations per six (6) 

#31 Elderly 

Person 
Sensitive 

Health 

Person 

Outdoor 

Job 

Person 

Sports 

General 

Person 

Sports 

Walking 

Person 

Sports 

Picnic 

Person 

total 1 case 

Every row in the table corresponds to all different Person categories a single user may belong to. For example, 

combination #27 describes an individual user who has set into his profile the following characteristics: (i) his age that 

corresponds to the class ElderlyPerson, (ii) he belongs to sensitive groups (SensitiveHealthPerson), (iii) he 

usually works outdoors (OutdoorJobPerson), (iv) he has some type of preferred activity of general type 

(SportsGeneralPerson) as defined in the hackAIR ontology, and finally, (v) he also prefers going for picnic 

(SportsPicnicPerson). Overall, this user is an Elderly & Sensitive & OutdoorJob & SportsGeneral & SportsPicnic 

person, according to the different user classes defined in the hackAIR ontology and supported by the recommendation 

system.   

Similarly to this example, we combined all non-disjoint classes between them (in a set of two or up to six together), 

and by excluding all disjoint classes from pairing between them, we resulted in a total number of 112 meaningful 

(unique) combinations. These combinations define the exact number of different use cases that the RS will support. 

The number of possible unique combinations, per class and per number of combined classes, is summarised in list 

below: 

 InfantPerson – total: 1, Combination:  

per 1 

1 



D4.2: Semantic integration and reasoning of environmental data 

     69 | 98    

 MixChildPerson – total: 16, Combinations: 

per 1 per 2 per 3 per 4 per 5 

1 4 6 4 1 

 ElderlyPerson – total: 32, Combinations68: 

per 1 per 2 per 3 per 4 per 5 per 6 

1 5 10 10 5 1 

 PregnantFemalePerson – total:32, Combinations: 

per 1 per 2 per 3 per 4 per 5 per 6 

1 5 10 10 5 1 

 SensitiveHealthPerson – total: 16, Combinations: 

per 1 per 2 per 3 per 4 per 5 

1 4 6 4 1 

 OutdoorJobPerson – total: 8, Combinations: 

per 1 per 2 per 3 per 4 

1 3 3 1 

 SportsGeneralPerson – total: 4, Combinations: 

per 1 per 2 per 3 

1 2 1 

 SportsWalkingPerson – total: 2, Combinations: 

per 1 per 2 

1 1 

 SportsPicnicPerson – total: 1, Combinations: 

per 1 

1 

From basic to complex profiles 

The idea behind user-profile driven decision support is to provide relevant recommendation(s) to the users upon 

request, with respect to the existing AQ and to the types of user classes where the individuals are classified according 

to their profile specifications. Since a user may belong to more than one user categories, we result in the 

aforementioned “112 combination list” (previously presented) that describes all possible combinations for which 

recommendations should be produced.  

In cases where the user belongs to multiple categories, it would be inefficient to produce one single recommendation 

that integrates all special requirements that the user categories specify. Recalling the previous example, where a user 

is considered as an Elderly & Sensitive & OutdoorJob & SportsGeneral & SportsPicnic person, no single recommendation 

would be sufficient; instead, we split the recommendation into multiple messages, with respect to each different 

aspect of the user-profile: some aspects give emphasis to the health sensitivity of a person69 while other aspects give 

emphasis to the actual activity70 that is planned to be performed. Overall, an aspect related to the sensitivity of an 

individual’s health has greater impact in decision support; this aspect will be the basis for all other decisions proposed 

                                                           
68 Detailed possible combinations for class ElderlyPerson are presented in Table 17. 
69  In the hackAIR ontology, user classes named InfantPerson, MixChildPerson, ElderlyPerson, 
PregnantFemalePerson, SensitiveHealthPerson and possible combinations of them carry information with respect to the 
health sensitivity of a person.   
70 In the hackAIR ontology, user classes named OutdoorJob, SportsGeneral, SportsWalking and SportsPicnic carry 
information related to the actual activities of a person for which he/she requests for recommendation.  



D4.2: Semantic integration and reasoning of environmental data 

     70 | 98    

by the system, whenever a recommendation for an activity should be proposed. Furthermore, aspects related to 

activities could be separated as being single requests for recommendation.   

Keeping the aforementioned definitions and findings in mind, we conclude with a list of basic-combination 

recommendations (i) for all users that belong to only one of the 9 main user profile categories, and (b) for users 

described from all possible unique combinations per two of non-disjoint classes, where both classes describe sensitivity 

aspects (giving thus emphasis to the weight of sensitivity) or the one class describes a sensitivity aspect and the other 

a preferred activity. All other combinations should be considered as complex ones recommendation results should be 

split into more than one suggestion from the list of basic combination recommendations.  

The process of defining basic and complex combinations of user classes gave the following results: we have 27 basic 

combinations and 87 complex combinations which are treated as multiple single cases. For the support of the 

recommendation process we additionally created: 

 relevant classes that describe the basic user cases where the individual may belong (see sub-classes of 

CombinedCategoriesPerson presented in Figure 14, and 

 relevant recommendation messages were defined and populated in the ontology, with respect to the four 

different AQ levels (very good, good, medium, bad); the list of all recommendation messages defined in the 

hackAIR ontology as personalised recommendations, is given in Appendix 8.2. 

 rules that handle the classification process of the user into relevant basic categories; 

 rules that infer relevant recommendation(s) to the user with respect to their user profile and to the existing 

AQ conditions.  

The remaining user profile scenarios (112 minus 27 basic cases = 85 complex ones) will be covered by following the 

process described next (see Figure 15). 



D4.2: Semantic integration and reasoning of environmental data 

     71 | 98    

 

Figure 14 – Sub-classes of CombinedCategoriesPerson for covering the 27 basic user profiles for which  

single recommendations are provided (screenshot from TopBraid Composer) 

 

Figure 15 – Division of complex profile into basic profiles for assigning relevant recommendations. 



D4.2: Semantic integration and reasoning of environmental data 

     72 | 98    

In a complex profile, where the user belongs to more than one classes of Person type and, also, the profile is not 

represented in the ontology by only one of the 27 basic categories, a splitting should be made properly to fit efficiently 

with the list of all available personalised recommendations stored in the ontology. The division is made by taking into 

account the fact that in the complex profile representation, the leftmost class has the highest weight in the 

recommendation process and thus plays the leading role for recommendation provision and decision support. In Figure 

15, the ElderlyPerson is the class with the highest weight value for the represented complex profile; while playing 

the leading role, this will be combined with the remaining classes of the profile in order to match into 

recommendations of the basic-combination recommendations list. As a result, the user with the aforementioned 

profile will get 4 recommendations, one per basic case into which he/she belongs, i.e. for: (i) Elderly & Sensitive health, 

(ii) Elderly & OutdoorJob, (iii) Elderly & SportsGeneral, and (iv) Elderly & SportsPicnic person. 

To conclude, users of the hackAIR system may be provided with one or more personalised recommendations, 

depending on their specified profile: if the user belongs to multiple groups for which a single recommendation cannot 

be assigned, then multiple recommendations will be returned by downgrading the complex profile into multiple base 

combinations.  

We have already populated the hackAIR ontology with all the basic personalised recommendations as instances 

(individuals) of the class LimitExposureRecommendation (sub-class of Recommendation). An instance of that 

type is asserted into the relevant(s) instances of user profile types via the property isAssignedToPersonCategory, 

and also into a specific level of AQ index via the property isAssignedToAQIndex. Details about the schema have 

already been presented in Section 3.4.1 and visualised in Figure 6. The dynamic handling of user profile characteristics 

and the assignment of the proper recommendation message(s) to the user rely on the hackAIR rule-based reasoning 

framework, the characteristics and implementation of which is presented in relevant sub-sections of 6.3. 

6.2 Reasoning techniques: State of the art 

Semantic reasoning is the process of deriving facts and inferring logical consequences from a set of asserted facts or 

axioms stored in a knowledge base [Berners-Lee, 1998]. The derived facts are called “implicit knowledge” of the 

ontology. The software tools that are capable of performing semantic reasoning are called semantic reasoners or 

reasoning engines.  

6.2.1 DL Reasoning 

In the case of OWL ontologies, the underlying formalism is based on Description Logics (DL) that are equipped with 

logically grounded semantics [Baader, 2003], with the main notions being concepts representing sets of objects, roles 

representing relationships between objects, and individuals representing specific objects. Additionally, DL involves 

well-defined, powerful reasoning services, for which efficient, sound and complete reasoning algorithms with well 

understood computational properties are available. The list of most popular, open-source, state-of-the-art 

implementations includes: 

 FaCT++ [Tsarkov and Horrocks, 2006], a tableaux-based reasoner for expressive DL. It employs a wide range 

of performance enhancing optimisations, including techniques such as absorption, model merging, ordering 

heuristics and taxonomic classification. 

 HermiT [Motik et al., 2009], an OWL reasoner based on a novel hypertableau calculus. This calculus addresses 

performance problems due to nondeterminism and model size. 

 Pellet [Sirin et al., 2007], an open-source, Java-based, OWL-DL reasoner with extensive support for reasoning 

with individuals (including nominal support and conjunctive query), user-defined datatypes, and debugging 

support for ontologies. 



D4.2: Semantic integration and reasoning of environmental data 

     73 | 98    

 Racer [Haarslev et al., 2012] (previously known as RacerPro), a knowledge representation system that 

implements a highly optimized tableau calculus. 

The main reasoning tasks that the above tools can undertake are: (a) subsumption: compute all the subclass 

relationships among the classes (e.g. if concept A subsumes concept B), (b) consistency: check if the assertions in a KB 

have a model (satisfiability), (c) realization: compute the instance class memberships (e.g. the set of instances that 

belong to a certain concept). The aforementioned reasoning tasks are handled within the hackAIR project with the 

utilisation of Pellet, as being a widely used, lightweight and computational efficient reasoner, compliant to the hackAIR 

RS requirements.   

6.2.2 Rule-based Reasoning 

OWL’s expressive limitations do not allow for complex reasoning. For instance, OWL is not able to capture relationships 

between a composite property and another property; a typical example is the composition of the ‘parent’ and ‘brother’ 

properties and the ‘uncle’ property. This need to model complex relationships beyond the expressiveness of OWL has 

led to the combination of ontologies with rules, namely, the addition of an extra layer of rule-based reasoning (i.e. 

extending ontologies with first-order rules) over the above reasoning schemes, capable for more advanced, rule-based 

inference. Two such paradigms are SWRL (Semantic Web Rule Language) [Horrocks et al., 2004] and SPIN (SPARQL 

Inferencing Notation) [Knublauch et al., 2011]. In this deliverable we are working with the latter, due to its higher 

expressiveness. 

SPIN71 is a well-established standard to represent SPARQL rules and constraints on Semantic Web models. The basic 

idea of SPIN is to link ontology classes with SPARQL queries that define constraints and rules formalising a specific 

behaviour of class members. Thus, SPIN allows the implementation of validation layers over ontologies, constraint 

checking with closed world semantics and automatic raising of inconsistency flags when currently available information 

does not fit the specified integrity constraints. SPIN takes into account the semantics in the ontology and helps to 

leverage the fast performance and rich expressivity of SPARQL for various application purposes. SPARQL queries can 

be stored as RDF triples alongside the RDF domain model, enabling the linkage of RDF resources with the associated 

SPARQL queries, as well as their consequent sharing and reuse. 

6.2.3 Uncertainty Reasoning 

Uncertainty unavoidably emerges in practical and real-world reasoning applications. The main sources of uncertainty 

include: (a) incomplete knowledge, like e.g. missing information and non-exhaustive modelling of domain knowledge; 

(b) imprecise knowledge, like e.g. the time that an event happened can be known only approximately; (c) unreliable 

knowledge, like e.g. measurements coming from sensors that can be biased or defective. 

There have been various proposals for representing uncertainty in ontologies, mostly revolving around extensions of 

the underlying languages (RDF, OWL, DLs, rules): 

 Probabilistic ontologies refer to extending classical ontologies with probabilistic knowledge [Lukasiewicz, 

2008], which involves the representation of terminological probabilistic knowledge about concepts and roles 

(e.g. “Birds fly with a probability of at least 0.95”), and assertional probabilistic knowledge about instances of 

concepts and roles (e.g. “Tweety is a bird with a probability of at least 0.9”). 

 Fuzzy DLs [Straccia, 2001] refer to modelling a domain of interest where these relationships and memberships 

have a degree of truth in [0, 1], thus, whether an instance belongs to a concept is usually not a matter of 

"yes/no", but a matter of degree of membership. A major difference between this approach and probabilistic 

                                                           
71 http://spinrdf.org/ 



D4.2: Semantic integration and reasoning of environmental data 

     74 | 98    

ontologies is the fact that uncertainty in fuzzy concepts usually does not get reduced with the coming of new 

information. 

 Non-monotonic Logics [Horty, 2001], where the set of conclusions may either grow or shrink when new 

information is obtained. This is contrary to monotonic reasoning systems, where the truthfulness of a 

conclusion does not change when new information is added to the system – the set of theorems can only 

monotonically grow when new axioms are added. 

6.2.4 Design choices in hackAIR 

For the task of designing the architecture and functionality of the hackAIR reasoning framework, we selected to 

implement SPIN rules on top of the ontology to infer new knowledge. SPIN operates directly on RDF so there is no 

need to transform ontology data into other formats in order to execute the rules. Its robustness covers the need to 

dynamically compute implicit values (new triples and, thus, new knowledge) based on what’s stated in the model. 

Moreover, SPIN enables the grouping of rules for giving priority or isolating rules that could be or could be not executed 

under specific circumstances; it also enables the explicit definition of their execution order, supporting thus 

incremental reasoning at any level of interest.  

Another important decision we made during the design of the hackAIR reasoning framework was to support a crisp 

approach instead of an uncertainty handling (see previous subsection) implementation, due to the following reason: 

the required decision support within the hackAIR context can be conceived as a classification task, where different 

recommendations are given to the users according to a specific set of classes in the ontology they belong; for example, 

if a user belongs to Class_A and Class_B, then recommendation_X will be provided, or if a user belongs to Class_A, 

Class_B and Class_C, then recommendation_Y and recommendation_Z will be provided, with respect to the existing 

AQ condition. Thus, the targeted application scenarios and their requirements as defined by the project’s 

environmental experts, do not include any uncertainty factors; they are rather considered as fixed IF-THEN rules and 

any uncertainty embedded in natural language is eliminated due to semantics represented in the ontology. The 

representation formalism that we follow, with well-defined boundaries and relations between ontology entities, do 

not accommodate the representation of vagueness in our recommendation system.  

SPIN is perfectly suited for such an approach since it provides the required expressiveness for the knowledge 

representation and the respective inference mechanisms to efficiently deal with the recommendation of user-profile 

driven recommendations. It was proved also to be a lightweight approach, complying with the needs for fast 

computations and response times of the reasoning service, avoiding any redundant complexity of the system. Potential 

use cases that could deploy uncertainty reasoning in future work are the following:  

 The additional inclusion of weather related data in the already defined recommendation process; an example 

case where the AQ is very good and a user with health sensitivities request for decision support with respect 

to his/her preferred activity (e.g. likes to go to work by bike), the existing recommendation approach would 

inform positively the user to proceed with his/her daily routine, but such a recommendation wouldn’t be valid 

in case that it’s raining outside. A probabilistic or fuzzy approach would deal with this problem of uncertainty 

more efficiently and would produce different recommendation in case the weather parameter affects the final 

decision.  

 The inclusion of alternative routes -suggestions which would create additional functionality to the defined 

recommendation process; the knowledge of spatiotemporal data for a wider area of interest would enable 

the suggestion of alternative routes giving higher probability to those routes where the user will be 

underexposed to severe AQ conditions.  

 The inclusion of alternative indoor activities –suggestions which could potentially enrich the functionality and 

use-case cover capability of the defined recommendation process; knowing the preferences/daily routine of 



D4.2: Semantic integration and reasoning of environmental data 

     75 | 98    

the user with respect to specific indoor activities (going to the gym, being at the office, going to indoor 

playgrounds, shopping at malls, etc.) would enable the provision of alternative recommendations (preference 

of indoor instead of outdoor activities), in cases when severe AQ conditions barriers staying/acting outdoors. 

6.3 hackAIR rule-based reasoning implementation 

In order to make use of the SPIN capabilities, we import the SPIN vocabulary into our hackairSPIN ontology; the URI of 

the SPIN schema is <http://spinrdf.org/spl> which in turn imports <http://spinrdf.org/spin> and all of its components. 

In the following list, we summarise the most important SPIN modules [W3C, 2014] that were adopted for the hackAIR 

rule-based reasoning system: 

 SPIN rules - The built-in class named spin:rule72 can be used to specify inference rules using SPARQL 

CONSTRUCT and DELETE/INSERT, in order to create new triples in the ontology and thus enrich the knowledge 

stored in the schema. Each implemented SPIN rule define s an inference rule that describes how additional 

triples can be inferred from what is stated in the WHERE clause of the rule.   

 Magic properties - The built-in class named spin:MagicProperty can be used to dynamically compute 

property values even if there are no corresponding triples in the actual model. Magic properties may include 

input arguments and they also have the ability to return multiple results from the SPARQL query process. Our 

implemented magic properties are mainly SPARQL SELECT queries for fetching all possible instances that 

belong to a set of specific classes and at the same time they do not belong to a set of other classes. Multiple 

results that satisfy their queries can then be passed into other SPARQL modules of the RS process.  

 SPIN functions - The built-in class named spin:Function can be used to isolate common SPARQL patterns, 

facilitating this way the decongestion, reuse or extension of SPARQL blocks. For more flexibility, they can be 

parameterised, by specifying input arguments (parameters/variables). In order to use the SPIN Functions 

module, we create subclasses of the class spin:Function. Our implemented SPIN functions are mainly 

abstract SPARQL SELECT queries that return results needed for incremental inference in the RS module.  

For the hackAIR RS we have implemented a two-level approach; the implemented rules run on top of the hackAIR 

ontology schema (TBox) and assertions (ABox), where: (a) the first layer of rules takes advantage of raw data and 

produces low level derivations, and (b) the second layer of rules takes into account previously asserted derivations so 

as to combine additional data and produce high level interpretations. Each layer contains multiple individual steps, 

where the inferences from one step are visible and passed to the next step rules. The step-by-step procedure 

implemented for the hackAIR RS is described in more detail in the following sub-sections.  

6.3.1 First Layer Rules – Low-level derivations 

In the first layer of the hackairSPIN ontology we have formed a total number of 145 rules. All of these rules take into 

account the schema (classes, relations) and the populated instances (individuals) in the ontology and produce low level 

derivations that are passed into the next layer of rules for more complex interpretations. The rules of the first layer 

are described in more detail below. 

6.3.1.1 Age groups 

We have implemented a set of 7 SPIN rules that handle the age of the user in order to categorise him/her into one of 

the 7 age groups (InfantPerson, ToddlerPerson, ChildPerson, YoungPerson, AdultPerson, 

MiddleAgePerson, and ElderlyPerson) that have been specified in the hackAIR ontology; for the defined age 

ranges per class see Table 4 in Section 3.4.1. In simple words, these rules do the following example mapping: “if a user 

                                                           
72 spin: is the prefix of URI http://spinrdf.org/spin#  



D4.2: Semantic integration and reasoning of environmental data 

     76 | 98    

is 32 years old, then he/she is an Adult person”. Speaking in terms of the ontology, the corresponding rule for the 

aforementioned example mapping is given in Figure 16.  

 

Figure 16 – SPIN rule for assigning a user with age between 17-40 years old into the class AdultPerson 

The age of the user is one of the aspects of the user profile that qualify the sensitivity levels of a person, regardless of 

potential other health problems. For example, in the hackAIR RS, children and elderly persons are considered more 

sensitive than adult persons, if no health problems are specified.  

6.3.1.2 Observation values 

As already defined, the hackAIR KB and RS modules need to handle the quantitative values of air pollutant observations 

that are fed into the system from the Data Fusion Module (see user-triggered processing pipeline in Figure 1). In the 

ontology we have defined 4 levels of AQ Index (perfect, good, medium and bad) that correspond to the scales 

presented in Table 18, for different environmental data (AOD in general, PM10 and PM2.5).  

Table 18 – Numerical ranges of AQ observations and their corresponding qualitative values 

AQ Index name AOD scale PM10 scale (μg/m3) PM2.5 scale (μg/m3) 

Very good ≥0 and ≤0.14 ≥0 and ≤20 ≥0 and ≤10 

Good >0.14 and ≤0.34 >20 and ≤50 >10 and ≤25 

Medium >0.34 and ≤0.44 >50 and ≤70 >25 and ≤35 

Bad >0.44 >70 >35 

The conversion of numerical into nominal values has been implemented with a set of 12 (3x4) SPIN rules in the hackAIR 

ontology. In simple words, these rules do the following example mapping: “if a location has a 0.52 AOD value recorded, 

at the time of request, then this location has a bad AOD Index”. Speaking in terms of the ontology, the corresponding 

rule for the aforementioned example mapping is given in Figure 17. 



D4.2: Semantic integration and reasoning of environmental data 

     77 | 98    

 

Figure 17 – SPIN rule for assigning a “bad” AQ index to an instance of location that has an AOD value above 0.44 

6.3.1.3 Activities 

This set of rules is for handling information related to activities. In the hackAIR platform, when creating a profile for 

recommendation, the user may specify a number of preferred activities from a predefined list of available ones. But, 

not all activities are treated differently in the RS: activities like working, walking or eating outdoors trigger different 

personalised recommendations’ provision to the user; on the other hand, all other specified outdoor activities that 

have to do with exertion (i.e. swimming, playing tennis, biking, etc.) are treated the same as they result in similar health 

impacts in case of bad air quality, and they trigger a recommendation that does not imply any specific activity but it is 

rather more general (e.g. “You should reduce your outdoor activities today”). The SPIN rule that assigns to the user the 

sports_general_activity as preferred activity, whenever he/she specifies in the profile any activity except from 

the 3 ones, is given in Figure 18.  

 

Figure 18 – SPIN rule that assigns the sports_general_activity as preferred activity of the user, under specific assumptions 

6.3.1.4 Other user groups 

In the current case, we cover different scenarios of users’ categorisation into specific classes of type Person; the 

additional categorisation gives the semantics needed in order for the RS to do the proper assignment of 



D4.2: Semantic integration and reasoning of environmental data 

     78 | 98    

recommendation(s) to each user profile. In order to achieve this, we combine the use of SPIN rules and SPIN magic 

properties to get the required results.  

Thus, we have implemented 122 SPIN rules, from which:  

 10 rules handle property declarations to instances of users and convert them into relevant user classification, 

according to the schema of the ontology. For example:  

o “if two instances of type Person are linked to each other via the triple <person_1 

hackairTBox:hasRelatedPerson person_2>, then person_1 is the direct user and person_2 

is the indirect user”, or 

o “if an instance of type Person participates in a triple like <person_1 

hackairTBox:isSensitiveTo health_problem_1> where health_problem_1 is an instance 

of hackairTBox:HealthProblem type, or <person_1 

hackairTBox:belongsToSensitiveGroup xsd:true> then person_1 is also of type 

hackairTBox:SensitiveHealthPerson.”, or 

o “if an instance of type Person participates in a triple like <person_1 

hackairTBox:hasPreferredActivity activity_1>, where activity_1 is an instance of 

either WorkingActivity or WalkingActivity or PicnicActivity then person_1 is of 

OutdoorJobPerson or SportsWalkingPerson or SportsPicnicPerson correspondingly. If 

activity_1 is any other outdoor activity declared in the schema, then the user is classified as 

SportsGeneralPerson”. An example SPIN rule of such type can be seen in Figure 19.  

 112 rules and corresponding number of magic properties that enable the classification of the user into one or 

more of the 27 unique single/combination profiles; the derived categories act as the basis for the provision of 

personalised recommendation(s) to the user (see subsection 6.3.2.2). For example, in this category, rules 

implement a scenario like this: “if the user is pregnant and walking is her preferred activity then she belongs in 

both classes PregnantFemalePerson and SportsWalkingPerson. Such categories are mapped into one 

single category out of the 27 unique combinations, which is Pregnant_SportsWalking_Person”. The 

corresponding rule & magic property for the aforementioned scenario can be seen in Figure 20. 

 

Figure 19 – SPIN rules handling cases for categorising an instance of type Person into an OutdoorJobPerson class  



D4.2: Semantic integration and reasoning of environmental data 

     79 | 98    

 

 

 

(a) (b) 
Figure 20 – SPIN magic property  (a) and SPIN rule (b) implemented in the hackAIR SPIN ontology, for assigning a relevant user 

into a specific uniquely combined category 

6.3.2 Second Layer Rules – Higher-level interpretations 

In the second layer of the hackairSPIN ontology we have formed a total number of 109 rules. All of these rules take 

into account the schema (classes, relations), the populated instances (individuals) in the ontology and the newly 

inferred knowledge produced by the first layer of rules in order to produce more high level interpretations of the 

knowledge represented in the ontology. Results from this layer are the final results of the reasoning process and thus 

the actual recommendations provided to the users. The set of rules the second layer are described in detail below. 

6.3.2.1 Tips of the day 

We have implemented a single SPIN rule (see Figure 21a) which assigns a random tip to the user, from a set of available 

instances of class TipOfTheDay that are populated in the hackAIR ontology. For random selection, we have 

implemented a SPIN function named hackairSPIN:getRandomTipOfTheDay() that has no input parameters and 

returns the text (?tip_message) of the randomly selected tip, as seen in Figure 21b.  

 

 

 

(a) (b) 



D4.2: Semantic integration and reasoning of environmental data 

     80 | 98    

Figure 21 – SPIN rule (a) and SPIN function (b) implemented in the hackAIR SPIN ontology, for assigning a tip of the day to a 

user 

According to the requirements of the hackAIR RS, there should be a request that involves a user in order to provide 

him/her with the tip of the day. Also, such tips are assigned only to direct users of the system; indirect users are 

excluded from that process. Both requirements are reflected in the implemented SPIN rule.  

6.3.2.2 Personalised recommendations 

A total number of 10873 rules have been implemented for covering the reasoning task that is related to personalised 

recommendations provision. The rule-based reasoning process takes into account the results derived from (i) the user 

classification that is preceded (see sub-section 6.3.1.4) and (ii) the AQ index categorisation according to the current 

numerical value of the monitored air pollutant for the area of interest (see sub-section 6.3.1.2). Both results are passed 

as input in the SPIN function named hackairSPIN:getRandomGPRecommendation(), which returns the text of a 

relevant recommendation from a list of populated recommendations in the ontology.  

An indicative SPIN rule of this category is given in Figure 22, which assigns to the user, upon request, the 

recommendation that corresponds to a user profile of an Elderly & OutdoorJob person (?person a 

hackairTBox:Elderly_OutdoorJob_Person) who lives in an area with bad AQ index (?location 

hackairTBox:hasRelatedIndex hackairTBox:AOD_PM10_bad).  

 

Figure 22 – SPIN rule implemented in the hackAIR SPIN ontology, for assigning a personalised recommendation to a specific user 

profile, with respect to existing AQ condition 

6.4 A use case scenario for rule-based reasoning  

For demonstration purposes of the implemented rule-based reasoning mechanism of the hackAIR platform, we use 

the Personas scenario I described in [hackAIR D2.2, 2016]. In order for the RS to infer relevant recommendations to 

the users, the following steps should be completed beforehand: 

(1) The basic characteristics of each involved profile in the scenario are represented through instantiations of 

specific hackAIR ontology notions; this step has already been performed in Section 3.5. 

(2) The PDL has been applied in order to implement all relevant requests that the RS should serve; this step has 

already been performed in Section 4.3.  

                                                           
73 The total number corresponds to the rules created for the 27 basic profile categories for which recommendations are stored in 
the ontology, and for the 4 different AQ levels defined in the hackAIR system. 



D4.2: Semantic integration and reasoning of environmental data 

     81 | 98    

Then, every request instantiated in the ontology is handled by the rule-based reasoning mechanism separately. For 

our presented use case we have already populated in the ontology two instances of type Request (see Section 4.3): 

one for Karl (direct user) and his daughter, Anna (related person, indirect user), and one for Stephan (direct user).  

Below, we summarise the existing (before running the reasoning mechanism) and inferred (after running the reasoning 

mechanism) triples; ontology data is presented in TURTLE format and inferred triples are marked in the following tables 

with bold font. Additionally, in text, we refer the types of rules that are responsible for each inferred value and we 

explain the meaning behind results. 

Before performing the analysis of inferred knowledge with respect to the users, we briefly summarise the set of triples 

related to the location of interest. Berlin is the city where all users involved in the described scenario live. We assume 

that the current AQ condition in Berlin is poor, and we give a value to the observed environmental data type (PM_AOD) 

equal to 1.2. In Table 19 an air quality index of bad level (AOD_PM10_bad) is asserted to the instance Berlin.  

Table 19 – Declared and inferred triples regarding Berlin (involvedLocation) and its current  

AQ observation (involvedEnvironmentalData) 

Instance of type Location for Berlin (involved location) 

hackairABox:Berlin 

  rdf:type hackairTBox:LocationCity ; 

  hackairTBox:hasEnvironmentalData hackairABox:AODEnvData_for_Berlin ; 

  hackairTBox:hasRelatedIndex hackairTBox:AOD_PM10_bad ; 

. 

Instance of type EnvironmentalData for Berlin  

hackairABox:AODEnvData_for_Berlin 

  rdf:type hackairTBox:AODEnvironmentalData ; 

  hackairTBox:hasEnvironmentalDataType hackairTBox:PM_AOD ; 

  hackairTBox:hasNumericalValue hackairABox:AODValue_for_Berlin ; 

. 

Instance of type Value for environmental data for Berlin 

hackairABox:AODValue_for_Berlin 

  rdf:type hackairTBox:AODValue ; 

  hackairTBox:hasValueValue "1.2"^^xsd:double ; 

. 

As mentioned in Table 20, Karl is categorised according to his age as type of ElderlyPerson; the rule responsible 

for such classification is the one declared in first layer (L1) of hackAIR rules, related to the age groups (described in 

Section 6.3.1.1). Karl is also inferred to be a DirectUser since he is the person declared in the request (via the propery 

involvesPerson, which connects an instance of Request to an instance of Person type); the rule responsible for 

this classification is included in L1 of hackAIR rules, related to the users and user groups (Section 6.3.1.4). Karl does 

not specify any preferred activity in his profile, thus no rules related to activities (Section 6.3.1.3) are triggered. For 

the latter categorisation of the user, rules related to user groups together with relevant SPIN magic properties, infer 



D4.2: Semantic integration and reasoning of environmental data 

     82 | 98    

that Karl is also of OnlyElderly_Person, which is one of the 27 possible basic user categories (details in Section 

6.1.2); recommendation will be provided according to this type of CombinedCategoriesPerson (sub-class of class 

Person).  

Table 20 – Declared and inferred triples regarding user named Karl 

Instance of type Person for Karl (direct user) 

hackairABox:Karl 

  rdf:type hackairTBox:DirectUser ; 

  rdf:type hackairTBox:ElderlyPerson ; 

  rdf:type hackairTBox:OnlyElderly_Person ; 

  rdf:type hackairTBox:Person ; 

  hackairTBox:hasAge 63 ; 

  hackairTBox:hasGender hackairTBox:male ; 

  hackairTBox:hasLocation hackairABox:Berlin ; 

  hackairTBox:hasRelatedPerson hackairABox:Anna ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:LimitExposureRecommendation ; 

      hackairTBox:hasDescription "You should reduce prolonged outdoor activity. 

Otherwise take your medication with you (if any)."; 

    ] ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:TipOfTheDay ; 

      hackairTBox:hasDescription "Did you know that aggressive driving produces 

up to five times more toxic emissions than normal!" ; 

    ] ; 

. 

Karl is provided with both types of hackAIR recommendation: (1) a tip of the day informing that “Did you know that 

aggressive driving produces up to five times more toxic emissions than normal!” is assigned randomly to Karl, regardless 

of his profile or of existing AQ condition in Berlin; rules of the second level (L2) related to tips (Section 6.3.2.1) 

combined with relevant SPIN function, perform the random selection and assignment of this type of recommendation 

to Karl, who is the direct user of the hackAIR system, and (2) a personalised recommendation that is specified in the 

ontology as relevant to Karl’s user profile, i.e. ElderlyPerson only; this message prompts to him: “You should reduce 

prolonged outdoor activity. Otherwise take your medication with you (if any)”. This message makes clear to the user 

that the AQ condition in his area is poor, and for this reason Karl, who is an elderly and potentially more vulnerable 

than a young person, should avoid any unnecessary activities outdoors.   

Concerning Anna, as mentioned earlier, she is an indirect user of the system; Karl created an additional profile for her 

to get recommendations with respect to her characteristics/needs. Since Anna is related to Karl via the property 

hasRelatedPerson, a rule in L1 related to users is responsible for assigning this additional instance of type Person 

as involved person in the request (see inferred triple in Table 21). In the same layer (L1) and by taking account the 

same relation populated in the ontology (<hackairABox:Karl hackairTBox:hasRelatedPerson 

hackairABox:Anna>), a rule related to users classifies Anna as an instance of class IndirectUser.  



D4.2: Semantic integration and reasoning of environmental data 

     83 | 98    

Table 21 – Declared and inferred triples regarding indirect user named Anna 

Instance of type Request for Anna (indirect user) 

hackairABox:request_from_Karl 

  rdf:type hackairTBox:Request ; 

  hackairTBox:involvesEnvironmentalData hackairABox:AODEnvData_for_Berlin ; 

  hackairTBox:involvesLocation hackairABox:Berlin ; 

  hackairTBox:involvesPerson hackairABox:Anna ; 

  hackairTBox:involvesPerson hackairABox:Karl ; 

. 

Instance of type Person for Anna (indirect user) 

hackairABox:Anna 

  rdf:type hackairTBox:AdultPerson ; 

  rdf:type hackairTBox:IndirectUser ; 

  rdf:type hackairTBox:Person ; 

  rdf:type hackairTBox:PregnantFemalePerson ; 

  rdf:type hackairTBox:Pregnant_Sensitive_Person ; 

  rdf:type hackairTBox:Pregnant_SportsGeneral_Person ; 

  rdf:type hackairTBox:SensitiveHealthPerson ; 

  rdf:type hackairTBox:SportsGeneralPerson ; 

  hackairTBox:availableMOT hackairTBox:bike ; 

  hackairTBox:availableMOT hackairTBox:public_transport ; 

  hackairTBox:hasAge 32 ; 

  hackairTBox:hasGender hackairTBox:female ; 

  hackairTBox:hasLocation hackairABox:Berlin ; 

  hackairTBox:hasPreferredActivity hackairTBox:biking_activity ; 

  hackairTBox:hasPreferredActivity hackairTBox:sports_general_activity ; 

  hackairTBox:isPregnant "true"^^xsd:boolean ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:LimitExposureRecommendation ; 

      hackairTBox:hasDescription "It's not safe to train outdoors today." ; 

    ] ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:LimitExposureRecommendation ; 

      hackairTBox:hasDescription "Limit your outdoor activities." ; 

    ] ; 



D4.2: Semantic integration and reasoning of environmental data 

     84 | 98    

  hackairTBox:isSensitiveTo hackairTBox:health_problem_Asthma ; 

. 

Based on the L1 rules relevant for age groups, Anna is classified as AdultPerson. Moreover, applying the L1 rules for 

activities related data (Section 6.3.1.3) and for user groups, a set of inferred triples resulted, describing in a sequence 

the following facts:  

Anna prefers to ride a bike → Anna has preferred activity a sports_general_activity → Anna belongs 

to SportsGeneralPerson class 

Concerning the pregnancy and health sensitivity related data and by following the schema of the hackAIR ontology, 

the triggering of L1 rules related to users and user groups result the sequence of assertions presented below: 

Anna is pregnant → Anna is categorised as a PregnantFemalePerson. 

Anna has asthma → Anna is categorised as a SensitiveHealthPerson.  

Anna belongs to PregnantFemalePerson and SensitiveHealthPerson and SportsGeneralPerson 

→ Anna is finally categorised as Pregnant_Sensitive_Person and 

Pregnant_SportsGeneral_Person .  

The latter categorisation is the one that plays important role in the recommendation process; classes 

Pregnant_Sensitive_Person and Pregnant_SportsGeneral_Person are sub-classes of 

CombinedCategoriesPerson and both of them directly define the basic characteristics for which related 

recommendations will be provided by the system. Thus, for Anna’s profile two recommendation messages are 

asserted: “Limit your outdoor activities” and “It's not safe to train outdoors today”, corresponding to the two 

aforementioned classes. It should be noted that no tip of the day is asserted to Anna’s profile, since she is an indirect 

user of the system.  

To conclude, concerning the request and profile of Stephan, the same rules of L1 categorise him as: AdultPerson and 

then SportsGeneralPerson (because of his preferred activities – see Table 22) and finally OnlySportsGeneral_Person, 

which class will be the basis of the proposed recommendation message: “It’s not a good day for outdoor exercise”. 

When the AQI is bad in a location, the situation may be harmful even for individuals who are not considered that 

vulnerable to them; for that reason this messages prompts the postponement of any planned outdoor activities as a 

preventive behaviour against adverse AQ conditions. 

Table 22 – Declared and inferred triples regarding user named Stephan 

Instance of type Person for Stephan (direct user) 

hackairABox:Stephan 

  rdf:type hackairTBox:AdultPerson ; 

  rdf:type hackairTBox:OnlySportsGeneral_Person ; 

  rdf:type hackairTBox:Person ; 

  rdf:type hackairTBox:SportsGeneralPerson ; 

  hackairTBox:availableMOT hackairTBox:bike ; 

  hackairTBox:hasAge 35 ; 

  hackairTBox:hasGender hackairTBox:male ; 

  hackairTBox:hasLocation hackairABox:Berlin ; 



D4.2: Semantic integration and reasoning of environmental data 

     85 | 98    

  hackairTBox:hasPreferredActivity hackairTBox:biking_activity ; 

  hackairTBox:hasPreferredActivity hackairTBox:jogging_activity ; 

  hackairTBox:hasPreferredActivity hackairTBox:sports_general_activity ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:LimitExposureRecommendation ; 

      hackairTBox:hasDescription "It's not a good day for outdoor exercise." ; 

    ] ; 

  hackairTBox:isProvidedWithRecommendation [ 

      rdf:type hackairTBox:TipOfTheDay ; 

      hackairTBox:hasDescription "Did you know that trees and plants naturally 

purify the air? Indoor greenery, a few pots on the balcony or a small garden can 

help you breathe deep." ; 

    ] ; 

. 

6.5 Technical evaluation of the reasoning framework  

In the current task, a technical evaluation of the reasoning framework is presented. We focus on the following aspects 

to be evaluated: 

 the consistency of provided results, by examining if the inferred recommendations comply with those planned 

to be given to specific types of users through the reasoning process. 

 the performance of the framework, in terms of response time to perform the reasoning process, by examining 

different use cases.   

For the first issue, we assigned in two ontology experts (members of the hackAIR consortium) the analysis and 

debugging of the rule-based reasoning process. Recommendation inferences were examined per each possible use 

case represented within the context of the hackAIR ontology: simple and complex profiles (belonging in more than 

one user types – subclasses of Person class), direct and indirect users, areas with different levels of AQ, etc. The 

evaluation showed a deviation from the planned behaviour of the system, in two specific cases (complex profiles) that 

yielded inconsistent results due to wrong classification results. The error was fixed immediately by correcting the 

corresponding rules that infer the classification results, and integrated in the final version of the recommendation 

framework.  

For the second issue, we involve different user profiles with different characteristics defined, demonstrating also a 

scalability in their description, as seen below:  

1. a simple user profile that contains only information related to the age (S-A); 

2. a simple user profile that contains information related to age and health sensitivity (S-AHS); 

3. a complex user profile that contains information related to age, health sensitivity and one preferred activity 

(C-AHSPA); 



D4.2: Semantic integration and reasoning of environmental data 

     86 | 98    

4. a complex user profile that contains information related to age, health sensitivity and more than one preferred 

activities74 (C-AHSPAs); 

5. two involved simple user profiles of S-A type, the one is a direct and the other is an indirect user (S-A^S-A); 

6. two involved complex user profiles of C-AHSPAs, the one is a direct and the other is an indirect user (C-

AHSPAs^C-AHSPAs); 

7. one simple user profile of type S-A, involved with one complex profile of type C-AHSPAs (S-A^C-AHSPAs); 

8. five simple user profiles of S-A type (S-A_x5), not related to each other; 

9. ten simple user profiles of S-A type (S-A_x10), not related to each other; 

10. five complex user profiles of C-AHSPAs type (C-AHSPAs_x5) not related to each other; 

11. ten complex user profiles of C-AHSPAs type (C-AHSPAs_x10) not related to each other; 

Different user characteristics trigger different rules and generate different number of triples in each relevant step of 

the reasoning process. Results of the performance evaluation process are summarised in Table 23, where response 

times and total number of triples generated per case are referred. In our examples, we populate instances of type 

Person with the aforementioned described details, together with instances of type Request in order to trigger the 

recommendation process. For the shake of brevity, we consider that users have the same location of interest and the 

same AQ level at the time of request; this decreases the number of populated triples and of inferred ones. The 

evaluation process was operated on a computer with the following characteristics: Intel® Core™ i5-4690K, x64-based 

processor running at 3.50GHz, with 16GB installed memory (RAM). 

Table 23 – Triples inferred and response time of reasoning process 

# User profile  
identifier 

# of inferred 
triples 

response time 
(sec) 

1 S-A 9 1.35 

2 S-AHS 10 1.58 

3 C-AHSPA 16 1.61 

4 C-AHSPAs 33 1.68 

5 S-A^S-A 17 1.32 

6 C-AHSPAs^C-AHSPAs 63 1.88 

7 S-A^C-AHSPAs 41 1.47 

8 S-A_x5 41 1.53 

9 S-A_x10 81 1.52 

10 C-AHSPAs_x5 152 1.78 

                                                           
74 We asserted 4 different activities, 3 of which have targeted recommendations for the activity of interest; these are working, 
eating outdoors and walking activity. The remaining one is conceived as general activity. 



D4.2: Semantic integration and reasoning of environmental data 

     87 | 98    

11 C-AHSPAs_x10 303 1.89 

Generally, the hackAIR RS’s performance is impacted by the following parameters: (i) the technical characteristics 

(processor/memory speed, operating system, etc.) of the system that hosts the RS module, (ii) the capacity of the 

reasoning engine (here, SPIN Inferencing Engine75 integrated in TopBraid Composer software), and (iii) the complexity 

of rules implemented/executed. Since parameters (i) and (ii) remain constant within the experiments, it becomes 

obvious that any differentiation in times depends on the complexity of rules performed each time.  

For all use cases, the response time of the recommendation process ranges from 1.32 to 1.89 seconds, and the number 

of new inferred triples ranges from a few ten to a few hundred triples, according to the initial statements of each 

examined scenario. Regarding single user profiles examined that are independent between them (meaning one 

request for recommendation per profile), the number of inferred triples is a multiplicity of the number of profiles 

examined; we assume that all simple profiles have the same characteristics. The same findings stand for the complex 

profiles (i.e. C-AHSPAs request corresponds to 33 new triples, and C-AHSPAs_x10 requests correspond to 303 new 

triples, a.k.a. almost 10 times the number of triples of one single complex profile). Another fact that is of great interest 

is that the response time is not drastically affected by the number of examined profiles and of inferred triples. It seems 

that the proposed recommendation approach is very promising for serving multiple requests at reasonable response 

times. Nevertheless, this has to be examined in real case scenarios (pilots), when the RS module is planned to be 

integrated in the hackAIR platform (M20 of the project); at that point, additional parameters will affect the 

performance of the RS, with most important being the availability and speed of the internet 

connection/communication between the user and the server. 

Finally, a user-centered evaluation of recommendations (both tips and personalised advice messages) is planned to be 

performed during the pilots (after M20) to measure the satisfiability of the proposed recommendations with respect 

to users’ needs and characteristics.  

  

                                                           
75 http://topbraid.org/spin/api/ 



D4.2: Semantic integration and reasoning of environmental data 

     88 | 98    

7 Conclusions and Future work 
In this document, we described the ontological framework developed within the hackAIR project, responsible for the 

representation and integration of heterogeneous data (user profile-, environmental-, recommendation- related 

information) in order to support personalised recommendation services. The ontology-based implementation 

concerns two interconnected modules of the hackAIR platform: 

 the knowledge base (KB), i.e. the storage module of environmental and user-specific data, according to the 

concepts and semantic relations described in the ontology schema, and  

 the reasoning system (RS), i.e. the rule-based reasoning mechanism that runs on top of the abstract (schema) 

and populated (individuals) data of the KB, in order to interpret the existing relations, produce new knowledge 

and thus infer recommendations to the users, with respect to their profile characteristics and existing air 

quality conditions. 

Within the T4.2, the following issues have been accomplished: 

 The creation of the first stable version of the hackAIR ontology, a multi-layered approach that includes the 

representational schema of the involved information, the base for the assertion of user profile and 

environmental fused data, and the overall rule-based reasoning mechanism for decision support services.  

 The development of a RESTful web service for the orchestration of user profile and environmental fused data, 

and their dynamic population on the ontology-based KB at run time (i.e. when the user submits a request for 

recommendation). The problem (request) is structured efficiently, via the automated process of transforming 

data delivered from the hackAIR User profile and Data fusion modules into proper ontological concepts, with 

the adoption of the presented problem description language (PDL).     

 The design and implementation of complex decision rules, with the adoption of well-known, ontology-

compliant standard named SPIN. The hackAIR SPIN rules have a predefined sequence of execution in order to 

achieve incremental reasoning, i.e. low level derivations produce higher level interpretations. 

 The specification of the characteristics of user profile categories that are considered as vulnerable in severe 

air quality (AQ) conditions, and for whom specialised recommendations will be supported. More specifically, 

we target into elderly persons, people with health sensitivities, pregnant women, children, outdoor sports 

enthusiasts, people who work outdoors, etc., thus including profiles of people with increased daily exposure 

or increased potential harm that is especially affected by poor air quality.  

 The handling of simple and complex hackAIR profiles: people belonging into more than one category, 

individuals who claim for recommendation for additional profiles, etc.  

  The definition of two types of recommendations: (i) tips of the day, i.e. general suggestions on alternative 

ways of living and keeping levels of air pollution at a minimum, and (ii) personalised recommendations, i.e. 

messages for up-to-date environmental updating, with respect to user-profile preferences/characteristics and 

to existing AQ conditions.   

The semantic representation and reasoning framework of the current deliverable will be of significance to the final 

services of WP5 (“Development of the hackAIR platform”). Moreover, the outcome of this task (T4.2) will be updated 

in T7.3 “hackAIR support services and methodology update”, based on the feedback from Pilot operation and 

evaluation (WP7). Additional future works include the following contributions: 

 Based on the multilingual character of the hackAIR platform, recommendations should be additionally 

provided in the language of the pilot areas. For that reason, tips of the day and personalised 

recommendations’ messages will be translated into the German and Norwegian languages and also integrated 



D4.2: Semantic integration and reasoning of environmental data 

     89 | 98    

in the hackAIR ontology. Ontology refinement for the support of the multilingual approach and for the proper 

inference of recommendations according to the user’s language will be accomplished until M20 of the project 

plan and results will be reported in WP5 “Development of the hackAIR platform”.  

 The creation of the Recommendation and decision support module. This module will realise the reasoning 

techniques of the current deliverable, in a common framework, in order to provide decision support to the 

user. Its development will be based on open source reasoning frameworks, such as Apache Jena and will be 

the interface between the platform (and more specifically, the user profile, data fusion and visualisation 

modules) and the knowledge base. The API will serve as the mechanism for triggering the rule inference 

process of the recommendation system. Integration actions with the first version of the hackAIR platform will 

be settled within WP5 “Development of the hackAIR platform”, until M20 of the project plan. 

 A user-centered evaluation of the reasoning system, and more specifically the assessment of textual 

recommendations provided to the users, will be conducted by actual users during the pilot operation of the 

hackAIR platform. Results of this process may lead to refinement of recommendation texts in the ontology, no 

later than M22 and within the scope of WP7 “Pilot operation and evaluation”. 

 

 

  



D4.2: Semantic integration and reasoning of environmental data 

     90 | 98    

References 
 [AI3, 2009] AI3 Adaptive Information, Adaptive Innovation, Adaptive Infrastructure, (2009). The Fundamental 

Importance of Keeping an ABox and TBox Split. [online] Available at: http://www.mkbergman.com/489/?cat=173 

[Accessed 24.04.2017]. 

 [Baader, 2003] Baader, F. (2003). The description logic handbook: Theory, implementation and applications. 

Cambridge University Press. 

 [Bechhofer, 2009] Bechhofer, S. (2009). OWL: Web ontology language. Encyclopedia of Database Systems, pp. 

2008-2009. Springer US. 

 [Bernaras et al., 1996] Bernaras, A., Laresgoiti, I. and Corera, J. (1996). Building and reusing ontologies for 

electrical network applications. Proceedings of the European Conf. on Artificial Intelligence (ECAI’96), pp. 298-

302. 

 [Berners-Lee, 1998] Berners-Lee, T. (1998). Semantic web road map. 

 [Bontas et al., 2005] Bontas, E. P., Malgorzata, M. and Tolksdorf, R. (2005). Case Studies on Ontology Reuse. 

Proceedings of the International Conference on Knowledge Management (IKNOW05), Vol. 74. 

 [Brank et al., 2005] Brank, J., Grobelnik, M. and Mladenić, D. (2005). A survey of ontology evaluation techniques. 

Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana, Slovenia. 

 [Brickley and Miller, 2014] Brickley, D. and Miller, L. (2014). FOAF Vocabulary Specification 0.99. Namespace 

Document 14 January 2014, Paddington Edition. 

 [Buitelaar and Cimiano, 2008] Buitelaar, P. and Cimiano, P. (2008). Ontology learning and population: bridging 

the gap between text and knowledge, Vol. 167, Ios Press. 

 [Dzbor and Motta, 2006] Dzbor, M. and Motta, E. (2006). Study on integrating semantic applications with 

magpie. International Conference on Artificial Intelligence: Methodology, Systems, and Applications, pp. 66-76, 

Springer Berlin Heidelberg. 

 [Falco et al., 2014] Falco, R., Gangemi, A., Peroni, S., Shotton, D. and Vitali, F. (2014, May). Modelling OWL 

ontologies with Graffoo. European Semantic Web Conference, pp. 320-325. Springer International Publishing. 

 [Fernandez et al., 1997] Fernandez, M., Gomez-Perez, A. and Juristo, N. (1997). METHONTOLOGY: From 

Ontological Art Towards Ontological Engineering. AAAI Technical Report SS-97-06, pp. 33-40. 

 [Fielding and Richard, 2002] Fielding, Roy T. and Richard N. Taylor. Principled design of the modern Web 

architecture. ACM Transactions on Internet Technology (TOIT), Vol. 2(2), pp. 115-150. 

 [Fiorelli et al., 2010] Fiorelli, M., Pazienza, M. T., Petruzza, S., Stellato, A. and Turbati, A. (2010). Computer-aided 

Ontology Development: an integrated environment. New Challenges for NLP Frameworks 2010 (held jointly with 

LREC2010). 

 [Gangemi et al., 2002] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A. and Schneider, L. (2002). Sweetening 

ontologies with DOLCE. International Conference on Knowledge Engineering and Knowledge Management, pp. 

166-181. Springer Berlin Heidelberg. 

 [Gangemi et al., 2005] Gangemi, A., Catenacci, C., Ciaramita, M. and Lehmann, J. (2005). A theoretical framework 

for ontology evaluation and validation. Proceedings of the Semantic Web Applications and Perspectives (SWAP), 

2nd Italian Semantic Web Workshop, Trento, Italy. 



D4.2: Semantic integration and reasoning of environmental data 

     91 | 98    

 [Gangemi and Presutti, 2009] Gangemi, A. and Presutti, V. (2009). Ontology design patterns. Handbook on 

ontologies, pp. 221-243. Springer Berlin Heidelberg. 

 [Gruberm, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge 

acquisition, Vol. 5 (2), 119-220. 

 [Grüninger and Fox, 1994] Grüninger, M. and Fox, M.S. (1994). The role of competency questions in enterprise 

engineering. Workshop on Benchmarking – Theory and Practice, pp. 22-31. Springer US. 

 [Haarslev et al., 2012] Haarslev, V., Hidde, K., Möller, R. and Wessel, M. (2012). The RacerPro knowledge 

representation and reasoning system. Semantic Web, Vol. 3(3), pp. 267-277. 

 [hackAIR D2.2, 2016] hackAIR Consortium (2016). Deliverable 2.2: User and technical requirement analysis, 

August 2016.  

 [hackAIR D2.4, 2017] hackAIR Consortium (2017). Deliverable 2.4: Report on co-creation of services, June 2017. 

 [Han et al., 2008] Han, L., Finin, T., Parr, C., Sachs, J. and Joshi, A. (2008). RDF123: from Spreadsheets to RDF. 

Proceedings of the 7th Int. Semantic Web Conference, pp. 451-466, Springer Berlin Heidelberg. 

 [Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004). 

SWRL: A semantic web rule language combining OWL and RuleML. W3C Member submission. 

 [Horty, 2001] Horty, J. F. (2001). Nonmonotonic Logic. The Blackwell Guide to Philosophical Logic. Blackwell 

 [Jarrar and Meersman, 2008] Jarrar, M. and Meersman, R. (2008). Ontology Engineering - The DOGMA Approach. 

Advances in Web Semantics I, LNCS Vol. 4891, pp. 7-34. 

 [Knublauch et al., 2011] Knublauch, H., Hendler, J. A. and Idehen, K. (2011). SPIN - overview and motivation. W3C 

Member Submission. 

 [Lenat and Guha, 1989] Lenat, D.B. and Guha, R.V. (1989). Building large knowledge-based systems; 

representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc. 

 [Lukasiewicz, 2008] Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial Intelligence, Vol. 

172(6), pp. 852-883. 

 [Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning from the semantic web. IEEE 

Intelligent Systems, Vol. 16(2), pp. 72-79. 

 [Missier et al., 2013] Missier, P., Belhajjame, K. and Cheney, J. (2013). The W3C PROV family of specifications for 

modelling provenance metadata. Proceedings of the 16th International Conference on Extending Database 

Technology, pp. 773-776. ACM. 

 [Mitzias et al., 2016] Mitzias, P., Riga, M., Kontopoulos, E., Stavropoulos, T. G., Andreadis, S., Meditskos, G., and 

Kompatsiaris, I. (2016). User-Driven Ontology Population from Linked Data Sources. International Conference on 

Knowledge Engineering and the Semantic Web, pp. 31-41, Springer International Publishing. 

 [Modica et al., 2001] Modica, G., Gal, A. and Jamil, H.M. (2001). The Use of Machine-Generated Ontologies in 

Dynamic Information Seeking. Cooperative Information Systems, pp. 433-447, Springer Berlin Heidelberg. 

 [Motik et al., 2009] Motik, B., Shearer, R. and Horrocks, I. (2009). Hypertableau reasoning for description logics. 

Journal of Artificial Intelligence Research, Vol. 36(1), pp. 165-228. 

 [Niepert et al., 2008] Niepert, M., Buckner, C. and Allen, C. (2008). Answer Set Programming on Expert Feedback 

to Populate and Extend Dynamic Ontologies. FLAIRS Conference, pp. 500-505. 



D4.2: Semantic integration and reasoning of environmental data 

     92 | 98    

 [Noy and McGuinness, 2001] Noy, N.F. and McGuinness, D.L. (2001). Ontology development 101: A guide to 

creating your first ontology. [online] Available at: 

http://liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%20and%20why%

20we%20need%20it.htm  

 [Petasis et al., 2011] Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., and Zavitsanos, E. (2011). Ontology 

population and enrichment: State of the art. Knowledge-driven multimedia information extraction and ontology 

evolution, pp. 134-166. Springer-Verlag. 

 [Pinto et al., 2004] Pinto, H.S., Staab, S. and Tempich, C. (2004). DILIGENT: Towards a fine-grained methodology 

for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. Proceedings of the 16th European 

Conf. on Artificial Intelligence (ECAI), pp. 393-397. 

 [Poveda-Villalón et al., 2009] Poveda-Villalón, M., Suárez-Figueroa, M.C., García-Delgado, M.A. and Gómez-

Pérez, A. (2009). OOPS! (OntOlogy Pitfall Scanner!): supporting ontology evaluation on-line. IOS Press.  

 [Raskin and Pan, 2003] Raskin, R. and Pan, M. (2003). Semantic web for earth and environmental terminology 

(sweet). Proceedings of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific 

Data, Vol. 25. 

 [Rospocher, 2010] Rospocher, M. (2010). An ontology for personalized environmental decision support. Formal 

Ontology in Information Systems, pp. 421-426, IOS Press.  

 [Rospocher, 2014] Rospocher, M. (2014). PESCaDO Ontology Documentation. Tech. Rep. Available at: 

https://dkm-static.fbk.eu/people/rospocher/backup-resources/pescado/PESCaDO_Ontology_Version3.0_ 

Documentation_3.pdf [Accessed 14.06.2017] 

 [Straccia, 2001] Straccia, U. (2001). Reasoning within fuzzy description logics. J. Artif. Intell. Res.(JAIR), Vol. 14, 

pp. 137-166. 

 [Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. and Katz, Y. (2007). Pellet: A practical owl-dl 

reasoner. Web Semantics: science, services and agents on the World Wide Web, Vol. 5(2), pp. 51-53. 

 [Stadler et al., 2012] Stadler, C., Lehmann, J., Höffner, K., and Auer, S. (2012). LinkedGeoData: A core for a Web 

of Spatial Open Data. Semantic Web Journal, Vol. 3(4), pp. 333-354. 

 [Suárez-Figueroa et al., 2009] Suárez-Figueroa, M., Gómez-Pérez, A. and Villazón-Terrazas, B. (2009). How to 

write and use the Ontology Requirements Specification Document. On the move to meaningful internet systems: 

OTM 2009. Part of the Lecture Notes in Computer Science book series (LNCS, Vol. 5871), 966-982. 

 [Sure et al., 2004] Sure, Y., Staab, S. and Studer, R. (2004). On-To-Knowledge Methodology (OTKM). Handbook 

on Ontologies, pp. 117-132. 

 [Swartout et al., 1997] Swartout, B., Ramesh, P., Knight, K. and Russ, T. (1997). Towards distributed use of large-

scale ontologies. Symposium on Ontological Engineering of AAAI, pp. 138-148. 

 [Tartir et al., 2010] Tartir, S., Arpinar, I.B. and Amit P. S. (2010). Ontological evaluation and validation. Theory 

and applications of ontology: Computer applications. Springer Netherlands, pp. 115-130. 

 [Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System 

description. Automated reasoning, pp. 292-297. Springer Berlin Heidelberg. 

 [Uschold and King, 1995] Uschold, M. and King, M. (1995). Towards methodology for building ontologies. 

Workshop on Basic Ontological Issues in Knowledge Sharing, held in Conjunction with IJCAI-95. Cambridge, UK. 



D4.2: Semantic integration and reasoning of environmental data 

     93 | 98    

 [Vrandečić, 2009] Vrandečić, D. (2009). Ontology Evaluation, Handbook on Ontologies. International Handbooks 

on Information Systems, pp. 293-313. 

 [W3C, 2004] W3C Recommendation (2004). OWL Web Ontology Language Overview. [online] Available at: 

https://www.w3.org/TR/owl-features/ [Accessed 20.04.2017].  

 [W3C, 2012a] W3C Recommendation (2012). OWL 2 Web Ontology Language Document Overview (Second 

Edition). [online] Available at: http://www.w3.org/TR/owl2-overview/ [Accessed 22.05.2017] 

 [W3C, 2012b] W3C Recommendation (2012). OWL 2 Web Ontology Language Primer (Second Edition). [online] 

Available at: http://www.w3.org/TR/owl2-primer/ [Accessed 22.05.2017] 

 [W3C, 2014] W3C Recommendation (2014). SPIN – Modeling Vocabulary. [online] Available at: 

http://spinrdf.org/spin.html [Accessed 26.05.2017] 

  

  



D4.2: Semantic integration and reasoning of environmental data 

     94 | 98    

8 Appendix 

8.1 hackAIR Tips of the day 

Tips of the day are represented in the hackAIR ontology as individuals of Recommendation type, and especially of 

class TipOfTheDay. Whenever a new request for recommendation arises, the reasoning system that runs on top of 

the ontology asserts to the user (Person type) a random tip of the day, as a useful daily advice on how to improve the 

ambient air quality or to reduce individuals’ production of air pollution.  

When tips are provided to the user through the RS, not any details of the user profile or of request parameters is taken 

into account. These tips can be conceived as general knowledge that could be useful not only for the direct recipients 

of the message (hackAIR users) but also for their social environment. This list has been constantly refined by members 

of the hackAIR consortium and could additionally be enriched with new messages in future versions of the hackAIR 

ontology. 

Table 24 – A list of tips of the day instantiated in the hackAIR ontology 

# Message 

1 You could reduce emitted air pollutants if moving by public transport. 

2 Want to ride your bicycle? It’s not only fun and great exercise; you’ll also help to keep the air 

beautifully clean. 

3 Time for a walk? Sweet! Air quality becomes so much better when more people leave their cars 

at home. 

4 Transportation accounts for about 23% of greenhouse gas emissions in Europe. Think about the 

way you travel in your city! 

5 Have you heard of carpool karaoke? What a perfect way to get to work - while keeping the 

ambient air breathable. 

6 Driving slowly on unpaved roads can prevent vehicles from emitting dust. 

7 Are you a driver? Did you know that you can reduce your contribution to air pollution by 

switching off your car motor when idling for more than 20 seconds? 

8 To warm up your car, drive slowly the first 5km instead of run. Gentle ride means gentle 

pollution! 

9 Keep your car engine in good condition by performing the regular maintenance. 

10 Aggressive driving produces up to five times more toxic emissions than normal! 

11 Drive within the speed limits. It works well for both your safety and the environment! 

12 Prefer to use energy efficient appliances. This saves you money and it’s good for the 

environment. 



D4.2: Semantic integration and reasoning of environmental data 

     95 | 98    

13 Keep your water heater at 50°C, and use cold water whenever possible. 

14 Switch off the lights when you are not in the room. The room is not afraid of the dark… 

15 Unplug electronic devices when not in use. They’ll thank you later! 

16 Fans are a climate friendly and easy alternative to air conditioners! 

17 Did you know that indoor fireplaces are a huge source of indoor air pollution? Limit wood 

burning. 

18 If you have to burn wood in your home, follow useful precautions to reduce pollution. 

19 Don’t burn wood that is painted. It won't colour the steam, only produce more toxic pollution. 

20 Avoid the use of spray products. That smells of... CO2. 

21 Manual garden tools are a low-cost alternative to those that run on gasoline. Approved by 

flowers of all kind! 

22 Did you know that a family of four members is responsible for releasing 20 tons of greenhouse 

gases into the atmosphere each year? 

23 Energy consumption in home is the 3rd source of air pollution production. Close heating vents 

and doors to rooms that you are not using. 

24 Hang clothes out in order to dry instead of using a dryer. 

25 Whoa, what’s that smoke? If you like making a fire in your garden, make sure the wood you use 

is untreated and dry - your lungs will thank you. 

26 Did you know that trees and plants naturally purify the air? Indoor greenery, a few pots on the 

balcony or a small garden can help you breathe deep. 

27 Use natural soy or beeswax candles instead of petroleum/paraffin-based candles. 

28 Avoid BBQ when air pollution levels are high. Steak can wait; planet cannot! 

29 Recycle as much as you can! Buy products that do not have a lot of packing and that can be 

recycled. 

30 Exercising outdoors early in the morning is a great way to avoid rush-hour air pollution. 

31 Use video conferencing for business meetings, when possible, in order to avoid unnecessary 

travel. 

32 Use the hackAIR app to detect and avoid air pollution hotspots! 

33 Avoid burning organic waste or garden leftovers. Prefer to compost them! 



D4.2: Semantic integration and reasoning of environmental data 

     96 | 98    

34 Eat many fresh fruits and vegetables. They help maintain your body’s antioxidant reserves which 

are able to reduce the effects of air pollution. 

35 Keep windows closed when outdoor air pollution is high; this way you won’t burden the indoor 

atmosphere. 

36 If cooking with gas, use an extractor fan with a filter. 

37 Did you know that your exposure to harmful air pollution is greatly increased on main roads with 

a lot of traffic? If possible, prefer to use secondary roads. 

38 If you commute into the city, think about leaving your car at park&ride spots; that way you take 

away your share from inner city pollution. 

8.2 hackAIR Personalised recommendations 

Personalised recommendations are represented in the hackAIR ontology as individuals of Recommendation type, and 

especially of class LimitExposureRecommendation. In order to provide such types of recommendations to the 

user, the system takes into account his/her relevant profile, the request made and the existing AQ condition in the 

area of his/her interest. The defined recommendation messages per possible case are given in the following tables. 

For the shake of brevity, we present recommendations that evolve only two specific main user categories – Elderly 

and MixChild (i.e. toddlers, children and young users) – together with all possible combinations of them with their 

non-disjoint classes of type Person; similar recommendation messages are defined and represented in the ontology 

for all main user categories and their combinations (see Section 6.1.2).  

Table 25 – A list of personalised recommendation instantiated in the hackAIR ontology for Elderly class and all possible 

combinations with the main user categories 

Index 
class Elderly 

Elderly & 
Sensitive 

Elderly & 
Outdoor Job 

Elderly & 
Outdoor Sports 
(general) 

Elderly & 
Outdoor Sports 
(walking) 

Elderly & 
Outdoor Sports 
(picnic) 

V
er

y 
go

o
d

 

Perfect air for 

a walk today! 

 

The current 

air quality is 

ideal for a 

walk! 

same as 

Elderly 
Let's work! 

Perfect day for 

training 

outdoors! 

Perfect day for 

a walk today! 

Perfect day for 

eating 

outdoors! 

G
o

o
d

 

Enjoy your 

usual outdoor 

activities! 

 

Go for it! 

same as 

Elderly 

You can still 

work outdoors 

but be sure to 

stay alert to 

our 

notifications. 

You can still 

exercise 

outdoors but 

take your 

medication 

with you (if 

any). 

Enjoy your 

usual outdoor 

activities! 

Let's go on a 

picnic! 



D4.2: Semantic integration and reasoning of environmental data 

     97 | 98    

M
ed

iu
m

 
Consider 

reducing 

prolonged 

outdoor 

activity. 

same as 

Elderly 

You should 

reduce any 

outdoor work. 

You may cancel 

your outdoor 

workout for 

today. 

Consider 

reducing 

prolonged 

outdoor 

activity. 

You can still go 

on a picnic but 

pay attention 

for changes in 

air quality. 

B
ad

 

You should 

reduce 

prolonged 

outdoor 

activity. 

Otherwise 

take your 

medication 

with you  

(if any). 

same as 

Elderly 

It's not safe to 

work outdoors 

today. 

It's not safe to 

train outdoors 

today. In case 

of breathing 

problems 

contact your 

doctor. 

You should 

reduce 

prolonged 

outdoor 

activity. 

Otherwise take 

your 

medication 

with you (if 

any). 

You should 

postpone the 

picnic for 

another day. 

Table 26 – A list of personalised recommendation instantiated in the hackAIR ontology for MixChild class and all possible 

combinations with the main user categories 

Index 
class MixChild 

MixChild & 
Sensitive 

MixChild & 
Outdoor Sports 

(general) 

MixChild & 
Outdoor Sports 

(walking) 

MixChild & 
Outdoor Sports 

(picnic) 

V
er

y 
go

o
d

 

Perfect air for 

playing outdoors! 
same as MixChild 

Perfect air for 

training 

outdoors! 

Perfect day for a 

walk with your 

child! 

Perfect day for 

eating outdoors! 

G
o

o
d

 Let your child 

enjoy the fresh 

outdoor air! 

same as MixChild 

Let your child 

enjoy outdoor 

sports. 

Enjoy a walk with 

your child! 

Let's go on a 

picnic! 

M
ed

iu
m

 Consider to 

reduce prolonged 

outdoor activity 

of your child 

same as MixChild 

Your child can 

still exercise 

outdoors but pay 

attention to any 

signals of 

breathing 

problems. 

You can still enjoy 

a walk with your 

child but be sure 

to stay alert to 

our notifications. 

You can still go 

on a picnic with 

your child but 

pay attention for 

changes in air 

quality. 

B
ad

 

Your child should 

reduce outdoor 

activities. 

Otherwise you 

can visit areas 

with cleaner air. 

same as MixChild 

You should 

reduce the 

outdoor activities 

of your child. 

It's not a good 

day for a walk. 

You may 

postpone the 

picnic for another 

day. 



D4.2: Semantic integration and reasoning of environmental data 

     98 | 98    

These lists may be refined by members of the hackAIR consortium and additionally be enriched with new messages in 

future versions of the hackAIR ontology and after the pilot operation and evaluation by the actual users.   


