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ON RESTRICTED FOURIER SERIES AND THE CONVERGENCE
OF POWER SERIES

By Prof. W. H. YOUNG.

[Received October 4t.h, 1917.—Read December 6th, 1917.]

1. In a previous communication to the Society,* I introduced the term
" restricted Fourier series of the first, second, . . . class," using the ex-
pression in the following sense :—

The p-th derived series of the Fourier series of F(x) is said to be a
restricted Fourier series of the p-th class, and to be restricted to one or
more intervals (a. /3), if, throughout each completely open interval in (a, /8),
Fix) is a p-th integral.

The p-th differential coefficient of F(x) in (a, /3), defined almost every-
where, is then called the function associated ivith the restricted Fourier
series.

The properties of a Fourier series retained by these trigonometrical
series, in the interval or intervals to which they are restricted, were shewn
in the memoir quoted to be, in general, what may be called " Cesaro-
summation properties, index p." In particular, taking p = 1, the
restricted Fourier series of the first class may be defined as trigo-
nometrical series whose integrated series are Fourier series which
converge in every completely open interval in (a, /3) to a function F(x)
which is an absolutely convergent integral; and the properties of Fourier
series retained by these trigonometrical series are all those involving
Cesaro convergence, index 1. In particular the upper and lower functions,
obtained by Cesaro summation (Cl), at a point x of the interval of re-
striction, are independent of the nature of the associated function, except
in a neighbourhood of x as small as we please.

In a subsequent note,t presented to the Royal Society, I actually ob-

• " On the Convergence of the Derived Series of Fourier Series " (1916).
| " On the Ordinary Convergence of Restricted Fourier Series " (1917), Proc. Boy. Soc,
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SBR. 2. VOL. 17. NO. 1324. 2 A



354 PROF. W. H. YOUNG [Dec. 6,

tained classes of restricted Fourier series which, without being themselves
Fourier series, converged in the ordinary way throughout an interval.
The method used was adapted ad hoc; I had, in fact, practical applica-
tions in view in the results I obtained. In the present communication
my point of view is more theoretical and accordingly considerably wider in
its consequences.

The point of departure is a remarkably simple theorem which I have
been so fortunate as to discover. This theorem, while it more than
justifies the introduction of the term " restricted Fourier series," and their
separate consideration, seems to me, at the same time, to render desirable
the distinction of a certain sub-class of restricted Fourier series as
" ordinary restricted Fourier series," or, for brevity, " R.F. series."

Any trigonometrical series

00

2 {anco8nx-\-bn8innx\,
71 = 1

—where for simplicity we have omitted the constant term—is defined to
be an ordinary restricted Fourier series, or R.F. series, if It verifies tioo
conditions:

(i) an - • 0, ba-*0 (ti -» oo);

(ii) the integrated series

00 J

2 — \ an sin nx—b)X cos nx \
71 = 1 VI

converges to an absolutely convergent integral

F(x) = \f(x)dx,

in the interval or intervals of restriction (a < x < /3).
The function associated icith the R.F. series is then

ft \ d F

and is, of course, only defined almost everywhere in (a, /3).

We may use the symbolic notation

00

f{x)^ 2 [anQ.0%nx-\-bnsin nx) (a < x < 8),
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to denote that the series on the right is an R.F. series, with (a, /3) as in-
terval of restriction of fix) for associated function.*

The condition (i) is well-known to be verified by a Fourier series.
Thus B.F. series include Fourier series. Also in virtue of (i), the
squares of the coefficients of the integrated series form a convergent series,
so that by the Riesz-Fischer theorem! the integrated series is a Fourier
series. Thus B.F. series are included in the class of restricted Fourier
series of the first class.

The object of the new term R.F. series is not, however, merely to
connect the class with the sub-class, but to emphasize the extensive
analogy between the new series and Fourier series, and thus at once to assist
the memory and to render possible a generalisation of known theorems.
It is evident that, the closer the analogy, the greater will be the advantage
obtained by the nomenclature, and the less the danger of compensating
disadvantages, due to the involuntary assumption that theorems true for
Fourier series are also true for the extended class of ordinary restricted
Fourier series (R.F. series), when this is not the case. With the definition
just given, almost all the more important 'properties of Fourier series are
found to Jwld good for B.F. series in the interval or intervals to which we
restrict ourselves. Such a notable extension of our knowledge is rendered
possible by the fundamental theorem above referred to.

I have, in fact, been able to prove that the conditions for convergence
and uniform convergence of an B.F. series in the interval of restrictioii
are of precisely the same form as for a Fourier series. The same is true
for the various possible forms of oscillation, uniform or otherwise.

Again the same is true for the Cesaro convergence of the derived series
of R.F. series : the upper and lower functions of the p-th derived series of
an B.F. series, when summed in the Cesaro manner (Cp), at any point in-
ternal to the interval of restriction, depend only on the tiature of the
associated functionl in a neighbourhood of the point as small as toe
please.

• The symbol ~ followed by ( — w < x < ir) will then not be equivalent to the recognised
symbol ~ for a Fourier series, since the new symbolism does not even imply that the integ-
rated series converges at the end-points — v and it, or that, if it converges, the sum is other
than discontinuous there, while ~ implies both these facts, and also that F (x) is an integral
in the closed interval ( —ir, ir).

t For a collection of the existing proofs of this theorem see W. H. Young and Grace
Chisholm Young, " On the Riesz-Fischer Theorem," Quarterly Journal of Mathematics.

$ Which is, of course, the p-th differential coefficient of the function associated with the
R.F. series from which our series is derived, since our series is a restricted Fourier series of
the (p-t-l)-th class.

2 A 2
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The condition imposed on the coefficients of the trigonometrical series
considered—an-*0, &u->0 for an E.F. series, n~pan-*0, n~pbn-*O for
its j9-th derived series—is one which not only ensures what is desired, but
is also necessary when the series is required to converge in the manner
considered throughout an interval. I have not thought it necessary to
insist on the somewhat more general theorems which arise when conver-
gence at a point is required. In this case the condition may be relaxed,.

(an cos nx-\-bH sin nx) -> 0

in the former case, and

n~l) (an cos nx-\-bv. sin nx) -> 0

in the latter case, being then sufficient, as well as, of course, necessary.
It is not merely in the region of convergence that the analogy between

Fourier series and R.F. series is complete. It is obviously also complete
in the case, for example, of the chain of theorems, based on Riemann's
work, due to Lebesgue, Fejer, de la Valle"e Poussin, and myself, on certain
conditions under which a trigonometrical series may be asserted to be a
Fourier series. Nor do these theorems exhaust the list: only those in
which the actual representation of the coefficients in terms of the asso-
ciated function are required form exception.

The results to which we are led are not only important in the theory
of trigonometrical series and its applications; they lead, when interpreted
in the language of the complex variable, to a notable extension of our
knowledge of the behaviour of power series on their circle of convergence.
Our main theorem shews, for example, that the uniform convergence of the
power series "2,cnz'\ xohere cn-> 0 (n-» oo), can be asserted with confidence
if (i) the sum-function has a unique limiting value at the point in ques-
tion, and at the points of the circumference in its neighbourhood, arid
(ii) the function of 6 formed by these limiting values on the circumference
is a function of bounded variation.

As before we may change the condition c,t -> 0 into n~pcn-> 0 (?i-> oo),
provided toe replace the ordinary convergence by Cesaro convergence (Gp).

This theorem includes, as a very special corollary, Fatou's convergence
theorem, the recognised importance of which in the Theory of Functions
of a Complex Variable arises from the very fact that nothing is required
to be known about the sum function, except in the neighbourhood of the
point considered (the regularity, in fact, of the sum-function there): the
only condition added is the necessary one (cn -> 0) for convergence.

The three proofs that have been given of Fatou's convergence theorem
are sufficiently long and complicated ; even the shortest, given by Marcel
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Riesz, is considerably more difficult than our proof of the more general
theorem, based as it is only on the essential features of the problem, and
accordingly almost intuitive.

In this connexion it may not be out of place to remark that inadequate
use appears still to have been made hitherto of real function theory in
dealing with the complex variable, owing partly perhaps to the mistrust of
the older analysts in the theory of the real variable, as concerned with
the pathology rather than the morphology of functions, and this though
it has given to mathematics in the new concept of integration perhaps
the greatest impetus since the time of Riemann.

2. The main theorem is as follows :—

THEOREM 1.—The upper and lower functions of an B.F. series at a
point x internal to its interval of restriction (a, /3), depend only on the
properties of the associated function in a neighbourhood of x as small as
we please.

Let the R.F. series be
CO

f(x) ~ 2 | an cos nx + bn sin nx) (a < x < /3), (1)

7 1 = 1

where, by definition, an -> 0, bn. -> 0 (n -> <x>). (2)

The first integrated series will then be a Fourier series, say

F(x) ~ 2 -j —- sinnx cos nx [, (3)
71=1 \ 11 fl I

where, in the interval of restriction,

F(x)-F(a) = [X f(x) dx (a<x< /3). (4)

The sum sn of n terms of the series (1) is then obtained by differentiating
the sum of n terms of the series (3). Therefore

1 d f"
sn= — -r- \ \F(x-\-u)-\-F(x—

27r ax Jo

1 d [e

= — 3 - I \F(x+ii)-\-F(x—u)\ si
27r ax Jo

1 d ["
-\-jr~ - j - \ IF (x+u)+F (x—u)} sin (w+J)wcosec^ du, (5)

nTT UX Jg
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where e is chosen as small as we please, and certainly small enough for
the interval (x—e, x-\-e) to lie inside (a, /3). The first of the two terms
on the right in (5) depends only on the properties of f[x) in a neighbour-
hood of x as small as we please. Thus our theorem only requires us to
prove the second term in (5) to tend towards zero when n -> oo. We
may write the second term in the form

1 d (""" 1
o~ T" ) {F(x-\-u)+F(x—u)\ sinnu cobludu+n-yn, (6)

d I"""
where yn = y_a = — {F{x+u)-\-F(x—u)\ cosnudu, (7)

ClX Je

and our theorem will be proved if we shew that the expression (6) tends,
to zero when n -» oo.

3. Now, since (3) is a Fourier series,

d
dx

{F(x -f «)+F{x—u)} cos nu die = x {« tt cos nx + bn sin nx) -> 0

(71^00), (9)

by (2).

Also since, in (a, /3), F(x) is the integral of f{x),

-j- \F{x-j-u)-\-F(x—n)\ cos )ivdu = {/(a;+w)+/(a;—M)[ COBnudu->0
dx Jo Jo

(n->oo), (10)
by the theorem of Riemann-Lebesgue.*

From (9) and (10), by subtraction,
y n -*0 (;?^ oo). (11)

Thus the condition to be proved becomes

Qn = •%- T \F(x+u)+F{x—ti)\ sin MM cot hidu->0 («->«).
UX Je

(6a)-

4. Now let <j)(u) denote an odd function having the following pro-
perties :—

(i) 0(«.) = cot^u in (e, ir), and in (—e, — TT);

(ii) 0(0) = 0 ;

* B. Riemann, Habilitationschrift, § 10 (1854); H. Lebosgue, Legons sur les siries trijono-
mttriques (1906), p. 61.
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(iii) 0(w) is continuous at M = e and u = — e ;

(iv) <j>(u) possesses its two* first differential coefficients at every
point of the closed interval (—e, e), and these are bounded.

This is clearly feasible, and the function <f>(u) is then the integral of
an integral. We have, therefore,

CO

<fi(u) = 2 cp s inpu, (la)
P=I

where the series converges uniformly. The first differentiated series also
converges uniformly and its sum is <j>'(u).

The coefficients cp then have the property

and the series formed

Let us write

and

so that

cr--

by them is

C

Kn

= 0{p~\

absolutely convergent.

CO

= 2 | cp | ,
I

— 2 1CP 1 >

Kn->0 (?i-> oo).

(13)

(14)

(15)

(16)

5. Let us write also

G(X)-G(-TT) = [ F(x)dx (-7T < X < 7T).

We then have, integrating by parts,

1 {F(x -f- u)+F{x — u) | sin nu 0 (it) du

= — \G(z+e) — G(x—e).\ sin ne

—n \ \G(x-{-u) — G(x—u)\<f>(u) cos nu du
Je

— \G{x + u) — G{x—u)\ <p'(u) sin nudu. (17)

Now F is the differential coefficient of G at every point of the closed

* We can easily make as many of the differential coefficients exist as we please, or al! ol
them : this is not required here, but will be required in § 9.
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interval (x—e, x+e) inside the interval of restriction (a, fi), in which F,
being an integral, is continuous: and, in (e, x), F is almost everywhere
equal to dGjdx. Therefore, differentiating (17), we get

Qn = — {F(x+e)—F(x—e) \ sin ne 0(e)—n\ {F(x+u)—F(x—u)) cos nu du
Je

\
J

— \ \F(x-\-u)—F(x—2i) \ <f>'{u) sin nu du. (18)

But since the Fourier series of 0 and 0' converge uniformly, we may re-
place these functions by their Fourier series and integrate term-by-term.
Having*done this, we have only to transform back the expression under
the sign of integration, cp sinpu replacing <f>{u), and we get

Qn = " 2 Cp-j- I \F(x-\-u)—F(x—ti)} sin nu Binpudu
p=\ ClX Je

CO

= 2 Cp \yp-n—yP+n(, (19)

where yn is given by (7) and satisfies (11).

6. Therefore whatever positive quantity e we choose, we can find a
corresponding integer in such that, for all values of ?• ^ in,

Hence, when n > m,

< e 2 | cp I < eC,

2
p=n+m+l

(20)

(21)

(22)

Writing

2 c p y p _ n = 2
l 1

we have
71 — 71

2

2

n - i

n+m
Cp yn-p-\- 2-i Cp

+i ))=u+i

n—m

n_ryr <e 2 \Cp\
P = i

yp-

< eC. (23)

Also, if M be any positive quantity, not less than the absolute values
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of the m+1 quantities y0, yx yTO, we have

n

2 c})yn-p
p=?i-m+l

—

m - l

2 Ctt_ryr
r=0

TO

r= l

u

^ Af 2
j)=m—n +

n + m

< i^_2+i

\cp\^MKn-m-+as
i

(?i->oo), (24)

Cp| < ilf A'n->0,

(n->oo). (25)

and

Using (21)-(25) in (19), we get

Lit I Qn I < 2eC,
11—>oo

whence, since e is as small as we please,

Qn-+0 ( n - o o ) . (6a)

Thus the required condition is satisfied, which proves the theorem.

7. In the preceding proof we have only used the fact that

an cos nx + bn sin nx -> 0 (n -> 00),

namely in (9), and not the whole assumption a,, -> 0, btl -> 0.
If, however, we require convergence in a whole interval, whether (a, /3),

or a part of (a, ft), the coefficients an and bn themselves must, as Riemann
already remarked,* tend towards zero. It is then easily seen that Qn -» 0
uniformly.

Indeed, we can find m independent of x, so that for n ^ ni,

1 d [n

— -5- I \F{x-\-u)-\-F{x—u)\ cosmidu
7T UX Jo

(9a)

The uniformity of approach to zero of the corresponding integral whose
upper limit of integration is e instead of -n- is part of the theorem of
Riemann-Lebesgue. Hence

m being independent of x.
In § 6 the quantity M may be likewise chosen independent of x. In-

* hoc. cit., §7.
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deed, as in § 3, introducing the argument x explicitly,

yM | = an cos nx+bn sin nx} — I {/ (x+u) -\-f(x—u)} cos nu du
Jo

f x+e
- \f(t)\dt
x-e

Putting n in turn equal to 0, 1, ..., m, we see that we may put

f|3

Ja

and then M is, as it should be, not less than yQ(x), yx(x), ..., ym(x),
wherever x may be in (a, /3).

By (19) and (21)-(25) we have therefore, m and M being independent
ofx,

L (n > m),

which shews that Qn{x) converges uniformly to zero, and proves our re-
quired result.

8. As an immediate corollary to Theorem 1, in conjunction with § 7,

we have the following :—

THEOREM 2.—If f(x) ~ 2 {a,, cos nx-\- bn sin nx \ (a < x < /3), (1)

and ft(u) is any absolutely integrable* function, agreeing with f{u) in
{x—e, x-\-e), inside (a, /3), then the B.F. series (1) and the Fourier series
°// i (w) have the same peculiarities with regard to convergence or oscilla-
tion, whether at the point x or in the interval (x—e, x-\-e).

Also in all integration theorems involving term-by-term integration
of a Fourier series, when multiplied by an absolutely integrable function
g(x), toe may substitute an B.F. series for the Fourier series, provided the
range of integration lie within the corresponding interval of restriction.

Hence we have for R.F. series the same criteria of convergence as for
Fourier series. In particular Dirichlet's criterion may be applied, and we
have the following theorem :—

THEOREM 3.—The B.F. series of a continuous function of bounded
variation converges uniformly to that function.

9. As the first class of restricted Fourier series contains R.F. series,

* Summable.
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the second class will contain the derived series of R.F. series. These will
evidently be characterised among the series of the second class by the con-

dition _, A -17 A / N
n l an -> 0, n bH -> 0 (n -> oo).

Generally the p-th derived series of R.F. series are characterised among
the restricted Fourier series of the (p + l)-th class by the condition

n-pan -* 0, n~p ba -> 0 (n -»<»).

In a precisely similar manner to that used in proving our main
theorem, we can prove the following more general theorem applying to
these last-mentioned series :—

THEOREM 4.—The Cesaro upper and lower functions {index p) of the
p-th derived series of an R.F. series, at a point x internal to its interval
of restriction (a, /3), depend only on the properties of the associated func-
tion in a neighbourhood of x as small as we please.

It will be sufficient to remark that, in the case when p = 1, the dis-
cussion turns on the fact that, since /t~lan ->Q, )i~1b,t-^ 0,

u) + G(x-u)\ sin* $

—the approach to the limit being uniform in any interval internal to (a. /3)

—where G(x) = \ dt \f(t)dt is the function to which the second in-

tegrated series converges in (a, /3).
This follows as before, bearing in mind that, when we replace sina %nt

by £(1 — cos ;^), the part of our expression independent of cosni has the
limit zero as in § 3, the theorem of Riemann-Lebesgue applying, since
we may now differentiate twice under the sign of integration. The re-
maining part of our expression is treated precisely as in §§4-6, the
function <p{u) being provided with the proper array of differential co-
efficients.* The presence of the factor l/n in our expression ensures the
adequacy of the condition n~lan-+0, n^b^^-O.

10. Finally it may be remarked that there are corresponding theorems
for fractional Cesaro convergence, in which the Fourier series of a function
of bounded variation takes the place of that of an integral. Readers of
my previous papers will be able to supply both the enunciations and the
proofs of these results.

* See footnote, §4.
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In all cases the condition with respect to the coefficients of the trigo-
nometrical series considered is not merely sufficient for its purpose, but
necessary if convergence of the type considered in an interval is required.
I have not thought it desirable to go at length into the more general
theorems which arise when convergence at a point only is demanded: in
this case the condition n~pan->0, n~vbn->0 may be replaced by the
less stringent requirement

n~p | an cos nx-\-bn sin nx \ -> 0 (n -> oo).

11. Our present theory may be applied to the investigation of the
behaviour of a power series on its circle of convergence, in the case when
the coefficients tend towards zero. We shall assume the radius of con-
vergence to be unity.

Let us denote the power series by

2 cnz
n = 2 (an-ibn) zn = 2 cnr

nein0

00 00

= 2 r'n{an cosnQ-\-bn sin nO} — i 2 rn {bncos nO—an sin nd\,

where c» -> 0 (?i -> oo),

that is, an -> 0, 6tt -*• 0 (?i -»> oo).

We have now to apply our theory simultaneously to a series

2 rn | a» cos W0+6H sin nd},

and to its allied series
00

2 rn \ bn cos n6—an sin n0}.

12. From Theorem 3 we have therefore at once the following:—
00

THEOREM 5.—If a power series 2 cnz
n for which cn -> 0 (n -> oo), is

such that its second integrated series, which necessarily converges uni-
formly on the circle of convergence {of radius unity), has for sum a func-
tion of 0 whose second differential coeffcient is a continuous function of
bounded variation* for all points of an arc, then the power series con-
verges uniformly throughout that arc.

* That is, <f>j (fl) + i<p« (6), where <f>j and <f>2 are continuous and of bounded variation.



1917.] RESTRICTED FOURIER SERIES AND CONVERGENCE OF POWER SERIES. 865

13. Hence we get almost immediately the next theorem.

OS

THEOREM.—If the sum-function of a power series -2 cnz
n, for which

Cn -*• 0 (n-> oo), has a unique limiting value f(d) at each point 6 of an
arc (a, /?) of the circle of convergence, and if f[6) is then a function of
bounded variation, the power series converges uniformly on that arc.

For, if f(r, 6) = 2 cnr
neine ( r < 1),

then, by hypothesis,

Lt f(r,0)=f(0o) ( a < 0 o < / 3 ) .

Since this convergence to the limit /(#„) is uniform in (r, 6), f(OJ is con-
tinuous, and we may integrate twice with respect to 6, and get

Lt \°de f f{r, 6)d6 = f dO [ f(d)dd,
r—>1 Jo Ja Jo , Ja

that is, Lt •[ — 2 n^cnrnein0\ = [dO\ f(d)d6.
r—>1 \ n = l ' Jo Jo

But since the series on the left converges uniformly, the sum is a con-
tinuous function of the ensemble (r, 6) ; this gives

- £ n-'cneinB= [ de\f(d)dd,
n=l Jo Jo

whence, by the preceding theorem, the required result at once follows.

14. As a very special case of the preceding, we get Fatou's theorem :—
GO

COR. (Fatou's Theorem).—A poioer series 2 cnz
n, for zohich cn-»>0

n -> oo), converges uniformly on any arc of the circle of convergence, pro-
vided that, at every point of the arc, tlie series is regular.

In fact, if <f> {z) be the analytic function represented by the power series
00

2 cnz
n inside the unit circle as circle of convergence, <p(z) is a continuous

i

function of z with a continuous differential coefficient, not only inside the
unit circle, but also on the given arc (a, /3), since, by hypothesis, the
series may be analytically continued over the arc (a, (3). Thus, if, with
the notation of the preceding article, we write

<p(z)=f(r,d) ( r<l ) ,
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and on the arc (a, 6), (f>(z0) = f ( 6 0 ) ,

we have /(0O) = Lt f(r, 6),
(r—>1, 0 » 0 )

and/(0) is an integral with respect to 6. Thus the conditions of the
theorem are satisfied, whence the required result immediately follows.*

15. From Theorem 4 we get corresponding results in the theory of
power series, the condition cn -» 0 being replaced by n~pcn -> 0 {n -> oo),
and ordinary convergence being changed into Cesaro convergence (Cp).
Similarly, from § 10, we get further results of the same kind respecting
the fractional Cesaro convergence of a power series.

* Similar generalisations hold good for Marcel Riesz's extensions of Fatou's theorem.


