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91. 
Int roduct ion.  

The object of this paper is the solution of Laplace's potential equation 
~ V ~2 V ~2 V 
~x' + ~-W + ~-~ = 0 '  

and of the general differential equation of wave-motions 

~ V ~ V ~ V ks ~ V 
~x-- ~ 4- ~-~ + -~-  = ~t~, 

and of other equations derived from these. 
In w 2, the general solution of the potenkial equation is found. 
In w 3, a number of results are deduced from this, chiefly relating 

to particular solutions of the equation, and expansions of the general 
solution in terms of them. 

In w 4, the general solution of the differential equaL4on of wave- 
motions is given. 

In w 5, a number of deductions from this general solution is given, 
including a theorem to the effect tha~ any solution of this equation can 
be compounded from simple uniform plane waves, and an undulak)ry 
explanation of the propagation of gravi~aL4on. 

w 

The general solution of the potential e~uation. 

We shall firs~ consider the equation 
~ V ~ V ~ V 
~x ~ + ~ + ~ = O, 

which was originally given by Laplace*). 

*) Mdmoire sur la theorie de l'an~eau de Saturne, 1787. 
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This equation is satisfied by the potential of any distribution of 
matter which attracts according to the NewConian Law. We shall first 
obtain a general form for pohmtial-funetions, and then shall shew that 
this form constitutes the general solution of Laplace's equation. From 
the identity 

2~ 
1 j ~ Z  du 

1 ~--" 2~ --c) i(x--a)cosu+i(y--b)sinu' ]/{ (x--a)~--} "- (y--b) ~ -Jr- (z--e) s } "-}- 
0 

we see that the poimntial at any point (x, y, z) of a particle of mass m, 
situated at the point (a, b, c), is 

21$ 

m r . (  du 
2-~ z+ixcosu+iysinu)~(e+iacosu+ibsinu) 

0 

which, considered as a function of x, y, z, is an expression of the type 

2 ~  

f f ( z+ ix  cos u+iy  sin u, u)du, 
0 

where f denotes some function of the two arguments 

z + i x c o s u + i y s i n u  and u. 

It  follows that the potential of any number of particles ml, m2,..., m~, 
s i tu~t~ st the poinU (alblel) , (a2b~c~) , (a~b~c~), . . . ,  a,b~),  is an ex- 
pression of the type 

or 

2 ~  

f {f (z+ix cos u+iv sin u) + 5( +ix cos u+iv sin 
o + f~(z+ix cos u+iy  sin u, u)}du 

2 ~  

f f ( z+ ix  cos u + i y  sin u, u)du, 
0 

where f is a new function of the two arguments 

z + ix cos u + iy sin u and u. 

In this way we see that the potential of any distributio~ of .matter 
which attracts az~zrding to the ~Vewto~ian Law can be rel~esented by an 
ex~ession of the type 

2 ~  

f f ( z + i x  cos u+iy  sin u, u)du. 
0 
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The question now nah~raUy suggests i~se~ whether ~he mos~ general 
solution of Laplace's equatdon can be represented by an expression of t~is 
type. We shall shew tha~ the answer to this is in the affirmative. 

For let V(x~ y, z) be any solution (single-valued or many-valued) of 
the equation 

~ V .  b~V b~v 
~ + ~--~ + ~-~ ~- o .  

Let "(Xo, Yo, Zo) be some point at which some branch of the ftmction 
V(x, y, z) is regular. Then if we write 

X=Xo+X, Y=Yo+ Y, z=-~o+Z 
it follows that for all points situated within a finito domain surrounding 
the point (Xo, Yo, zo), this branch of the function r(x ,  y, z) can be ex- 
panded in an absolutely and uniformly convergent series of the form 

V ~  a 0 + a l X +  bl Y + cl Z + a~ X ~ + b~ Y ~ + c~Z 2 + d~ Y Z  
+ e~ZX + f ~ X Y +  asX 3 + . . .  

Substituting this expansion in Laplace's equation, which can be written 

~V b ~ V e~ ~ V 
~ x '  + ~y~ + ~-~ = O, 

and equating to zero t3ae coefiicien~s of the various powers of X, Y and Z, 
we obtain an infinite number of linear relations, namely 

a~ + b~ + c2=O,  etc. 

between the constants in the expansion. 
1 

There a re -~n(n- -1 )  of these relations belween the -~- (n+ l )  (~+2)  

coefficients of the terms of any degree n in the expansion of V; so 
1 1 

that only {y(n+l)(n+2)-- -~n (n - -1 ) }or  ( 2 n + l )  of the coefficien~ 

of terms of degree n in the expansion of V are really independent. It 
follows that ~he ~erms of degree n in V must be a linear combination 
of (2n+ 1) lineaxly independent particular solutions of Laplace's equation, 
which axe of degree n in X ,  Y~ Z. 

To find these solutions, consider the expansion of the quanifitry 

( Z + i X  cos u + i Y s i n  u)" 

as a s~m of sines and cosines of mul~ples of u, m the form 

( z + i x  cos u + i  Ysi~ u)- = go(x, y, z )  + gl(x, Y, z )  cos u 
+ as(x,  Y, z )  cos ~u + . . .  + a . ( x ,  Y, z )  cos ,,u 
+ ~ ( x ,  y, z )  sin u + ~ ( x ,  Y, z )  sin ~ + . . .  

+ ~.(x, Y, z )  ~ ~. .  
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Now g,~(X, Y, Z) and h~(X, Y, Z)  are together charach~rised by the fact 
~a t  the highest power of Z contained in them is Z"-~;  moreover 
g,~(X, Y, Z) is an even function of Y, whereas h,~(X, Y, Z) is an odd 
function of Y; and hence the (2n+ 1) quantities 

go(X, I7, Z),  gl(X, Y, Z ) , . . - ,  ~.(X, Y, Z) 

are linearly independent of each other; and they are clearly homogeneous 
polynomials of degree n in X, Y, Z; and each of them satisfies Laplace's 
equation, since the quantity ( Z + i X c o s u W i Y s i n u ) "  does so. They 
may therefore be t ~ e n  as the ( 2 n + l )  linearly independent solutions of 
degree n of Laplace's equation. 

~Tow since by Fourier's Theorem we have the relations 
2.,t 

gin(X, Y, Z) --~ ~ ~ ( Z + i X  cos u~- iYs in  u)" cos mudu,  
r  
o 

2r~ 

h,,,(X, Y~ Z ) =  ~ j  ( z + i  x cos u+i  Ysin  u) n sin mudu, 
0 

it follows that each of these (2n+ 1) solutions can be expressed in the form 
2 z  

f f ( z+ix  cos u+i u, u) du Y sin 
0 

and therefore any linear combination of these (2n+1)  solutions can be 
expressed in this form. That is, the terms of any degree n in the ex- 
pansion of V can be expressed in this form; and therefore V itself can 
be expressed in the form 

f F ( Z + i X  cos u+i  u, u)du, Ysin 
0 

o r  

o r  

, ; F (  z + i x cos u + i y sin u -  zo - i x o cos u-- i y o sin u, u) d u , 
0 

2 ~  

f f(z+ ix cos u+ iy sin u, u)du, 
o 

since the z o -~ ix o cos u ~ i y s i n u  can be absorbed into the second 
argument u. 

Now V was taken to, be any solution of Laplace's equation, with no 
restriction beyond the assumption that some branch of it was at some 
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point a regular 1unction - -  an ass~ampt/on which is always tacitly made 
in the solution of differential equations; and thus we have the result, that 
the general solution of ~ ' s  equatio~ 

-g~ + - ~  + - ~  
is 

= 0  

2 ~  

V =  f f (z+ ix cos u + i y  sin u, u) du, 
0 

where f is an arbitrary function of the two arguments 

z -k i x cos u + i y sin u and u. 

Moreover, it is dear from the proof that no generality is los~ by supposing 
that f is a periodic function of u. 

This Theorem is the three-dimensional analogue of the theorem that 
the general solution of the-equation 

~ V ~ V 
aa:' + ~-,-  = 0 

is 
V = f (x+iy )  + g(x--iy).  

w  

Deductions from the Theorem of w 2; Particular Solutions; 
Expansions of  the General Solution. 

1~ ]nterFretation of the solution. We may give to the general solut~ion 
just obtained a concrete interpretation, as follows. 

Since a definite integral can be regarded as the limit of a sum, we 
can regard V as the sum of an infinite number of terms, each of the type 

V, = f , ( z+ ix  cos u~+iy sin u~) 

each term corresponding to some value of u r. 
But this term is a solution of the equation 

where 
X, = x cos u, + y sin u~, 

Y~ = - x sinu~ + y cos u,, 

so that (X,, If., Z~) represen~ coordinates derived from (x, y, z) 
rotation of the axes through an angle u, round the axis of z. 

by a 
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Thus we see ~hat the genertg solution 
regarded as the sum of an infinite number 
each constituent being the solution of an equation 

of Laplace's dquation can be 
of elementary con~ituents V,, 

and the axes (Xr, Y,., Z,.) being derived from the axes (x, y, z) by a 
simple rotalion round the axis of z. 

2 ~ The particular solutions in terms of I, egendre functions. 
interesting to see how the well-known particular solutions 
equation in terms of Legendre functions can be obf~ined 
the solution given in w 2. 

The particular solutions in question are of the form 

P :  (cos 0) cos = d  (cos 0) sin 
( ,=0 ,1 ,9 , , .  .., 

where (r, O, q~) are the polar coordinates corresponding to ~he rectangular 
coordinates (x, y, z), and where 

.P~'(cos O) = (-- 1)'a sinmO am+m(sia~nO) 
2nn ! d(cos O) n+m 

Now the function /)~ (cos 0) can be expressed by the integral 

I t  is  

of Laplace's 
as a case  o f  

t)~ (cos O)--=(n+m) (n+m--1)"'(n+l) (--1 eosO+i sinO cosO)" eos m~, d~,, 

0 

and thus we have 

o cos mO cos m (p dO 
2 5  

=(n+m)(n+m--1) '" (~+l)  (_  1 +i]/x,-.~-y, cos~l,)'~cosm(O_q~)dO 
2~ 

0 

$zt 

(~+~)(~+~-1)...(~+~) ).~fz = ~ (-- 1 + ix  cos u "4- iy sin u) ~ cos mu dot. 

0 

We see therefore that the solution r ' / )~ " (cos O) cos mep is a numerical 
multiple of 

2~t 

(z-t- ix  cos u A: iy sin u) n cos mu du, 
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Similarly ~ e  solution r~P~ (cos 0)sin m~p is a numerical multiple of 
2rt 

f (z + ix  cos u + iy u) ~ sin mu s i n  du. 
0 

F~om this it is clear that in order to express any solution 
2~ 

./f(z__ + ix  cos u + iy sin u, u) du  
0 

of Laplace's a]uation, as a series of harmonic terms of the form 

( os o) cos r"V  (ces o) sin 
it is onl/y netezsary to expand the function f as a Taylor series with resl~ect 
to the first argument z + ix  cos u + iy sin u, and as a Fourier series with 
respect to the second argument u. 

As an example of this procedure, we shall suppose it required to 
find the potential of a prolate spheroid in the form 

2~ 

f f(z + ix cos u +  iy  sin u, u ) d u ,  
0 

and to expand this potential as a series of harmonics. Let 

x ~ -[- y* z 2 
aS - ] - ~  ----~0 

be the equation of the surface of the spheroid; and suppose that it is a 
homogeneous attracting body of mass M. To find its potential, we can 
make use of the theorem that the potential at external points is the  same 

as that of a rod joining the fool, of line-densi~ 3M(c~--a~--z~" that is, it is 

~a V~-~ 

o - ~V~-h~ 
o r  

2r~ 

a s -  B ~) log 
B ~ y c  2 -  a ~ 

+ 2 V - ~ - a  ~ B}  du,  

where B is written for z + ix  cos u + iy sin u. 

Expanding the integrand in ascending powers 

potential in ~he form 

~ 1. -B + ~ .5-B ~ + g - u  + ' ' '  du. 
0 

1 
o f  ~ ,  w e  h a v e  t h e  
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Since 

• 
2 ~ j B . + I  = 

o 

2.(cos 0) 
r~+l , 

this gives the required expansion of the looten~ial of the spheroid in Legendre 
functions, namely the series 

(,'-a~)/',(~s o) ( ,~-  ~)' t", (cos o) 3M{~.-~ + ~:~:~ + ~:~:~ +---}-  

of Laplaee's 
ease of the 
of the form 

This result may be extended to the ease of the potential of an ellipsoid 
with three unequal axes, by using a formula for the potential of an 
ellipsoid given by Laguerre*) 

3 ~ 1he 1~articular solutions of Lalglace's equation which involve Bessd 
functions. We shall nex~ shew how the well-known particular solutions 

equation in terms of Bessel functions can be obtained as a 
general solution. The particular solutions in question are 

where k and m are eonst~nts, and z, O, q~ are the eylindrica:l co-ordinates 
corresponding to the reetaagular eo-ordinages x, y, z, so that 

x = q cos q~, Y = O sin q~. 

Now ff in the solution 
e~+J~(ke) cos m~ 

we replace J~(ke) by its value 

;g 

= ( , . o -  k+ ,+i. o),+o, 
o 

we find after a few simple transformations" that 

e ~ q ~ ( k 0 )  cos m ~  = 

2 ~  

j _ COS mT~dT~. 

0 

The other solutions which involve sin mq~, can be similarly expressed: 
we see therefore that the sob~tions 

e~+J~(kQ) cos m~  and e~+J~(kq) sin m ~  

*) C. R.,  1878. 
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are numerical multiples of 

and 

2~ 

e k(z+ixc~ (~OS ~ dq~ 

0 

2~ 

f e k(z + ixc~ Sin ~t~ ~ dq~ 
0 

respectively. It follows from this that in order to express any solution 
27t 

f f (z  q- ix  cos u + iy sin u, u) du 
0 

of Lwplace's equation as a sum of terms of the form 

e ~ J,, (kq) cos mq~ and . e ~" or,, (kQ) sin mop, 

it is only necessary to ex~and the function f in terms of exponentials of its 
firs~ argument z "t- ix  cos u + iy sin u, and as a Fourier series with respect 
to its second argument u. 

As an example of the use which may be made of these results, we 
shall suppose it required to express the potential-function 

V =  1 + e-"Jo(Q) + e-~"Jo(20) + e-S"Jo(3q) + - . -  

(where z is supposed positive) as a series of harmonic terms of the type 
involving Legendre functions: and also to find a distribution of attracting 
matter of which this in the potential. This can be done in" the following 
way. We have 

V =  1 + e-'Jo(q) + e-S"Jo(2q) + e-S'Jo(3~)) + - . .  
2~  

2-= {1 + e - " - i ~ ~ 1 6 2  + . - . }  du 
0 

2~  

- -  d "  ( . + i ~ u + i y s i a u )  " 

But ff t be any variable different from zero, and such that 
we have 

1 1 1 t t a 
l - - g =  t + ~ B~ ~.. + B~ -~'. - B3 + ' ' "  

where BI~ B2~ are Bernoulli's numbers. Therefore~ so long as z is positive 
and Iz + ix cos u + iy sin u I ~ 2~ i.e., so long as z is positive and 
x ~ + y ~ + z  s ~ 4 ~  s we have 
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2 ~  

V =  ~,~ ~ + i x  eos u + iv  sin u 
0 

o r  

B~ v=v-+:~ ~" ~'~: r ~  (cos ~) - ~,,.--v. r~-t'~ (cos o) + ~.- r~.v~ (cos o) + . - -  

and this 
Legendre functions. 

Next, since 

1 

1 - - e  - ~  

we have 

is the required expansion of V as a series of harmonics involving 

oO 

1 1 ~ .  1 i 
-ff + T + x=,a z + ~ i , r  + z -- 2ni~r' 

~ 1  

V =  __ 

2 ~  

0 

a o  

+ z + i x c o s u + i y s i n u  + z +  ix  cos u + iy sin u + 2nig 

' }1 + z + ix cos u + iy sin u -- 2ni~ ' 
or  

oO 

V=-~+ Vx, + v, + z. +. Vx~ + v, + (z+ 2~d;~? + 

and therefore V can be regarded as the potential due to a set of attracting 
masses placed at equal imaginary intervals 2 i~r along the axis of z. 

The differential equation ~*V ~*V ~*V ~*V ~ _  ~ 2  _ _ .  

6~t * 

We shall next consider the general differential equation of wave- 

motions, 

~x ~ + - ~  + V-~ = s t * ,  

where k is a constant. 
Writ ing kt  for t, this .becomes 

which we shall take for the present as the standard form of the equation. 
In order to find the general solution of this equation, we follow a 

procedure analogous to that  of w 2. Let V(x ,  y, z ,  t) be any solution 
(single-valued or many-valued) of the equation; and let (%, Yo, zo, to) be a 
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place at which some branch of the function V is regular. Then ff we 
write x = x o + X, y = Y0 + Y, z = z o + Z, t = t o + T, it will be possible 
to expand this branch of Re  function V as a power-series of the form 

V = a o + al X + b~ Y + c~ Z-t-- d~ T + a~ X* + b~ Y* + c~ Z~ + d2 2.~ + e~ X Y 

+ f ~ X Z  + g~ X T  + h 2 Y Z  + I: 3 Y T  + 1. 2 Z T  + a s X 3 + . . . ,  

which will be absolutely and uniformly convergent for a certain finite 
domain of values of X ,  ~ Z,  T. Substihlting this expansion in the 
differentia/ equation, which may be written 

~ V ~ V ~'V ~V 
~x, + ~Y~ + ~=~T ~ ,  

and equating to zero the coefficients of various powers of X, Y and Z, 
we obtain an infinite number of linear relations, namely 

a s + b. 2 + c~ = di, etc., 

of between the constants in the expansion. There are T 
1 

these relations between the ~ ( n + l ) ( n + 2 ) ( n + 3 )  coefficients of terms 

of any degree n in the expansion of V; so that only 

1 
-~ {(n+ 1) (n+2) (~+3) -- (n--1)n(n+ 1)} 

o r  

( n + l )  ~ 

of the coefficients of terms of degree n in the expansion of F are really 
independent. It  follows that the terms of degree n in V must be a linear 
combination of ( n + l )  ~ linearly independent particular solutions of degree 
n i n X ,  y , Z , T .  

To find these solutions, consider the expansion of the quant i~ 

(X sin u cos v + Y sin u sin v + Z cos u + T) ~. 

I f  we first take the expansion in the form 

go + gl cos v + g~ cos 2v + �9 . .  + g~, cos nv 

+ h I sin v + h~ sin 2v + . . .  + h~ sin nv ,  

we have seen in w 2 that go, g l , ' "  ", g,,, h i , "  ", h,,, are linearly indepen- 
dent functions of X, Y, Z and T. Moreover, y,~ and h~ are of the form 
sin m u ~  a polynomial of degree (n--m)  in cos u, and therefore each of 
them contains ( n - - r e + l )  independent polynomials in X, IT, Z,  T. Thas 
the total number of independent polynomials in X ,  Y, Z ,  T ,  i n  t ~  
expansion of 

( X  sin u cos v + Y sin u sin v + Z cos u + T)  ~ 
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in sines and cosines of multiples of u and v, is 

( , +  :) + 2n + 2 ( ~ - : )  + 2(~--~)  + - . - +  
or  

(n-t'- 1)'. 
Now each of these polynomials must satisfy the equation 

~ V  ~ V  ~ V  b~V 

since the quantity 

(X sin u cos v + Y sin u sin v + Z cos u + T)" 

does so: and therefore they may be taken as the ( n + l )  2 linearly inde- 
pendent solutions of the equation 

~ V  ~ V  ~2V b~V 

of degree n in X~ Y~ Z, T. Now by Fourier's which are homogeneous 
theorem we have 

27g 

o 

and since gm is of the form 

r = 0  

~r SiIlm ~ cos t  ~ ,  

where u~ is one of the polynomials in question, it is clear that g,~ can 
be expressed as a sum of sines or cosines of multiples of u, according 
as m is even or odd; and the coefficient of one of these sines or cosine% 
say of cos su, is 

o 

It follows that each of the polynomials u~ can be expressed in the form 

f 
o 

where f(u) denotes some periodic fuacCion of u; that is, it can be ex- 
pressed in the form 

j [ j f ( X  sin u cos ~ + Ysin u sin v + Z cos u + Ty'[(u) cos m~ du dr. 
o o 
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It  follows from this that each of the ( n + l )  ~ polynomial solutions of 
degree n can be expressed s the form 

f j~(X sin u cos  v + u v + cos  u + T)~f(u, v)dudv, Y sin s~Ii Z 

0 0 

where f (u ,  v) denotes some periodic function of u and v; and therefore 
the terms of degree n in V can be expressed in this form. 

The function V itseff can therefore be expressed in the form 

2 ~  r~ 

f f f(X u cos  v + u v + cos  u + T, u, v) , sin Y sin sin Z du dv 
0 0 

where f denotes some function of the three arguments 

X s i n u c o s v +  Y s i n u s i n v + Z c o s u + T ~  u, and v; 

and f may without loss of generality be supposed to be periodic in u and v. 

Now 
X s i n u c o s v + Y s i n u s i n v + Z c o s u + T  

=(x sin u eos v + y sin u sin v + ~ eosu+t) 
- -  (x o sin u cos v + Yo sin u sin v + z o cos u + to); 

and the termo 

(x o sin u cos v + ?40 sin u sin v + z o cos u + to) 

can be absorbed into the arguments u and v; moreover V was taken to 
be any solution of the partial differential equation; we have, therefore, 

t 
on writing -~ for t~ the result that  the general solution of  the partial 

differential equation of  wave-motion, 

~ ,  + ~ + - ~  "~ ~t~ , 
is 

22t 

V -~ sin u cos v + y sin u sin v + z cos u + t ,  u, d u d v , 
0 0 

where f is an arbitrary f u n c t ~  of  the three arguments 

t 
x sin u cos v + y sin u sin v + z cos u + ~-, u and v. 
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w  

Deductions from the general solution of  w 4. 

10 . The analysis of  wave-motions. We shall now deduce from the 
general solution thus obtained a result relating to the analysis of those 
phenomena which are represented by solutions of the equation 

t3~V t3~V t3~V k~ ,q~V 
~x~ + ~-~ + ~ = ~t ---~" 

If we rever~ to the funda.mental idea of the definite integral as the limit 
of a sum of an infinite number of terms, we see that the general solution 

r=j'ff(s stco. +vsin.sm + cosu+-}, 
0 0 

can be interpreted as meaning that K is the sum of an infinite number 
of terms of the type 

f ( ~  t ) sin u cos v + y sin u sin v + z cos u +-l[  , u, v , 

there being one of these terms corresponding to every direction in space 
given by the direction-cosines 

sin st cos v, sin st sin v, cos u. 

The solution V can therefore be regarded as the sum of constituent 
solutions, each of the ~'ype 

Y ( x  sin u cos v + y s i n u  sin v + z  cos u + - ~ )  

where the function ~'  varies from one direction (u, v) to another. 
Now let us fix our attention on one of these constituent solutions 2'. 

If  for some range of values of the quanti~y 
t 

x sin u cos v + y sin u sin v + z cos u + -F'  

the function 2 '  is finite and continuous, we can for this range of values 
express F by Fourier's integral formula in the form 

b 

0 a 

where a and b are the terminals of this range of values; or supposing 
the integration with respect to ~ to be performed, 

( ~  CO8 
)sin {g(X sin u c o s v + , s i n ~ t s i n v + z c o s u + ~ ) }  dg ,  

O 

w-he2e g(~) denotes some function of ~,. 
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Now let us again revert to the idea of the definite integral as the 
limit of a sum. Then this latter integr~ can be regmaxled as the sum 
of an infinite number of terms of the type 

oos{ 
sin ~t s i l l  ~t COS V + y Sin U Sill v + ,~ COS ~ + , 

each term being multiplied by some factor depending on Z. 
The solution V can therefore be regarded as constituted by the super- 

position of terms of this last type. But a term of this type represents 
a simple uniform plane wave; for on transfo,-ming the axes so that the 
new axis of x is the ]ine whose direction-cosines are 

s i n u c o s v ,  s inusinv ,  cosu,  
the tmrm becomes 

cos (x + -~) 
sin ~ 

which represents a simple plane wave whose direction of'propagation is 
the new axis of x. We see therefore that the general finite solution of the 
differential equation of wave-motions~ 

~ V  ~V  ~ V  k~ ~ V  
~x ~ + - ~  + - ~  = ~r~ 

can be analysed into simple plane waves, represented by terms of the type 

E(Z, u, v) sin Z sin u cos v + y sin u sin v + z cos u + t . 

I t  is interes4ing to observe that Dr. Johnstone Stoney in 1897") 
shewed by physical reasoning, and without any reference to the equation 

~ V  . ~ r  ~ V  k~ ~ V  
~x ~ + ~ + ~ = ~t~ 

that all the disturbances of the luminiferous ether arising from sources 
of certain kinds can be resolved into trains of plane waves. 

2 o, ~qdut/on of the equation 

~ V  ~*V ~ V  
~x~ +~--~ + ~  + V = O .  

If a solution W of the e q u a t i o n  

~ W  ~2W ~ W  ~ W  

be of the form Vd t, where V is a function of x, y, z only, Which does 
not involve t, then V clearly satisfies the equation 

~ V  ~ V .  ~2V ~ z~ +-g-~ + ~ + V=O, 

*) PMlosoph. Magazine, (V) XLHI. 
23* 
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and therefore, on reference ~ the general solution of the wave-motion 
equa~on found in w 4, we see that the genera2 solution of the equation 

is 

3 0 . 

~*V ~*V ~*V 

2~r 

v:f f 
0 0 

Deduction of the known particular solutions of the equation 

~ ,  + - ~  + - ~  + V =  O. 

It  is known ftmt pa~eular  solutions of the equation 

~V ~V ~9*V , 
~x* + ~-~y~ + ~7 -~§ V = O  

exist, which are of the form 
1 

V =- r - u  J 1 ( r ) / " ~  (cos O) r ~,+u ,, sin m~ 

(n=O,  1,2, . . . ;  m=O, 1,2,...,n), 
where r, O, ~ are the polar coordinates corresponding to x, y, z. We shall 
now Bhew how these may be derived from the general solution of the 
equation which has just been found. 

For let the general solution be written in the form 

2 z  zt 

V= f f d(xs~co-+ysmu~mv+zcosu) f(% v) sin ududv, 
O 0 

where f(u,  v) is an arbitrary function of the two arguments u and .v, 
which may without loss of generality be taken to be periodic in u and v. 

Now let the function f(u, v) be expanded in surface-harmonics of u 
and v, so thai 

2~t r 

2 / P  V ~  ( ~ r  Y,(u, v)sin ududv 
n = O  , J  ~ '  

0 0 

where Y, is a surface-harmonic of order n, i. % ff 

~=--Osinucosv, ~/-----Qsinusinv, ~ = Q c o s u ,  

are regarded as the co-ordinatss of a point in space, then Q~'Y,,(u, v) is 
a homogeneous polynomial of degree n in ~, ~, ~, satisfying Laplace's equation 

~ V ,  c~V. ~3~V 
~, + ~-~ ~- ~-~ = o. 
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Next, let the variables, be changed by the substitution 
t cos u = cos 0 cos ~ + sin 0 sin co cos v, 

sin u sin (~- -v)  = sin to sin v,  

sin u cos @ - - v )  = cos co sin 0 --  sin co cos d cos O, 
# �9 

so that (~ sin co cos v, q sin v sin v,  0 cos co) are ~he co-ordinates of the 
point (~, ~, ~) referred to new axes, the line whose direction-cosines are 
(sin 0 cos r sin 0 sin ~,  cos O) being taken as the new axis of z. 

Thus 

0 0 

But a surface-harmonic of any order n remains a surface-harmonic of 
order n under any transformation of axes in which the origin is unchanged: 
and therefore Y~,(u, v) is a surface harmonic of order n in a~ and v'; 
and consequently it can be expanded in the form 

1 t A.(0,~)P.(cosco) + .a:(o,~) P.(cosco)co~,, + ~t:(o,~)~:(cos~)cos2r 
+ . . .  + _a2(o, ~) ~:(cos~)  r ~r 

+ B:(O, ~ ) P :  (cos~) sin v" + . . - +  ~ : ( 0 ,  ~) P: '  (cos co) sin ~v ,  

where A,,(O,~p),...,B:(O, op) are functsions of 0 and q~. Substituting ~his 
value for Ir,(u, v) in ~he integral, and performing the inNgra~ion with 
respect to v,  we have 

yg 

v=y~.a.(o, 9,) . = ' ~ . ( c o s ~ )  sin ~aco; 

0 

and in virtale of the relation*) 

, = ~ P .  (~ ~,) sin ~ a ~  = -~ "+~- 
r7  ' 

0 

tshis can be written in the form 

t r= Z r"-ff J~+_~ (r) f.(O, q~ ) 
l l  ~ i )  

where f.(O, ~) denotes some function of 0 and g>. 

*) A proof of this and several relaf~d result~ will be found m ~ l~per shor~Iy 
~o be published by the author. 
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Since the surface-harmonies Y,,(O, q~) were independent of each ot~her, 
the funct~ions f,,(O, ~), will be independent of each other and therefore 
each of the quantities 

1 

will be a solution of ~ e  equation 

~sV ~3~V ~ V  
~x ~ + ~-~ § - ~  + V = O .  

But on transforming this equation to polar co-ordinates~ and substituting 
the expression 

1 

~ j +-~ (~) f.(0, ~) 

for V, we find that the function f,,(e, r must satisfy the differential 
equation for a sm'face-harmonie in 0 and q~ of order n. i t  follows that 
f,(O, q~) can be expanded in the form 

5(0,  r = A,  P,~ (cos O) -t- A~ eos r P~ (cos O) + . . - +  A,~ cos nep P :  (cos O) 

+ B. ~ sin r P:  (ce~ 0) + . . .  + ~." ~ , r  (r 0), 
and thus the ~ t r t i c u ~  solutions 

1 

m m(p r ~ J i (r)P~ (cos O) cos 
sin n + ~  

are obtained. 
Moreover, it is 

any sohCion 
2~t 

0 

of the equat/o~ 

clear from the above proof that in order to expand 

0 

as a series of the form 

~V b2V b~V 
~x" + ~ + ~ + V~ 0 

n~-O 2 

where Y,, is a s u / r f a c e - ~ i c  of order n in 0 and ~, it is ordy ~2zsary  
to expand the function f(u, v) in surface-harmonics of u a~d v. 

4 ~ Exwession of the solution of the equation 

~x ~ + ~-~ + ~-~ + V =  0 

as a series of 9enera~ised Bessd fundivns. 
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Another analysis of the solutions of the equation 

entirely different from that given in .3 ~ can be found in the following way. 
Consider the expression 

, , , (.++) '- =(.-+) (,+ +) - , ,  (.- (,-,'-) 
e 4 

if this expression be regarded as a function of s and t, it can for finite 
non-zero values of s and t be expanded as a series of (positive and 
negative) integral powers of s and t, the coefficients in this series being 
functions of x, Y and z. Let the coefficient of the term in s~r~ be denoted 
by ,f~s~(x , 9, z): so that we have the relation 

This equation can be regarded as a generalisation of the equation 

e+'('-+) 
which defines the ordinary Bessel functions; and we shall consequently 
ca!! the functions J ~ ( x ,  y, z) genera]ised ~ s e l  fu~wtizms. 

We now proceed to establish some properties of the functions 
J~,~(x, y, z); it will be seen that they are very similar to those of the 
ordinary Bessel functions. 

In the fn'st place, since ~ e  expression 

satisfies the equation 

~, ~ + ~ + -ff~ + V = O, 

it follows that each of the fu~wtio~ J~,~(x, y, z) so2isfies the 

~ V  ~2V b~V ~ ,  + - g ~  + - ~  + V =  O. 

In the second place, we shall obtain an expression for Jm,~ (x, y, z) as a de6nite 
integral. By Laurent's theorem, we ~ o w  tha~ the coefficient of s ~ in 
the expansion of 

~ - Y +  - 

is 
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~ s (.- +) (:++)-~:C +)(,-+) ++.(,++) d : ,  
2 ~ i d ~  

a 

where C is any simple contour in Che s-plane surrounding the orig~m; 
and again applying Laureat's theorem, the coefficient of t" in this ex- 
pression is seen to be 

jfj~ ' . , , : ( .++) o ,~. ,~=(, .) (,++)~=(.-+)(,++) +~ 4~: ds dr., 

C 1) 

where D is any simple contour in the t-plane surrounding the origin. 
Now write s = d", t = e i". Thus we have the result 

~ z  2 ~  

j. (x ,, z,__ f fp_m. 
0 0 

which may be regarded as the ana, logue of Be~sd's in~3rM 

J.(~)=�88 
0 

The functions J~,.(x, y, z) likewise possess an additiontheorem: for we have 
1 1" ~ i 

e u  +a) ( s - ~ - ) ( t + + ) - - 4 ~ ( y + b )  ( s - + )  ( t - + ) +  ~-(z+r (. + + )  

I x i 1 i 1 : e  4 (*-+) ( '++) -u  ( t - l )  +=~:('+7) 
1 1 1 i 1 i 1 • ao(.-~)(~+u (.-~-)(~-+) +~ ~(.+~-) 

~ l d  s o  

~J~,.(x+a, y+b, ~+c)s~,t . 

: ~ J=,~(x, Y , ~ ) s ' ~  x ~ J~,,(a, b, c ) s '~ .  
m~ n m~ n 

E q ~ t i ~  coefficients on=both sides of this equation, we have the Ces~t 

l a ~ - - ~  q = - - r  

which is the addition-theorem for the 9envralised Bassel functions, and is 
the analogue of the well-known result 
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We shall now shew how the generalised Bessel functions furnish an 
analysis of the general solution of the equation 

~2V ~2V ~lV 
~-x~ + F~  + -F~ + V ~ O "  

For the general solution is, by 2 o , 

v=f 
0 0 

where f (u ,  v) can without loss of generality be taken to be a periodic 
function of u and v: 

Now let the function f (u,  v) be expanded by the ex4ended form of 
Fourier's theorem, in the form 

,'(",~ : 2 '  
Then we have 

rl 2r~ 

V ,, 

0 0 

Comparing this with the form just found for the generalised Bessel 
functions, we see that the genera~ solution of the equation 

can be written 

~tV e ~ : V  e~V 
~x, +-~-~ + - ~  + V =  0 

where the quantities a , ~  are arbitrary constants. This furnishes an 
alternative analysis of the solution to that given in 2 0 . 

5 ~ Gravitation and Ele~erostatic Attraction explained as modes of Wave- 
disturbance. 

The result of 1 ~ namely that any solution of the equation 

~2V ~2V ~92V ~ V  

can be analysed into simple plane waves, throws a new light on the 
nature of those forces, such as gravitation and electrostatic a ~ t i o n ,  
which vary as the inverse square of the distance. For if a system ()f 
forces of this character be considered, their potential (or ~e i r  component 
in any given direction) satisfies the equation 
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? t V  ~2V ~'2V 
+ = o. 

and therefore 5 fortiori it satisfies the equation 

~2V ~ V  . ~ V  k~ ~ V  
ax'  + g ~  + az - -~ = a*' 

where k is any c o n ~ t .  It follows from 1 ~ ~ a t  this potential (or force- 
component) can be analysed into simple plane waves in various directions, 
each wave being propagated with constant velocity. These waves interfere 
with each other in such a way that, when the action has once been set 
up, the disturbance at any point does not vary with the time, and 
depends only on the coordinates (x, y, z) of the point. 

It is not difficult to construct, synthetically, systems of coexistent 
simple waves, having ~ i s  property ~ a t  the total disturbance at any point 
(due to the sum of all the waves) varies from point to point, but does 
not vary with ~e  time. A simple example of such a system in the 
following. 

Suppose ~ a t  a particle is emitting spherical waves, such that the 
disturbance at a distance r from the origin, at time t, due to those waves 

whose wave-leng~h lies between ~'~ 2,~ - -  and is represented by 

2d~ sin (~ Vt-- ~r) 

where V is the velocity of propagation of the waves. Then after the 
waves have reached the point r, so that (V t - - r )  is positive, the total 
disturbance at this point (due to the sum of all the waves) is 

~ "  ~, 

0 

Take # V t -  #r ~-y, where y is a new variable. Then this dis~rbance is 
OO 

2 l 'sin y 
~-~,y y dy; 

0 

or, since 

it is 
f Tdy=  2 '  
O 

t 

total disturbance at any point, due to this sys~m of waves, is therefore 
i ~ t  of the time, and is everywhere p r ~ i o n ~ l  to the gravitalional 

due to the at the 
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It is clear from the foregoing that the field of force due h~ a 
gravitating body can be analysed, by a "specixum analysis" as ib were, 
into an infinite number of constituent fields; and although the whole field 
of force does not vary with the time, yet each. of the constituent fields is 
of  an undulatory charadzr, cortsisting of a simple wave-disturbanve Fropa- 
gated with uniform velocity. This analysis of the field into constituent 

1 of  fields can most easily be accomplished by analysing the potential 7 

each attracting particle into terms of the type 

sin (~ Vt - t~r) 

as in the example already given. To each of these terms will correspond 
one of the constituent fields. In each of these constituent fields the 
potential will be constant along each w.ave-front, and consequently the 
gravitational force in each constituent field will be perpendicular to the 
wave-front, i. e. the waves will be longitudinal. 

But these results assimilate the propagation of gravity to that of 
light: for the undulatory phenomena just described, in which the varying 
vector is a gravitational force perpendicular to the wave-front, may be 
compared with the undulatory phenomena made familiar by the elec~o- 
magaetic theory of light, in which the varying vectors consis~ of electric 
and magnetic forces parallel to the wave-front. The waves are in other 
respects exactly similar, and it seems probable that an identical proper~y 
of the medium ensures their transmission through space. 

This undulatory theory of gravity would require that gravity should 
be propagated with a finite veloci~, which however need not be the same 
as that of light, and may be enormously greater. 

05 course, this investigation does not explain the cause of gravity; 
all Eaat is done is to shew that in order to account for the propagation 
across space of forces which vary as the inverse square of the dlst~nce, 
we have only to suppose that the medium is capable of transmitting, with 
a definite though large velocity, simple periodic undulatory dishlrbauces, 
similar to those whose propagation by the medium constitutes, according 
to the electromagnetic theory~ the transmission of light. 


