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Introductory.

1. In the earlier treatises on the differential calculus, the transition
from the consideration of explicit to that of implicit functions of a real
variable was made almost without comment. The existence and differ-
entiability of the latter class of functions was tacitly assumed as well as
all necessary properties of the function of two variables which, when
equated to zero, gives us the defining equation. Needless to add that the
proof of the rules for obtaining the successive differential coefficients
lacked clearness and rigour. In the more modern treatises, on the other
hand, the transition is marked—is, indeed, abrupt in character. The
reader is suddenly transported to a discussion of the properties of power
series of one or more variables, so that instead of the attention being
confined, as in the case of the differential coefficients of explicit functions,
to a certain neighbourhood of the point in question, to what goes on, in
fact, im Kleinen, he is obliged to consider the whole portion of space
inside a certain circle or region of convergence, and to contemplate what
goes on im Grossen. It is difficult to see how this mode of treatment
can be justified from the point of view of the theory of functions of
a real variable, or, indeed, to take another example, from that of dif-
ferential geometry.

In the theory of functions of a real variable explicit functions not
expressible by power series are an everyday occurrence, and there seems
no reason for restricting the nature of implicit functions. In differential
geometry, on the other hand, we are rarely concerned with a more than
limited number of differential coefficients, supposed to exist at the point
under consideration, and the question whether the higher differential
coefficients exist or not does not arise and lias little interest.

The new definitions of differentials and the fundamental theorems
concerning them given in my paper " On Differentials," presented lately
to the Society, systematise the discussion of implicit functions im Kleinen.

The results obtained in the present paper for implicit functions of
any number of variables correspond precisely to the results for a single
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independent variable and include them as a special case, differentials
taking the place of differential coefficients. The scope of the results
corresponds exactly to the amount of assumption made in each case, and
the ordinary rules of the differential calculus are shewn rigidly to apply
for implicit functions defined in the wide sense of the present paper.

As far as I know, the only theorem on the subject of implicit functions
not necessarily analytic previously known is the following one due to
Dini,* and its generalisation for several variables and more than one
equation :—

If the equation f(x, y) = 0 is satisfied by the values x = a, y = b,
and if the function f(x y) and its first differential coefficients at (a, b)
are continuous with respect to (x, y), and if fy is not zero at the point
(a, b), then one, and only one, function y of x exists satisfying the
equation f(x, y) = 0 and having the value b when x is a. Moreover,
this function possesses at x = a a differential coefficient.

These theorems, which it will be noticed do not involve the idea of
differential at all, form a very special case of those given in the present
paper.

The theory takes its simplest form when the defining functions possess
at least a second differential, the corresponding general theorem obtained

as follows :—

If fi(x> y)y fz(x> y)> •••» fr(x>y) are r functions of the m variables x
and the r variables y, tohich are zero when the x's are equal to a's and
the y's to b's, i.e., at the point (a, b), and have n-th differentials there,
where n ^ 2, and if the Jacobian J of the f's with respect to the y's is
not zero at the point (a, b), then there exist unique functions ylt y%, ..., yr

of the x's, which have the values b1} ..., br at the point a, and, throughout
a closed neighbourhood of that point, make all the f's identically zero.
Moreover, these functions; y have at the point a n-th differentials whose
values may be obtained from the usual equations. (Theorem 9, § 14.)

When the defining function or functions have only first differentials,
the theorem takes a much less simple form. Taking, for simplicity, the
case of two variables x and y and a single defining function f(x, y), the
theorem is as follows :—

If f(x> y) oe a function of x and y, whose value at the point (a, b) is
zero, and which in a certain closed neighbourhood of the point (a, b)
is continuous with respect to x and with respect to y, and possesses at

U. Dini, Analisi, L, p. 163.
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the same point a Unite differential coefficient with respect to y, fb,
different from zero, then a function y of x exists with the folhwing
properties :—

(1) Its value is b when x is a.
(2) When substituted in f(x, y) it makes f(x, y) zero throughout

a certain neighbourhood of the point (a, b).
(8) Further, if, for each fixed value of x, f is a monotone never con-

stant function of y, this function y of x is unique.
(4) Further, if f is a continuous function of the ensemble (x, y), this

function y is a continuous function of x.
(5) Finally, if f possesses at the point {a, b) a first differential, then

this function y possesses at the point x = a a first differential coefficient.

This enunciation seems, perhaps, unduly complicated, but examples
are given shewing that no simpler statement will serve.

The paper falls into three parts : in the first part certain preliminary
theorems about differentials, required in the sequel, are proved ; in
Part II., implicit functions defined by a single equation, and, in Part III.,
those defined by two or more equations are discussed.

PART I.

§§ 2-5. Preliminary Theorems.

2. THEOREM 1.—If u be a function of the r variables xv x2, ..., xr and
the s variables yx, y2, ..., y», while v is a function of the s variables
Vi> 2/a> •••> y» and the t variables zJf z%, ..., zt, and, if u possess an n-th
differential with respect to the ensemble of the x's and the y's at the point
(av a2, ..., ar; blt b2, ..., bs), and v possess an n-th differential with
respect to the ensemble of the y's and the z's at tJie point (blt 62, ..., bs;
cv ca, ..., ct), then u-\-v and u—v both possess n-th differentials with
respect to the ensemble of the x's, y's, and z's at the point

{alt aa, ..., ar; blf b2, ..., b8; clf c2, ..., ct).

The theorem is obvious when n = 1, and follows by induction for
n > 1, from the very mode in which we have defined the n-th differential
at a point as the first differential of the (n—l)-th differential, supposed to
exist at the point and in the neighbourhood.

[N.B.—The y'a and 6's may, of course, in a particular case, be absent;
or, again, the x's and z'a with the a's and c's may be absent.]

3. THEOREM 2.—Under the same hypotheses, the product uv possesses
an n-th differential at the point in question.
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To prove the theorem when n = 1 we write, for shortness, x for the
ensemble of the re's, y for that of the i/a, and z for that of the z's, and
D for the operator

\ dx dy dZJ

Writing u = f(x, y), v = g(y, z), uv — F{x, y, z),

we then have, using the rule for differentiating a product,

DF=fDg+gDf. (1)
Now

F(x + h, y+k, z+l) =f(x+h, y+k)g(y+k, z+t)

= \f(x, y)+Df(x, yi+Ej \g(tj, z)+Dg(y, z)+E2\, (2)

when / and g both have first differentials at the point (x, y, z) in
question. Here E1 is a linear function of the ^'s and k's and E2 a
linear function of the k's and Vs, whose coefficients have zero as limit
when the tia, k's, and i!'s approach zero in any manner.

Hence, multiplying out the right-hand side of (2) and using (1),

F{x+h, y+k, z+t) = F(x, y, z)+DF+E3, (3)

where E3 is a linear function of the &'s, k's, and Vs whose coefficients
have zero as limit when the h'e, k's, and Vs approach zero in any manner.

The equation (3) shows that, by the definition of a first differential,
F has a first differential at the point in question, and it is given by

AF = fAg+gAf, (3')

since the operator D, which gives the differential A, if it exists, obeys the
relation (1).

This proves the theorem when n = 1. Moreover, it shews that the
difterential of the product is a linear function of u, v and their differentials,
and therefore, by Theorem 1 and the present theorem for n = 1, has itself
a first differential with respect to the ensemble (x, y, z) at the point in
question, if u, v and their first differentials have first differentials at the
corresponding points. In other words, recalling the definition of a second
differential as the differential., if it exists, of the first differential, supposed
to exist at the point and in the neighbourhood, the product uv has
a second differential with respect to the ensemble (x, y, z) at the point
(a, b, c), provided u and v have second differentials at the points (a, b)
and (6, c) respectively.

This proves the theorem when n = 2. Moreover, it shows that the
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second differential of the product is a linear function of x, r and their
first and second differentials, viz.,

Hence, by similar reasoning, the theorem follows for n = 3, and so
generally, by induction, the form of the n-th differential of the product
being identical with Leibniz's formula for the n-th differential coefficient
of a product.

4. THEOREM 3.—Under the same hypotheses, if w is defined by the
identity i n n\

9 u+vw = 0, (1)

w has an n-th differential at the point (a, b, c) provided v does not vanish

at the point (b, c).

To prove the theorem for n = 1, we have, using F(x, y, z) for w,

f(x + h, y+k)+g(y + k, z+l) F(x + h, y + k,z + l) = 0 ; (2)

or, since/and g have first differentials at the point {x, y, x) in question,

f(z,y)+Df(x,y)+El+{g{y,z)+Dg(y,z) + E,';F(x + h,y + k,z + l) = O. (3)

Multiplying this equation by g(y, z) and subtracting (1), after multiply-
ing it by the coefficient of F(x+h, y + k, z+l) in (3), we get

- / ( * , y) -Dg(y, z) + E,\ +g(y, z) \Df(x, iJ + Ej

+g(y,z){g(y,z)+Dg(y,z)+E,t; \F(x + h, y + k,z + l)-F(x, y,z)) = 0,

that is,

g{y, z) Df(x, y)—f(x, y) Dg(y, z)+E.d

+ \g(y, *)}* \F(x + h, y + k, z + l)-F(x, y, z)) = 0, (4)
where

E, = Eig(y,z)-E,f(x,y)

+g(y,z)\Dg(y,z)+E.2\\F(x + h,

so that E3 is a linear function of h, k, and I whose coefficients have zero
as limit when h, k, and £ approach zero in any manner whatever.

Now, if g does not vanish at the point in question, we may divide
(4) by g'2, whence, using the expressions for the differential coefficient of
a product or proving those expressions independently from the equation

8BR. 2 . VOL. 7. NO. 1 0 3 0 . 2 1»
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(4), we get

F(x+h, y+k, z+t) = F(x, y, z)+DF(x, y, z)+E3lg
2, (5)

where DF(x, y, z) = 9Df~/D9. (6)

This shews that F has a first differential at the point whose form is, of
course, precisely that of the differential coefficient of a quotient. This
proves the theorem for n = 1.

If u and v have second differentials at the point, and therefore first
differentials in the neighbourhood, we can, since g is continuous, so
restrict the neighbourhood that g is never zero in it. The equations (5)
and (6) will then hold throughout the neighbourhood, so that w, that is
F, will have a first differential at every point of the neighbourhood given
by the equation

{9(y,z)&f(x,y)-f(x,y)&g(y,z)\-\g(y,z)\*AF(x,y,z) = 0,

which is an equation of the original form (1), in which the place of u is
taken by the difference of products of functions which are known to have
first differentials, that is, by a function which has a first differential at
the point in question, and the place of u is taken by — w.9, that is — <?2,
which again, by Theorem (2), has a first differential at the point and
is not zero there. Hence, applying the theorem already proved for w= 1,
it follows that F has a second differential, and that this is again given
by an equation of the form (1).

Using induction, it easily follows that the theorem is true for all
values of n, and that the successive differentials may be obtained by the
rule for finding the successive differential coefficients of a quotient.

5. THEOREM 4.—If f(xv z2, ..., xp; z1}z2, ..., zj be a function of the
(p+m) variables x and z and have a first differential at the point
{alf a2, ...,ap; cv c2, ..., cm), and if the z's are functions of certain of the
x's and of s other variables yx, y2, ..., ys and have the values cv c2, ..., cm

when the x's have the values ax, a2, ... and the y's the values bv &2, ..., bs,
and, if at the point (a1? a2, ... ; bv 62> •••) eacn °f th>e z's nas an n'in

differential with respect to the variables on which it depends, then
f, regarded as a function of all the p variables x and the m variables
y, has an n-th differential at the point (alf %,.. . , av ; bx, b2, ..., 6J .

It is first to be remarked that we may suppose each variable z to be
a function of all the p-\-m variables x and y. For a function of some of
these variables is only a special case of a function of all of them, and its
differential coefficient with respect to any missing variable is zero, so
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that its differential may be regarded as its differential with respect to
all the variables.

Having premised this, it is unnecessary explicitly to mention the x's
directly involved in / , since any such x is then a special case of a function
of the (p-\-m) variables, and may itself be denoted by the letter z.
Having done this, there is no longer any reason for distinguishing between
the ?/'s and the x's, and we may replace f(xvx2, ...,xp\ zx, z2, . . . , s j by
f(zv z%, ..., zm), where the z's are functions of xv x.2, ..., xp.

To prove the theorem for w = l , let us write

/(*i, ••-, zm) = F{xv ..., xp)

or, shortly, using x and z for the ensembles of the r's and the -e's
respectively f{z) = F{x)m

Since the Z'B have first differentials at the point considered,

where Ei is a linear function of hlt h2, ..., hn whose coefficients have zero
as limit when the 7&'s approach zero in any manner, and D denotes the
operator d d d

dxx dx% dxp

Hence F{x) = fW+D^+E^, ..., cm+Dzt,,+Eni';

or, since F has a first differential,

F{x) = f(c)+ 2 (Dz+E) & +J£\ (1)

where E' is a linear function of the increments Dz-\-E, and therefore of
the p variables h, whose coefficients have zero as limit.

Hence, keeping all the variables except one constant and proceeding
to the limit after dividing by the increment of that variable, we get

and therefore DF(x) = 2 (Dz ^- . (2)
~- V dz I

Hence, by (1), F(x) = F(a)+DF(x)+E",

where E" is again a linear function of the h's whose coefficients have zero
as limit. That is, F(x) has a first differential at the point considered.

This proves the equation for n = 1.
If n = 2, the above reasoning shews that the first differential of F,

which, since it exists, has the form DF and is therefore given by the
2 i) 2
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equation (2), has a first differential, and therefore F has a second dif-
ferential with respect to the x'a. For DF is, by (2), expressed as a
sum of terms of the form Dz{df/dz) consisting of two factors: the first
a function of the x's having a first differential with respect to the x's at
the point considered, the second a function of the z's having a first
differential with respect to the z's at the corresponding point. Each
such term has, therefore, by Theorem 2, a first differential with respect
to the x's and z's, and therefore, by what has been proved, a first
differential at the point considered with respect to the x's alone. Hence
the sum of all the terms has the same property.

This proves the theorem for n = 2.
The theorem now follows, similarly, by induction, assuming that it holds

for n = r, and that the r-th differential with respect to a; is a function
of the x's and z's which has a first differential with respect to all the x's
and z's which it involves.

PART II.

§§ 6-11. Existence and Differentials of an Implicit Function defined by

a Single Equation.

6. THEOREM 5.—If fix, y) be a function of x and y, whose value at
the point {a, b) is zero, and which in a certain closed neighbourhood of the
point (a, b) is continuous xoith respect to x and with respect to y, and
possesses at the same point a finite differential coefficient with respect to
y,fb different from zero, then a function y of x exists with the folloioing
p roperties :—

(1) Its value is b when x is a.

(2) When substituted in f{x, y) it makes f(x, y) zero throughout a
certain neighbourhood of the point (a, b). -

(3) Further, if, for each fixed value of x, f is througJiout some closed
neighbourhood of the point (a, b) a monotone never constant function of y,
this function y of x is unique.

(4) Further, if f is a continuous function of the ensemble (x, y) in the
closed neighbourhood of the point {a, b), this function y of x is a con-
tinuous function of x.

(5) Finally, if f possesses at the point (a, b) a first differential, then
this function y of x possesses at the point x = a a first differential
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coefficient, whose value p is given by

= 0.

For definiteness it will be assumed that fb is positive. It then follows
from the definition of a differential coefficient, and the fact that / (a, b) is
zero, that we can find a stretch on the ordinate of the point (a, b), having
that point as centre, such that in the upper half / is greater than zero,
and in the lower half it is less than zero. Hence also, since / is con-
tinuous with respect to x, we can draw two stretches* parallel to the axis
of x, having the end-points of the stretch just found for centres, and of
equal length, such that in the upper one / is greater than zero, and in the
lower one / is less than zero.

Completing this rectangle + we obtain a closed neighbourhood of the
point (a, b), such that in it on each ordinate/ has a positive value and a
negative value, and therefore, since / is continuous with respect to y,
assumes the value zero at one or more points forming a closed set.

The ^-coordinate of the lowest of these points on each ordinate con-
stitutes a function y of x having the properties (1) and (2).

If / is for each fixed value of x, a monotone never constant function of
y, this function y of x is unique, for / then only assumes each of its
values once on each ordinate, in particular / is zero once only. This
proves (3).

To prove (4), we only have to notice that, if / is continuous with
respect to the ensemble (x, y), the plane I set of all its zeros in the closed
neighbourhood chosen forms a closed set. Hence, taking any sequence
xv x%, ... having x as limit, the corresponding zeros have as limit the
zero on the limiting ordinate, so that the function y of x has for every
value of a; a value equal to the unique limit of values in the neighbour-
hood, i.e., it is a continuous function of x.

Finally, if / has a first differential at the point (a, b), there is a closed
neighbourhood of the point such that throughout it

f(a+h, b+k) = h(fa+ei) + k(fb+ej,

where the e's have zero as limit when h and k approach zero in any
manner. Hence, inserting for b-\-k our function y,

0 = (x-

* In the corresponding (n + l)-dimensional discussion these are what may be called hyper-
stretches : thus for three dimensions they are squares, for four dimensions cubes, and so on.

t (n +1)-dimensional parallelepiped.
X (n +1 )-dimensional.
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so that U^b =

x—a

where, when x approaches a in any manner, y being continuous has the
limit b, and therefore ex and e.2 both have the limit zero.

Proceeding to the limit, we have, by the definition of a differential co-
efficient, ,

dx~

that is, fa+pfb - 0.

Note.—If the condition which secures the uniqueness be omitted it is
evident that the uppermost of all the functions y of x which make / = 0
is upper-semi-continuous, and that the lowest is lower-semi-continuous.

COR. 1.— We may replace the condition that throughout the neigh-
bourhood f should be for each fixed value of x a monotone nowhere con-
stant function of y, by the condition that fy should exist throughout a
closed neighbourhood of (a, b) and be nowhere zero.

In fact, if fy is nowhere zero in the neighbourhood it has always the
same sign on each ordinate, since for each fixed value of x it assumes on
the corresponding ordinate every value between its upper and lower
bounds, and therefore could not have opposite signs without being some-
where zero.

It is for the rest clear by applying the Theorem of the Mean that, if /
vanishes at two points on an ordinate fy must vanish at some point be-
tween the two points, so that the condition in question necessarily
excludes this possibility.

COR. 2.—We inay replace the condition in question by the following :*—
that fy should exist throughout a closed neighbourhood of the point {a, b),
and be continuous at that point with respect to the ensemble (x, y).

For in this case we can assign a closed neighbourhood of the point
(a, b) throughout which fy has the same sign as at (a, 6), and therefore
never vanishes, so that we can apply Cor. 1.

7. The following examples shew that the theorem just proved contains
the utmost that can be stated under the circumstances there enunciated.

* A particular case of this is Dini's theorem which replaces this condition by requiring
the continuity of both/* and/,, at the point (a, b). Cp. Dini's lithographed lectures.
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Ex. 1.—Let f(x, 11) = y-x-x2- -==-, (1)

except in that portion of the plane bounded by the carves

y = x-\-2x2, and y = x—x*,

in which the line y = x lies, in which portion

f(x,y) = 0. (2)

Here, when x = 0, / = y, therefore at the origin clf/dy exists, and is unity.
When y = 0, f ~ — x—x2-\-2xs, and therefore df/dx exists at the origin
and is —1.

Evidently / is a continuous function of (x, y) throughout the plane,
vanishing as it does on the boundary of the two portions of space in which
it has values given by (1) and (2) respectively.

Evidently along any one of the curves

where c has any positive value, rational or irrational, / vanishes. Thus
there is a more than countably infinite number of continuous functions
of x which make / zero.

In spite, however, of this fact, / possesses a first differential at the
origin. For suppose e any assigned small positive quantity. Then we
can shew that throughout the square whose centre is the origin, and sides
parallel to the coordinate axes, and of length \e, we have the following
equation . , . . , .

f{xfy) = x(f-) +y{y-) +e,x,
\dxJ o,o \dy/o, u

where ex is numerically less than e.

In fact, if (x, y) be any point in the portion of the plane in which (1)
holds, we have . n 2 ^ 2

y—x > 2J;2 or < — x2 ;
and therefore numerically ^ x2. Hence ^j^y — x) is numerically < 3x2.
Hence r/ . 172 / O \

f(x, y) = y—x + kx2, (3)
where k is numerically less than 4, and kx accordingly numerically less
than e, since the point in question is supposed chosen in the square
previously referred to.

Again, if (x, y) lie in the portion of space in which (2) holds,

y—x^2^ and ^ — x2;
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and is therefore numerically less than 8a;2. Hence

f{x, y) = 0 = y—x—(y—x) = y—x + k'x2, (4)

where k' is numerically less than 3, and k'x accordingly numerically less
than e. From (3) and (4), bearing in mind the values of df/dx and df\dy
at the origin the required result follows.

Ex. 2.—Let / have the same value as before, except in the portion of
the plane between the curves

y = x+2x2, y — x—x2.

In this portion of the plane let

t{x, y) = (x + 2x2-y)(x-x2-y).

As before, at the origin df/dy = 1, and df/dx = — 1, and we prove by
an argument similar to that used in the preceding case that / possesses a
differential.

Here, on the other hand, there are two, and only two, functions of y
which, when substituted for y in / , make / vanish, these functions being
both of them continuous.

8. THEOREM 6.—Iff(x, y) is a function of the ensemble (x, y) which is
zero at (a, b), and possesses there an n-th differential, where n is greater
than unity, then, provided df/dy is not zero at the point (a, b), we can
find a closed neighbourhood of the point (a, b), in lohich there is one, and
only one, function g{x) of x which has the value b when x = a and when
substituted for y makes f{x, y) identically zero. Further, this function
possesses an n-th differential coefficient at the point {a, b), which may be,
obtained by equating to zero the total successive differential coefficients of
the function f{x, y), obtained by the ordinary rule.

First, to prove the theorem when n = 2, we remark that, since the
function has a second differential at the point (a, b), a first differential
exists at and in a closed neighbourhood of the point (a, b). Also since/
has a second differential at the point (a, b),fy has a first differential there,
and is therefore continuous at {a, b). Hence, remembering that fb is
different from zero, we may so choose our neighbourhood that fy is
different from zero at every point considered. The neighbourhood so
chosen is then such that the conditions of Theorem 5 are satisfied at every
point. Hence corresponding to each point x there is a " tile," that is, a
closed rectangle with x as centre, and in this tile a unique function g (x),
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such that / [x, g (#)] is identically zero throughout the tile, and further

fx+g'(x)fy = 0, (1)

or, symbolically, (— + y' -A f(xy) = 0,

where, after differentiating, we have to insert g (x) for y.
These tiles overlap, but, since in each tile the function g(x) is unique,

it follows that the value of g(x) is independent of the particular tile used
in determining its value, and is the same whether or no that tile was the
one with x as centre. Thus we have a unique function g{x) denned
throughout the whole neighbourhood, and it has a differential coefficient
at each point, given by the identical equation (1).

Now, since / has a second differential at the point (a, 6), fx and fy both
have first differentials there, and therefore have total differential coeffi-
cients with respect to x when we replace y by g(x). Also the right-hand,
and therefore the left-hand side of (1) has a total differential coefficient,
whose value is zero. Thus, since fy(x) is not zero at (a, b), we may apply
Lemma 2, and say that g' (x) has a first differential coefficient at the point
(a, b), and that it is given by totally differentiating the identity (1) with
respect to x, and putting x = a, y = b. That is, g(x) possesses a second
differential coefficient, and it is given by

' (a)+fbb {g'iaV^+M'ia) = 0,

or, say, symbolically

that is, it is obtained by equating to zero the total differential coefficient
of the second order of f(x, y) with respect to x, when y = g (x).

It will be noticed that we have, in performing the total differentiation,
made no distinction between / ^ and fba, in accordance with the results
proved in my paper " On Differentials."

This proves the theorem when n = 2.
Again, if n = 8, not only, as we saw, is fy different from zero at each

point of the neighbourhood of (a, b), but at each such point/ has a second
differential, so that the above reasoning applies, and we may assert that
at each such point g{x) has a second differential given by

that is, by (/,,, ... J l, g'f+fyg" (x) = 0. (2)
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The reasoning by which we now deduce the existence and value of
g'" (a) from (2), is precisely similar to that by which we deduced the
existence and value of g"(a) from (1) in the case when n = 2.

For, since / has a third differential at (a, b), f^, fKy and fyy have first
differentials there. Also g' (x) has a first differential coefficient, and there-
fore a first differential at the same point. Since the product and the sum
of functions having a first differential at (a, b) is a function having a first
differential there, it follows that the quadratic (fxx, • . .j(l, g'f has a first
differential at {a, b). Moreover fy has a first differential at the same point.
Hence both these functions (fxx, ---Xl, g'f, and fy have total differential
coefficients with respect to x, when we replace y by g(x). Again the right-
hand side, and therefore the left-hand side of (2) has the total differential
coefficient zero. Thus, since /& is different from zero, we may apply the
Lemma, and say that g"(x) has a first differential coefficient at the point
(a, b), and that it is given by totally differentiating the identity (2) with
respect to x, and putting x = a, y = b. That is, g'" (a) exists, and is
given by

(/«oa, . . . I I , <7')3+3 \U+g'i*)M 9"+M" = 0,

or, symbolically, by

This proves the theorem for n = 8. We have now only to notice that, if
we have proved the theorem for n = r, it follows by corresponding
reasoning that it is true for n = r-\-l. Hence, by induction, the truth of
the theorem follows.

9. The equations giving in order the successive differential coefficients,
when written out at length.are as follows :—

J; + y ' i ) / = 0 ' or
(2) (^+y'£)f=°> ^ {fxx,fxy,fyyXi,y')2

(3) </m, . . . I i , y'?+z(f*y+y'fyy)y"+fvy'" = 0;

(4) (/«,, ...II, y'
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(5) (g , ...ii, »')'+£|(/w ...ii,,/)',/•+^M(fa!l, ...XUyfy"1

m,-Xi. f>y"'+wfny"i/"+f,if> = 0,

and so on.
It should be noticed that it follows from the mode of formation of

these equations that the coefficients are partial differential coefficients of
/ such that, if any coefficient involves r differentiations with respect to y,
it is multiplied by precisely r differential coefficients of y.

10. If in Theorem 5 we interpret the symbol x to mean the ensemble
(xlt x2, ..., xv), so that f(x, y) means f(xv x2, ..., xn, y), the theorem be-
comes a theorem in the theory of functions of (?i-f-l)-variables, no
alteration in the wording being required except in (5), which should now
read as follows :—

(5) Finally, if f possesses at the point (a, b) a first differential, then
this function y of x possesses at the point x = a a first differential, whose
value Ay is given by the symbolic equation

dx ' 9 dy

{that is, written out in full,

in which the x's are to be replaced by a's and y by b.

The proof of this theorem is almost word for word the same as before;
the insignificant verbal alterations have been already given in footnotes.
For complete clearness the part of the proof which refers to (5) is given in
full below.

" Finally, if / has a first differential at the point (a, b), there is a closed
neighbourhood of the point such that throughout it

f(a+h, b+k) = h(fa+e) + k(fb+e'),

that is, when written out fully,

j , ..., an+hn, b+k) =

where the e's have the limit zero when the h'a and &'s approach zero in
any manner.

Hence, inserting for b-\-k our function y,

0 = {x-a){fa
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so that y = &+(.r-a)(-£±l) = b+(x-a)(-& +e),

where, when x approaches a in any manner, y being continuous, has the
limit b; and therefore the e's all have the limit zero, and hence the same
is true of the e's. Taking all the x's except one to have the corresponding
values a, and then proceeding to the limit with the remaining x, after
dividing the equation by x — a, we see that the corresponding dyldx exists
at the point a, and has the value —falfb-

Hence the preceding equation proves that y has at the point a a first
differential which is given by the equation

Ay = (x-a)(-falfh),

or, at length, Ay = 1h(—faJfb)+-.' + hn{-faJfb),

that is, Ayfb+hjai+... + Kfatt = 0,

or, as we may write it, symbolically,

or, shortly,

in which symbolic equation we are to understand that the values of x and
y are after differentiation to be changed to a and 6."

11. Theorem 6 may similarly be interpreted in space of
dimensions. We merely have to change " differential coefficient" in the
enunciation into " differential." It is unnecessary to reproduce the proof,
but it may be well to give the equations determining the successive
differentials more at length.

Corresponding to the equation (1) of § 8, we now have

holding at every point of the closed neighbourhood, where, after differentia-
tion, we have to insert g(x) for y, and Ay denotes the differential of this
function of the x's at the point x, that is (xv x2, ..., xn).

Thus Ay does not involve y, and if we operate upon it with the

operator Ih v- -f-Az/— J, we get the second differential A2y if this exists.

Now this operator (h — -\-Ay-r-j is the operator which gives the total
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differential, when it exists, of a function of all the x's and the variable y,
and therefore, when we replace y by g(x), gives the total differential of
such a function with respect to the x's alone, along the curve y = g (x).
Applying this operator to the identity (1), therefore, we get a relation
which is true at the point a, that is (alf a%, ..., an), the argument given in
§ 8 applying now, when we recall that the product and the sum of func-
tions having an w-th differential at a point is a function having at that
point an ?i-th differential. Hence the function g {x), or y, has a second
differential at the point a, and it is given by the symbolic equation

dx y dyl\ dx y dylJ

that is, by what was pointed out about the effect of the operator on Ay,

the second differential of / when y is constant, and, similarly,

(Here it is to be remarked that we have identified mixed differential
coefficients which oniy differ in the order of differentiation, which is correct,
by the fundamental theorem in " The Theory of Differentials.*)

Thus the equation (h-p -\-Ay-=-j / = 0

may be written D2/+ 2AyDfy+(Ay)2 fyy +/„ A2y = 0,

or (D2/, Dfy, fyyX 1, Ay?+fvA*y = 0, (2)

a form which corresponds precisely to (ii.) of § 9.

* hoc. cit.
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Similarly, when n = 8, we have for the third differential of y at the
point a, the symbolic equation

or, which is the same thing,

(D8/, B% Dfvv,fyyy\l, &y?+S(Dfy+±yfyy) A2y+fy&*y = 0. (3)

It is unnecessary to dwell longer on these equations. Summing up we
y say the r-th differential of y at the point a is given symbolically by
equation

may say
the equation

just as, in the simple case when there is only one x, it loas given by

\dy ' dy) J

This equation when expanded has precisely the same form as before, the
successive differential coefficients of y being replaced by the successive
differentials Ay, A2?/, A3y, ..., Ary, and differentiation with respect to :r
being replaced by the operator D, which gives the partial differential of
a function of the x's and y with respect to the x's alone.

12. It should be noticed that in Theorem 5, § 6, although the unique-
ness of the solution is involved in the proof of the continuity of y, con-
sidered as a function of x in the neighbourhood of the point x = a, each
such solution is continuous for any value of x such that on the corre-
sponding ordinate there is only one zero of f(x, y), the neighbourhood
being chosen sufficiently small; in particular, this is the case at the point
x = a itself, if there is no sequence of values of y with b as limit such
that for each f(a, y) =• 0. This follows at once from the reasoning used
in the proof of § 6. If this be the case, the reasoning used in the proof
of the propeity (5) still applies whether or no the solution is unique; that
is to say, if fix, y) has a first differential at (a, b), each of the solutions
has a differential coefficient at the point x = a, and the value of this
differential coefficient is the same for all solutions and is given by
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An interesting application of this is constituted by the following
theorem.

18. THEOREM 7.—If g(x) is a function of x which has the value b when
x = a, and possesses at the point x = a a finite non-vanishing differential
coefficient, then there exists at least one function x of y ivhich has the
value a when y = b, and in a certain closed neighbourhood of the point
y = b renders the equation

V = g(x)

an identity; further, all these functions possess at the point y — bu
common differential coefficient whose value is 1/g'ia).

To prove this, we have, in fact, only to put

fix, y) = y—g(x),

and apply the above. For, when x = a, there is no value of y other than
b which makes f(x, y) vanish.

14. It now follows at once from Theorem 5 that if the function g{x),
mentioned in the enunciation of the preceding theorem is in a closed
neighbourhood of the point x = a, a monotone function of x, the function
x of y is unique. This is in particular the case if g'(x) exists in the
neighbourhood of x = a, and is nowhere zero. (Theorem 5, Cor. 1.)

Applying Theorem 6, § 7, we get the following theorem, involving a
most important case of uniqueness of the function x of y.

THEOREM 8.—If g(x) is a function of x which has the value b when
x = a, and possesses at the point x = a a finite n-th differential coefficient
where n ^ 2, and if g' (a) is different from zero, there is one, and only one,
function x of y which has the value a when y = b, and renders the equa-
tion

y =f(x)

an identity in a certain closed neighbourhood of the point y = /;.
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PART III.

>}v< 14-16. Existence and Differentials of Implicit Functions defined by
Two or More Equations.

14. THEOREM 9.—//" /,(.<-, y),f.2{.r, y), ..., f,{x, y) are r functions of the
m variables x and the r variables y, which are zero when the x's are
equal to a's and the y's to b's, i.e., at the point (a, b), and have n-th
differentials there, where n ^ 2, and if the Jacobian J of the f's with
respect to the y's,

dfj,
dy/

dfr
dy1

dfr
d!h

dyr

is not zero at the point (a, b), then there exist unique functions ylt y2,..., yr

of the m variables i\ which have the values blf b2, ..., br at the point a,
and, throughout a closed neighbourhood of that point, make all the f's
identically zero. Moreover these functions y have n-th differentials at
the point a, lohose values may be obtained from equations, which in
symbolic form are

> = x - 2
' • > •

Since the Jacobian J is not zero, all its principal minors are not zero,
and we may assume, without loss of generality, that it has been so
arranged that the leading principal minor is not zero. It then follows
that one of the principal minors of that principal minor is not zero, and
we may assume that the determinant is so arranged that that principal
minor is the leading minor. Proceeding thus, we may assume that the
determinant has been so arranged that none of the leading minors,

dyx' dyx

dfy df2

, 'h > J »

> J > dy*

'IL
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are zero at the point (a, b). Then, since

417

and/! has an ?&-th differential at the point {a, b), where n ^ 2, there is,
by Theorem 6, one, and only one, function yx of the remaining {m-\-r—D
variables x and y which has the value bx at the point (a1( ..., a,,,, b.2,..., &,),
and, in a certain closed neighbourhood of that point makes fx identically
zero. Moreover, this function yx has an /t-th differential at the point in
question.

Now, replace yx in /2 by the function so found, and call the result F2.
This is a function of the m variables x and the remaining (>• — 1) variables
y, which has the value zero at the point (av ...,«„„ b.2, ..., br), since
!h — &i there.

Also, by Theorem 2, it has an /i-th differential at the same point
since/! and yx both have H-th differentials. Also dF2jdy2 is not zero at
the point, since, F2 having a differential with respect to the x's and y's,
and therefore with respect to the //'s, at the point and in its neighbourhood,

(hj J d

where

so that

<Mi cllh —
dyx di/i

dF.2 , df2 df2
(<>J 1<J dl/

dj±f <JJ\
(hj,' di/i

or

Since J{ and J2 are both different from zero at the point, this gives a
finite value different from zero for dF.,jiJho.

We can therefore again apply Theorem 6, and assert that one, and
only one, function y2 of the m variables x and the remaining (>•—2)
variables y exists, which has the value b.2 at the point («t, ..., «m, />..„ .... l>r),
and in a certain closed neighbourhood or that point makes F., identically
zero. Moreover this function y2 has an u-th differential at the
point.

SER. '2. VOL. 7 . NO. 1 U 3 1 . •1 K
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Now, the effect of inserting this function y2 in F2 is obviously the
same as that of inserting this ?/2 in the yl previously found, and then in
/ 2 inserting this last y1} and the function y2 wherever it occurs explicitly
Doing this both in / x and in / 2 they become functions of the (m-\-r—2)
variables which vanish identically. Making the same change in / 3 and
denoting the result by Fs, we thus get the three equations

dy3 dija dy2 dys dyx dyz'

dih + dfi ^ / i }
dyB dyx dijn'

dys dy% dy9 dyx dyz

holding at the point in question, whence

2 %•}

Thus dFJdi/nip, finite and different from zero at the point (au...,am, 64, ...,&r),
at which, as before, F3 vanishes, and has an n-th differential. Thus we
can again apply the theorem and deduce the existence of one, and only
one, function y3 of the {m-\-r—3) variables having the value b3 at the
point, and in a certain closed neighbourhood of it making F3 identically
zero. This process may be continued and it is evident that we shall
at each stage obtain unique functions yx, y2, •••, yu of the remaining
(m-\-r—i) variables having the proper values at the point considered,
and having ?i-th differentials there, and making / l s f2, ...,fg vanish
identically in a certain neighbourhood of the point. Inserting these
values in fi+i and denoting the result by Fi+X, we then clearly get the
equations 777 , . , , , , , 7

•!• Sl H • flT* Wf fin i , /it ft It

7 ^ ^ 7 I j -t I • " * I 7 7 3

0 = /̂' | CM
d +i di/i dyi+i

holding at the point, so that

dyi+\

Thus again we can apply the theorem and proceed a stage further. This
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may be continued until we have exhausted all the ^-coordinates, when we
shall have expressed each of them in one, and only in one, way, so as to
have the values b at the point a, and, in a certain closed neighbourhood
of that point, to make the r functions / vanish identically ; moreover, these
functions y of the a?'s have >i-th differentials at the point. This being so
we have only to form the total differentials of the functions/ with respect
to the x'8, regarding the z/'s as being these functions, and equate the
result to zero, to obtain equations which determine the values of the
differentials of the y'a at the point a; these equations may be written,
symbolically, in the form

i)%fj = ° {i = *'2' •••'n;j = 1>2' •••'r)-
THEOREM 10.—Iffi(z, y), f^ix, y), ..., fr(#, y) are r functions of the

m variables x and the r variables y which are zero at the point (a, b), and
have first differentials at the point (a, b) and in a closed neighbourhood
of that 'point first differentials with respect to the i/s, and if in that
closed neighbourhood the Jacobian J of the f's with respect to the y's is
not zero, and the same is true of one of its principal minors Jr-u und of
one of the principal minors Jr-% of J,—\, and so on, down to one of the
common constituents of J, Jr-\, ••-, 3%, then there exist unique functions
Z/i> 2/2> •••> ?7»- °f Mie m variables x, which have the values blt b2, •-., b,- at
the 'point a, and, throughout a closed neighbourhood of that point, male
all the f's identically zero. Moreover, these functions y have first differ-
entials at the point a, whose, values may be obtained by solving the equations

for all integers i from 1 to r both inclusive.

The proof of this theorem is essentially the same as that of the pre-
ceding theorem, quoting Theorem 5, Cor. 1, instead of Theorem (i.

COR. 1.—The conditions that J, JT-i, ••, /2, Jy should not vanish in
a closed neighbourhood of the point (a, b), being replaced by the conditions
that they should not vanish at the point and be continuous there, the
theorem still holds.

2 E 2
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COR. 2.—The same conditions being replaced by the conditions that J
should not vanish at the point, and all the partial differential coefficients
of the f's with respect to the y's should be continuous at the point, the
theorem still holds.

COR. 3.—The conditions that the f's should have first differentials
with respect to the y's in a closed neighbourhood of the point, and that
J, Jr-i, ..., J\ should not vanish throughout that neighbourhood, may be
replaced by the conditions that all the partial differential coefficients of
the f's with respect to the y's should be continuous throughout a closed
neighbourhood of the point, and the Jacobian J should not be zero at the
point, the theorem then still holds.

A particular case of this is a theorem due to Dini that, if J does not
vanish at the point (a, b), and all the partial differential coefficients of the
f's are continuous, there is a unique set of solutions ylt ..., yr, each of
which then will have a first differential at the point.

16. If in the preceding theorem we only assume that at the point (a, b),
but not necessarily in the neighbourhood, J,Jr~\, ... are not zero, it is
evident that we still get at least one set of solutions, the uniqueness of
this set being the only thing affected. An argument similar to that given
in § 12 shews that each such solution is continuous for any ensemble x,
such that there is only one ensemble y for which the given functions
fvfz> •••>fr all vanish. In particular this will be the case at the point
x = a, provided the point y = b is not a limiting point of points y for
which fx(a, y),/2(a, y), ...,fr (a, y) all vanish.

Supposing this to be the case, the reasoning by which the
existence of the first differentials was demonstrated still holds, and
the equations determining them are the same for all possible sets of
solutions.

We thus easily get the following theorem, which corresponds to
Theorem 7.

THEOREM 11.—If gx{x), g2(x), ..., gr(x) are functions of the r variables
x which have the values bit b2, ..., br when the x's have the values
a1} ..., ar, and possess at the point x = a a finite non-vanishing Jacobian
J, which has anon-vanishing principal minor Jr-\, and so on, down to Jx,
then there exists at least one set of functions x of the r variables y which



1909.] IMPLICIT FUNCTIONS AND THEIR DIFFERENTIALS. 421

have the values ah ..., ar at the point y = &, and which in a certain
closed neighbourhood of that point render the equations

yx = fx (x), y3 =/„(«) , ..., i)r— / r (.»),

identities; further, all these sets of functions possess at the point y = b
a common Jacobian J' whose value is 1/J.

Moreover, corresponding to Theorem 8, we may assert the uniqueness
of the set of solutions, provided the / ' s have ?i-th differentials, where
n^.% and it will follow that the solutions themselves possess n-th
differentials at the point x = a.

[I take this opportunity of pointing out an oversight in one of my
previous papers, viz., that on " Oscillating Successions of Continuous
Functions," pp. 303, 304. The set of points in Cor. 2 is only an ordinary
inner limiting set when certain of the points at which the upper functions
= k are added to it. A similar remark applies to the lower function, and
to the statement regarding the measure of the oscillation.

I may add that this correction does not affect the validity of the
reasoning of my paper on " Trigonometrical Series," Mess. Math., 1908,
pp. 44, 48, though it necessitates a slight modification in the wording of
the proof.]


