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ON LAME'S DIFFERENTIAL EQUATION AND ELLIPSOIDAL
HARMONICS

By E. T. WHITTARER.

[Received and Read December 10th, 914.]

1. Introductory.

The object of the present paper is in the first place to establish the
following theorem :—

The solutions of the homogeneous integral equation
4K
y@) = Xj P, (ksnzx sns)y(s)ds (1
0 .

(where n is a positive integer, P, is Legendre’s Sunction, and k is the
modulus, and 4K the period of the elliptic functions sn) are solutions of
Lamé’'s differential equation

a2

a;"é: inm+1) A sn’z+ 4}y, (2)
and, in fact, are precisely those solutions of Lamé's differential equation
which are rational in sn z.

It is well known that the differential equation (2) has no solutions
which are rational in sn z, except when the constant 4 has one of a
certain sequence of values—the ““ Eigenwerte ” or *‘ characteristic values™
or “auto-values” of 4. The integral equation (1) does not involve 4 at
all, but it involves the constant A, which does not occur in the differential
equation, and the integral equation (1) has no solution (other than zero)
except when A has one of a certain sequence of Eigenwerte. The theorem
asserts that the solutions of (1) corresponding to the Eigenwerte of A are
the same as the solutions of (2) corresponding to the Kigenwerte of 4.

This theorem is applied in the later part of the paper in order to solve
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a problem which has been present to my mind for some years past—
namely, that of expressing the “ ellipsoidal harmonies >’ (that is to say,
the solution of Laplace’s equation

2 = N2

GV eV Y,

cx oy
which ave appropriate to the ellipsoid), in the form which, ag I showed in
1902,* represents the general solution of Laplace’s equation, namely,

V = 5_,, f(x cos 04y sin 841z, 6)d6.
0

It may be recalled that most of the well-known particular solutions of
Laplace’s equation can be readily expressed in this form ; for instance,
the fundamental spherical harmonie, cylindrical harmonic, and elliptic-
cylindrical harmonic solutions can be expressed respectively by the
equations

1" Py (cos 6) cos m¢p = constant X j (x cos O+y sin O+ i2)" cos mOd6,
0

2
e ¥ J.(kp) cos m¢ = constant X j gik(weosd+ysind+iz) oag 91040,
0

2

e~ " ce, (£) ce,(in) = constant X j gk (weos O+ysinb+i) oo (0)d0.
0

But the ellipsoidal harmonics, which are products of Lamé’s functions,
resisted all attempts to express them in this form; and, indeed, I satisfied
myself that it was impossible to obtain such an expression of them by use
of any of the properties of Lamé’s functions then known. The discovery
of the integral equation (1), however, has now enabled me to show (in § 4)
that any ellipsoidal harmonic in the rectangular coordinates (x, y, ) can
be expressed in the form

0

4K
S P, {7},;(7:’.1: sns+ycn sz dns) } E(s)ds, (8)

where P, denotes Legendre’s function, and E(s) denotes a Lamé’s func-
tion. This expression leads (in § 5) to a very general property possessed

* Mathemaliische Annalen, Vol. 57 (1903), pp. 333-355.
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by all Lamé’s functions, which can be expressed by the equation

E(wEP@) E(y)

4K k2
=)\50 P,L(k“sna gn 8 sny sns——]:,gcnacnﬁcnycns

1

~ zadnadnBdnydn S)E(s)ds, )

where a, 8, and y are any three quantities. By assigning special con-
stant values to B3 and 7, an infinite number of integral equations for
Lamé’s functions can be obtained, of which that obtained in the beginning
of the present paper is one.

2. Derivation of the Fundamental Integral Equation.

We shall now proceed to establish the result numbered (1) above.

For this purpose we shall require a property possessed by the
Legendrian function P, (k sn x sn s), namely, that it is a solution of the
partial differential equation

o 5)

Pl nn+1) k% (sn? x —sn?s) w.

To prove this, we have by direct differentiation,

02 A
322 P,(ksnzsns)— 8—5—”1)"(]‘ 8N Z 8N §)

= P,(ksnz sn s) k*(cn?z dn®z sn?s —cn?s dn?s sn?s)

+2k3P) (k snx sns) sni sus (snc—sn?s)
= k% (sn® 2 —sn?s)[(k? eniz sn®s—1) P, (k sn z sn 8)

=42k snz sn s P, (k snx sns)]
= n(n+1) En?z—sn?s) P, (k snz sns),

which establishes the result.
Now, let I(z) denote the integral

4K
j P,k sux sns) y(s)ds,
0
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where y (s) denotes a solution of Lamé’s equation

g—zzﬂ = Inn+1D K sn’s+4}y, (5

the solution in question being rational in sn s.
Then we have

diIﬂ —nn+1)ksn?z+4} T

dz
4K aﬁ

=5 [a_x‘“ P,ksnzxsns)—nmn+Disn’z Pk snzsns)—AP,(ksnx SH:S)]
0

X y(s)ds.

Using the above property (5) of the Legendrian function, the right-hand
side of this equation becomes

4K 2
j B%—QP,L(k snxsns)—nm4+ D ends Ptk snesns)—AP, (ksnzx sns):l
(1}
X iy (s)ds.

Substituting from equation (6), this becomes

4K aﬂ d&’y
L I:y(s) 8—s2P"(k snz an s)—P,(k spgn s) W] ds,

a . dy 4K
or y(s) by P,ksnzxzsns)—P,(ksnzsns) (g:lo ,

and this is zero, since P,(k snx sns) and y(s) have 4/ as a period.
" The integral I is therefore a solution of the equation

Zixyg—{n(«n-}—l)kgsngm+A} y=0; (7
and from its form it is evidently a rational function of snz. But there
cannot be more than one independent solution of the equation (7) which
is rational in sn 2 : and this is the solution which, when s was taken as
variable, was denoted by y (s). Therefore I must be a constant multiple
of this solution y (x); that is to say, the solutions of Lamé's equation (7)
which are rational in sn x satisfy the homogeneous integral equation

£:4

y@) = A 5 Pn(k snxsns) ys)ds.

0
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8. 4 Particular Case.

As an illustration we shall verify this result for one of the simplest of
Lamé¢’s functions, namely,

E@) = K en?x—1¢,
where t = 3 {14+E4+v/A—E+EY}.

As we shall find, the verification by direct integration is by no means
obvious, but requires the recurrence formule between the integrals of
elliptic functions, as well as the algebraie properties of ¢.

For this particular function we have n = 2, so the theorem to be
verified 1s

4K
E@ = Aj’ (8% sn%x sn®s—1)(k*sn? s—¢) ds. (8)
0
Now we have C—%(sn sensdns) = 1—2(1+%%sn?s 48342 snts.
Integrating with respect to s between the limits O and 4K, we see that
4K 4K
if the integrals J ds and j sn?s ds are denoted by I and J respectively,
0

0

. snts ds = 5% {21+ J—1}.

we have K
J
Substituting in equation (8), the integral on the right hand becomes
tI—-k*(1+38tsn’x) T+ A sn’z {21+ KT —1},
or —I(Fsn?z—t)—k2T {14+8tsn’z—2(1+ %% sn’ x}.
But since ¢ satisfies the equation
88—2t(1+4)+ 42 =0,

2
we have 8t—2(1+kY) = — kt-;

and therefore the expression may be written

2
—JT(2sn?z—t)— k—t{(k2 sn’z—1),

or — (I+ %’) E @),

which establishes the result.
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4. Ezxpression of the General Ellipsoidal Harmonic.

We shall now obtain an expression for the general ellipsoidal harmonic

in the form oo
j S (x cos 64y sin 0+ iz, 6) d6.

2

be a family of confocal quadrics. The ellipsoidal harmonics associated
with this family are defined to be the product of one of the quantities

1, =2 vy, & yz zx, xy, IY2,

__1)

)

(where 4, 5, ..., & are constants), such that the whole produet satisfies
Laplace’s squation 2y

2+ 2+

by an expression of the type

@y . 2 NP Y
(tl+t1—-—b9+tl-—c“ 1>(t2+t,

It is a well known theorem that there are always (2n+4-1) of these ellip-
soidal harmonics of any degree n in (z, y, 2). We shall denote any one of
them by G, (z, y, 2).

The terms of highest degree in G,(z, y, 2) will evidently be

z Yz ] p .2 2 2 2 2
EA ) (E+ A+ )
{ 1 Yy Ezr xyz [ <t1 + tl_b‘z + tl___cﬁ) A + t.z—b2 + t2—62
i zy 22 a e
. (7’\‘ + t]\-—b2+ tk_cﬂ>,

the large bracket indicating that some one of the quantities inside it is
to be taken as a multiplier of the product outside. These terms of highest
degree we shall denote by H,(z, y, 2). It is obvious that H,(z, y, 2)
satisfies Laplace’s equation on its own account; and being homogeneous
of degree n in (z, y, 2), it will be expressible in the form

H,(x, y, 2) = Sh (z cos O+y sin 8412)" £(0)d0O,
0

where f(0) is not yet known.
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Now it is known* that

_ ( D2 D4
Gu@ ) = \1- o Yeten—nens } Ho(z, y, 2),
o2 o? 2
where D? stands for a® a2t B2 P +72§z_2 ,

and (a, B3, y) are the semi-axes of any one of the quadrics of the family.
Substituting for H,(z, y, 2) the above value, we have

G,(z, y, 2)
(e (g nr—1) . s 2n—=1)n—2)(n—38) ., ., )
—So’ 4"~ 2@ Bt 2 a@n—Dan—g 4" B fOd6,
where A = xcos O+ sin 041z,
and B = /(a® cos? 0432 sin? 0 —y?) = 4/(c*—b?sin?h),
_ 2 i
80 Gz, Y, z) = SO P, (B) f(G)dG,

where P, denotes Legendre’s function ; a constant factor and a B™ having
been absorbed into the f(0).
Thus we have the ellipsoidal harmonic expressed in the form

N x cos 04y sin Oz
Gn (z: y’ Z) —_ 50 Pn ( ,\/(62_1)2 Sin2 6) >f(9)d9,
where f(0) is a function as yet undetermined.

The form of this result suggests a change of variable. Let s be a new
variable introduced in place of 6, and defined by the equation

cn s

sin 0 =
dn s’

where the elliptic functions are formed with the modulus # = b/c. Then
we have

cos 0 __sns sin 0 _cns 0 = — k'ds

NVE=Dsin?0) T ¢ ' J(@—bsin?0) ke’ dns’
and the formula for G"(z, ¥, %) becomes

(1

4K
Galz, y, 2) = j P, e (('xsns+yens+4izdn s)} p(s)ds, . P
0

where ¢(s) i a function which we shall now proceed to determine.

* W. D. Niven, Phil. Trans., Vol. 182 (1891), p. 245.
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In place of (z, y, 2) introduce coordinates (a, B, y) defined by the

equations
1 z = ck*snasnfsny,

k2
y=—c¢zrena enfBenwy,

z=;§dnadn,8dny,

the elliptic functions being formed with the same modulus as before.
Then the equations

a = constant, 3 = constant, y = constant,

represent respectively the three families of surfaces of the confocal
family : and it is known from the way in which ellipsoidal harmonices are
built up of Lamé’s functions that the ellipsoidal harmonie G, (z, ¥, 2) eon-
sidered either as a funection of « alone, or as a function of B alone, or as a
funetion of v alone, satisfies Lamé’s differential equation.

Now G in its new form is

£1.9 2
Ga.lr, y, 2 = j P,L(k“‘snusn,@sn'ysns—]%cna ecnBcnycens
0

— %ngdnadn,B dnvy dns) ¢ (8)ds,

and this satisties Lamé’s equation when regarded as a function of «, what-
ever constant values may be assigned to 8 and y. Suppose then that we
assign the value K to 3, and the value K +iK’ to v, so that

enB =0, snB8=1, dny =0, sny=7lc-.
4K
Thus S P,k snasns)¢(s)ds
0

is a solution of Lamé’s equation in «. Comparing this with the result of
§ 2, we see that #(5) = E (),

where E(s) is a Lamé’s function, and indeed is the particular Lamé’s
function associated with the ellipsoidal harmonic considered. Thus sub-
stituting this value of ¢(s) in equation (9), we have the required expression
Jor a general ellipsoidal harmonic, namely,

2 (

G. (e, Yy 2) = constant X S P, 1 ];1,—0 (k'zsn s—+ycens-+izdns) } E(s)ds. (10)

0
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5. 4 General Property of Lamé’'s Functions.

If in equation (10) we express the ellipsoidal harmonic as a product of
three Lamé’s functions, the equation becomes

E(@E@® E(y

4K

2
= constant X j

. P, (k“‘snasnBsn'ya:-xn.s*-—kﬁ-,2 cnaenfBenycens

- El,—zdna dnBdny dns) E(s) ds.
If in this equation (which includes as a particular case the integral equa-
tion obtained in § 2) we regard any two of the quantities a, 3, y—say B
and y-—as constants, we obtain a homogeneous integral equation for
the Lameé’s function E(a), with a symmetrical nucleus. It is obvious that
an infinite number of homogeneous integral equations satisfied by the
Lamé’s funetion E(a) can be obtained by assigning special values to 3
and vy, or differentiating, &e., with respect to one of them.





