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I.

1. The results obtained in this paper are developments of an idea that
has been prominent in much recent work on the theory of divergent
series.

Consider the series

(1) « 0 +
This series may converge, or may possess a " sum " according to one" or
other of a large variety of definitions of what is meant b}r the " sum ";.oi
a series: Holder's, Cesaro's, or Riesz's definitions by mean values, Eulers
definition as the limit of a power series, Borel's exponential definition, and
so forth. To each of these definitions correspond certain limits of appli-
cability. Thus Holder's and Cesaro's definitions can never be successful
u n l e s s n-'a* -> 0

for some value of k; Euler's definition requires that S«w.rn should con-
verge for | x | < 1; Borel's that
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should be an integral function of x. Roughly, we may say that any
method of summation will fail if the series to which it is applied is too
divergent* Or, in other words, to any method corresponds a certain
upper limit of its power, the specification of which is a problem generally
not difficult and often uninteresting.

It is only recently that it has been observed that the range of applica-
bility of all methods of summation is limited from below, so to say, as
well as from above. Methods fail, not only when the series to which it is
attempted to apply them is too divergent, but also if it is too nearly con-
vergent : not only is their power limited, but also their delicacy. The
theorems which express this latter fact are more subtle than those which
express the " limitation from above," and take a rather different form:
they assert that, if a series is too nearly convergent, it cannot be
summable unless it is actually convergent.

The theorems of this character which correspond to Cesaro's (or
Holder's) and to Euler's methods were discussed by us in two recent
papers in these Proceedings A It follows from a well known theorem of
Taubert that a series for which
(2) nan -+ 0

cannot be summable by any of these methods unless it is convergent. In
these papers we showed that this condition may be replaced by the more
general condition
(2') | nan | < K.

Similar results hold for Riesz's more general methods : these results will
also be found in the papers referred to.

The primary object of this paper was to establish the analogue of
Tauber's theorem for Borel's exponential method of summation. But
this problem has led us on to a number of others, some of which are dis-
cussed here, while to others we hope to return later. There is one
important point with regard to which our results are not complete. We

* In these general explanations (as in the phrase " Theory of Divergent Series") it is
convenient to use divergent as meaning simply non-convergent. In detailed work it is
essential to distinguish between divergent and oscillatory series.

+ Hardy, Proc. London Math. Soc, Ser. 2, Vol.8, p. 301; Littlewood, ibid., Vol. 9,
p. 434. The results of the first of these papers may be deduced as corollaries from those of
the second: they have been extended, in a somewhat different direction, by Landau (Prac
Matematyczno-Fizycznych, t. 21, p. 97), who shows that, when a,, is real, it is enough to
suppose nan < K or nan > —K, and makes an interesting application of the result to the
Theory of Prime Numbers.

% If 2anx
H->s, as se->l, and na,,->0 as 7t-»oo, then 2a,, is convergent (to sum s).

For a proof see Littlewood, I.e. supra, and Bromwich, Infinite Series, p. 251.
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prove (Theorem 1 below) that a series for which

(3) </n. an -> 0

cannot be summable by Borel's method, unless it is convergent. It can
hardly be doubted that this result (the analogue of Tauber's theorem) is
susceptible of the same generalisation: that is to say, that (3) may be
replaced by

(3') \</n.a,l\<K.

But this we have not at present succeeded in proving ; and the difficulties
attendant on the generalisation of Tauber's theorem suggest forcibly that
the proof may not be at all easy to find.*

We shall use the symbols

K, e, S, 0, o, ...,

in special senses for an explanation of which we must refer elsewhere.t

II.

2. Borel gave two definitions of the sum of the series

(1) a(i-\-a1+a.1+ —

According to his first definition the sum is

(2) s= lim r'2s4*.

where s* = aQ-\-a1+...+all.

According to the second it is

r
(2a) e-*a(x)dx,

Jo
where
(26) C^f
These definitions are not exactly equivalent, the second being slightly

* In the abstract of this paper which appeared in the " Notes and Corrections " to Vol. 9
of the Proceedings, we implied that we were in possession of a proof. We have since dis-
covered that our belief that we had found one was mistaken.

t See Hardy, " Orders of Infinity," Camb. Math. Tracts, No. 12. The only symbol
whose use is not explained there is the small o, introduced by Landau (Handbuch der Lehre
von der Verteilung der Primzahlen, p. 61). We write

f = o(<p),
if <l> is posit ive a n d //</> -> 0.

B 2
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more general.* They are certainly equivalent whenever an-+ 0. For
the present we shall adopt the first definition as fundamental; if (2) holds,
we shall say that the series (1) is summahle (£) to sum s.

3. Our first object is to prove the following theorem:—

THEOREM 1.—If l,an is summable (B), and

then Xan is convergent.

This theorem, however, is only one of a hierarchy of theorems con-
necting Borel's with Cesaro's methods of summation. To establish these
we shall require a number of lemmas.

We shall write stl = ao+ay + . . . + an,.

so that Eai; is summable (Gk) if

LEMMA 1.—If cn ~ An-1 as n -> oo , then

as x -> oo .

This is, of course, well known.

LEMMA 2.—We have identically

\I)o " (n+k)\ VJo / V o n\)

We use the identity

where [P] = p(P+D -
UJ q

* Bromwich, Infinite Series, p. 297.
f We need hardly point out that s* does not stand for a power of s,,
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The coefficient of sv on the left-hand aide is

• ! UJ (i/+fe+l)! L2j(i/+A;+2)! )

and on the right-hand side is

That these two expressions are identical may be verified immediately by
induction.

LEMMA 3.—If 2a« is summable (B) to sum s, then

This is an immediate corollarj' from Lemma 2.

4. Now suppose Xan summable (B), so that

! ' *.

for any value of k. And let us suppose that there is a number « such that

(4) sj"1 = o(nft).*

Then, if for shortness we write s;; = tn, we have

(5) A*ft = t n - tll+l = - «J;J =

If, in (8), we put x = m, we have

(6)

where 8X = c—^ 2 rt w (n+/c)!'

By Lemma 1,

(7) Sx = m-k

* If % = 0, a*"1 = a,,.



MR. G. H. HARDY and MR. J. E. LITTLBWOOD [Nov. 9,

Wo proceed to discuss S2, which we write in the form

(8)
(\-H)m

\ 0 2
(l-Il)m

2 =

say. Here H is a positive constant less than unity, and 2 denotes
i'-

a summation extended to all integral values n such that a < n < /3 :
it is convenient to suppose H irrational, so that (1—H)m and (1+H)m
cannot be integral, but the limits of summation may be left indefinite to
the extent of a term or two without any effect on the argument.

To obtain upper limits for S3, &4, and S5, we use the inequalities

(9)

' I tn—tn\ < KmK (in »S3),

tn—tm I ̂  emma I n—vi I (in S4),

tn—tm\<KnK • (inSJ,

which are immediate consequences of inequalities already establislied.
Let un = m1lln\. Then we find at once, by an elementary application

of Stirling's theorem, that

where u^ and uv are the last u which occurs in Ss and the first which
occurs in S5.

(l-7/)»»
Hence | S3 \ < KviKe~m S n~kun

(10)

Similarly,

< mKe-Kn {1 + (1 -H) + (1 -

< e~Km

< ••"ai

>V-Hl + ^FF + — - I
1+fl" ' (1 + H)2 ' "")

(11) < «-*'".

Finally we have to consider 8A, which we write in the form

+
n > vi »i > n
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We have I SRI = (tn-U m"
(n + k)\

<Km~kc-m 2 |fn—fml^j

Will , , ,«i+r #

< ma-':e-mem 2 r m"
T {m+r)\

m"
m! cmem ... (m+r)

Now, for 1 ̂  r <C Hm, we have

—) = exp ( - —
ml l \ m

Hence

(12)

<

< m'
Jo

a-fc + i

Again, | S71 = \ . ?„ (tn-tm) m"
(\-H)m

< - H -
Hm

< ma-ke-mem 2 r

In this case we use the inequality

{m—r)\

- L) ( l - J.)...(l-?^1).

— <e~rlm,
m

* Using (5).
•f When m is large, the integral is of order m. The difference between the integral and

the series is less than a constant multiple of the maximum of xe-*t/4m, which is of order A/TO.
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and the argument proceeds as before ; so that

(18) . |S 7 |=o(w-* + 4) .

From (4), (7), (10), (11), (12), and (13), we deduce

(14) .s* (1 +€m)lmk+o(ma-k^) -+ s/k!.

From this relation we can deduce Theorem 1 and the other theorems
referred to in § 3.

5. Suppose first a = k —I. Then

(15) skjmk-+ s/k\.

Hence we obtain

THEOREM 2.—If Han is summable (B), and

sk~l = o(nk-}j),
then 2&n is summable (Gk).

This reduces to Theorem 1 when k = 0 (when s~l must be interpreted
as meaning an).*

Next, suppose a > k—%. Then we obtain

THEOREM 3.—If Han is summable (B) and

.s*-1 = o(na)

ivhere a> k—\, then s* = o(w°+i).+

THEOREM 4.—If £«„. is summable (B), and

s*"1 = o(nk),

then Ha,, is summable (G, A.-+1).

For, by Theorem 3, we have sn = o(«A+*), and Theorem 4 accord-
ingly follows from Theorem 2. The special case in which k — 0 is
particularly interesting and deserves a separate statement.

THEOREM 4a.—If Sa(l is summable {B), and an -> 0, then 2a,, is
summable (Cl).

By a repeated application of the argument which led to Theorem 4,
we deduce

• The theorem was stated for the particular cases in which k = 0, 1 in the Abstract of
this paper referred to above.

"f That s* = o(na-ri) is trivial. The point of the theorem lies in the reduction of o + J to
a + j as a result of the hypothesis of Borel summability.
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THEOREM 5.—If 2a,t is summable (B), and

then 2a,,, is summable (G, k-\-r).

6. If *2a,lx
n is convergent for \x\ < 1, and the function f(x) repre-

sented by the sum of the series is regular for x = 1, the series 2a,, is
summable (B). It therefore follows from Theorems 1 and 4a that

(i) If f(x) is regular for x=l, and */n.a,,.-> 0, then 2 a,,, is con-
vergent.

(ii) Iff(x) is regular for x = 1, and a,,.-* 0, then 2rt,t is summable (Cl).

Each of these corollaries of our theorems is included in Fatou's
theorem* that, if f{x) is regular for x = 1, and a,, -> 0, then 2aft is
convergent. But we have, of course, assumed much less than regularity
for x — 1.

If 2a/t is summable by Cesaro's means, or, more generally, if Abel's
limit exists, we can only infer convergence if

To assume that Ea,,. is summable (B) is to assume more than that it is
summable (C)t or by Abel's limit, but less than that f(x) is regular. To
this corresponds the fact that */n.atl -> 0 asserts less than a(l = O(l/n),
but more than atl -> 0.

7. The results of § 5 may be represented conveniently by means of
a diagram.

If a;, =

o(n-*)

0(1)

o(n)

SH =

o{ni)

o(n)

o (n?)

o(n$)

0(11?)

s» =

o(n*)

then the scries is

convergent

stimmablc (Cl)

„ (C2)

„ (C3)

* Fatou, These (Paris, 1906) and Ada Mathematica, t. 30, p. 389. A simpler proof, and
a series of important generalisations, have been given by Riesz, CrelWs Journal, Bd. 140,
S. 89, and Comptes Bendus, Nov. 22, 1909; see also Landau, Prac Matrvmtyczrio-Fizycznych,
t. 21, p. 151.

t Sec Theorem 6 below for a precise statement.
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This diagram at once suggests that there should be further theorems
corresponding to the spaces which we have not filled in, such as :—

(a) if sn = o(l), and 2a „ is summable (J5), then 2an is convergent;

(b) if si = u(<\/n), and 2o» is summable (B), then San is convergent;

and so on. These theorems are all trivial or false. Thus (a) is obviously
trivial: the same is true of all the theorems which correspond to the
vacant spaces which have two sides in common with those filled in in the
diagram.

On the other hand, (b) is false. For, if s\ = o{s/n), we have

and so we can deduce from the condition s\ = Q(*/n) that 1>an is summable
(11) to sum 0.* Hence the theorem suggested would show that s\ = o(<y/n)
by itself implies convergence to zero, and this is untrue, as sn may well be
of the form . .. ,.

e» v w ~ e n - i V\n— 1)
without tending to zero.

A very interesting general conclusion may be drawn from the theorems
comprised in our diagram, viz.,

THEOREM 6.—If 2an -is summable (B), and

an — o{nk)

for some value of k, then 2 a„ is summable by Cesaro's means of sufficiently
high order.

In the language of § 1, we may express this by saying that Borel's
method, although more powerful than Cesaro's, is never more delicate,
and often less so.

A particular case of Theorem 6 deserves special notice. It is well

* I f

?l + l
then 2 a,, is summable (B) to sum s. See Hardy, Quarterly Journal, Vol. 35, p. 40;
Bromwich, Infinite Series, pp. 319-322. It may be shown more generally (cf. Bromwich, I.e.)
t h a t fcla*/n* = « + o(l/Vn)

implies the same conclusion : we have thus a general condition which enables us to infer
Borel from Cesaro summability. For some examples of series summable by Cesaro's, but not
by Borel's, method, see Hardy, /. c. supra arid Proc. London Math. Soc., Ser. 2, Vol. 8, p. 290,
iind §§ 10, 11 below.
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known that a power series is summable {B) at any regular point on its
circle of convergence. It therefore follows that, if f(x) is regular for
x = 1, and an = o(n/c), then 2a7l is summable (C1). This result has been
found by Riesz.*

8. It is natural to enquire whether the preceding results may be
extended to non-integral orders of Cesaro summation. + The necessary
analysis is not difficult, but, as its conclusions are obvious generalisations
of those already established, we shall be content to sketch the argu-
ment very shortly.

In the first place, Lemma 1 of § 3 is quite independent of any assump-
tion as to the arithmetic nature of a.

Secondly, Lemma 2 may be replaced by the equation

-••• y
J o V., / < ! /y =

o " T{n-{-k-\-V) T{k) o

where s(; = sn+ L J sn_ i -f... + I I s0,

[P] =
Ld T

] =d T(p)T(q-\-l)'

This equation may be shown to hold for any positive value of k. From it
may be deduced the analogue of Lemma 3, viz., that

e-- 2 si
0

if 2a,, is summable (B). We then deduce equation (14) of § 4,t precisely
as in that section. We thus obtain Theorems 2, 3, 4, 5, freed from the
restriction that k is an integer. The effect of this is to replace each set
of theorems, corresponding to a set of spaces lying on a line parallel to
the principal diagonal of the diagram of § 7, by a continuous series of
theorems.

* L.c. supra (p. 9). Riesz assumes more than we do, and so obtains a more precise
result : in fact, he establishes summability (Ck), whereas all that can be deduced from our
hypothesis is summability (C, 2fc +1).

t For the theory of such methods of summation, see Chapman, Proc. London Math. Soc,
Ser. 2, Vol. 9, p. 369 ; Hardy and Chapman, Quarterly Journal, Vol. 42, p. 181; and various
writings of Bohr, Knopp, and Riesz quoted in the latter paper. A later note by Riesz appeared
in the Ccmvptes Rendus, June 12th, 1911.

X Of courso with r (7c + 1) for fc! .
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9. So far we have confined ourselves to Borel's definition (2). The
question remains whether our results remain valid when this definition is
replaced by the integral definition expressed by (2a) and (2b).

If an -> 0, the two definitions are certainly equivalent. For the
necessary and sufficient condition for equivalence is that

It is, however, not difficult to see that all our results still hold when
Borel's integral definition is adopted.

For, if 0,^+0,!+a2+...

is summable by the integral definition, then

O+ao+a1+a2+...

is summable by the definition (2).* Moreover, if the first series satisfies
one of our conditions

an = o (n"*), an = o (1). sn = o (if1),

the second satisfies a corresponding condition, and is accordingly summable
by the appropriate one of Cesaro's means. But the two series are com-
pletely equivalent in regard to the application of Cesaro's method. Thus
all our results apply as well to one of Borel's definitions as to the other.

III.

10. A good deal of light may be thrown on the foregoing theorems by
the study of a particular series, viz., the series

(16) 2 n - V l ° ,

where a and b are real and 0 < a < l.t
This series is convergent if a-\-b > 1, summable (Cl) if 2a-f-6> 1,

summable (C2) if Sa-\-b > 1, and so on.J If b = I—a, it is finitely
oscillating. In this case, if a < £, we have

• Hardy, Quarterly Journal, Vol. 35, p. 34.
| We might equally well consider the more general series

I Hardy, Proc. London Math. Soc, Ser. 2, Vol. 9, p. 142.
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and so, by Theorem 1, the series cannot be summable (B). We are thus
led to expect, in regard to the summability (B) of the series, different
results according as a > £ or a < £. We shall, in fact, prove that the
series (15) is summable {B) for all values of b if a> $, but is never
summable (B) when a < £, except when it is convergent.

The proof of this result is tedious rather than difficult, and we shall
content ourselves with sketching its main features.

In the first place, we can easily verify that, if

an = n~''ein",

then s,, = " a

where the summation extends over a finite number of values of v, all less
than l—a—bf and C is a constant arising from the application of the
Euler-Maclaurin sum-formula.

We can now prove that, if a> £,

(16) e~x 2 nveUi" -^- -> 0

as x -> oo , for all values of v. It will then follow that the series (15) is
summable to sum C. Let

m = [x].

Then it is easy to see that we may replace the left-hand side of (16) by

(17) e~x i ( '^^
(m+r)V

where n ~ m*fS.

We then show, by a straightforward but tedious process of approximation,
that, if we write x = m-\-f, and keep / constant as in -> oo, we can write
(17) in the form

(18) Kvi'-'cim" 2 [£*""•"-''-O-2>o j i - j -2AVmB+20(»< aw^H

where the number of terms in each sum is finite, /4 is integral, and

for each pair of indices a, /3.
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Next, it is easy to see that

him" 2 \eiam<"lr-irll'2m) 0{ram^)\ = O(mp+fi-*) f e~ri2m | r \adr

Thus these terms may be neglected, and everything is reduced to showing
that a number of terms of the type

(19) m? 2 r«e<flm"'lr-(l*-Slll),
—n

where q is an integer, tend to zero. It is easily proved that the limits of
summation may be replaced by oo and — <x>.

First suppose q = 0. Then

V
e"^™ C0B rB = 58(t>, T),*

where 0 = ama~l, v = 0/2ir, T = i/2??i7r.

Nowt ^ ( V ) T )

38 (—. - —) = 1 + 2 2 e~2mrini cosh 2»ir07r = 1+o (1).

Hence S3 (u, r) — V(2m7r) e~*mfl2 =

which tends to zero more rapidly than any power of m.
When q is not zero the argument is a little more complicated, but in

essence the same: in this case we use the <?-th derivative of the theta-
function with respect to v.

Thus the left-hand side of (16) tends to zero if x = w-f-/, where
0 ^ / < 1, and ??&-> oo. Moreover it does so uniformly with respect to
/ , and so our proof is completed.

11. When 0 < a < ^, the discussion is somewhat similar, but rather
simpler. The essential difference lies in the fact that we can choose S so
that iavia~1r is small throughout a range of values of r of magnitude
m-+s, so that, in approximating to ei{-n+r)", we can use eim" instead of the

• Tannery and Molk, Fonetions Elliptigues, t. n, p. 252.
t Ibid., p. 263.
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more accurate approximation

The result is that the dominant term of our final result assumes the form

• m*- a - b eim" 2 e~'*-2m tya)nix-a-b<**",

and the series (15) is summable if and only if a-\-b > 1, i.e., if and
only if it is convergent.

12. If a = $-{•$, we require b>§—fi for convergence. Hence we
can find a series of the type (15), summable (B), but not convergent, and
such that an = O(n~i+S). This affords a formal proof that the index £ of
Theorem 1 cannot be replaced by any lower index. We can show
similarly, by means of the series considered in §§ 10, 11, that the indices
of the powers of n, which occur in Theorems 2-5, are as small as they
can possibly be.

A much more difficult question remains. Is Theorem 1 true if the
condition ^n.an-+0 is replaced hy \^n.a,,\ <K, and can similar
changes be made in the other theorems ? It has been proved recently*
that a similar extension may be given to Tauber's converse of Abel's
theorem, and it is natural to suppose that the extension is possible here
also.

It is interesting to consider for a moment what light is thrown on this
question by the series of §§ 10, 11. The crucial case is that in which the
series oscillates finitely ; i.e., when

an= na-1eu".

Then an = o(*rJ) (a < £), an= 0 fa"4) (a = I).

In the first case the series is certainly not summable, by Theorem 1 or
by the results of §§ 10, 11. And the question of interest is whether

-is suminable (-B).t

The answer to this question is (as analogy would lead us to expect) in

* Littlewood, i.e., p. 434.
| If not, Theorem 1 shows that 1n~h e ^' is never summable unless convergent.
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the negative. In fact,

«„ = C-2*«""+o(l),

and it may be shown that

e~* 2 eWn — — e-
(lS)+Wx *

n\

Thus the evidence obtained from this series points to the truth of the
suggested generalisations. But, as we stated in § 1, we have not been
able to find a satisfactory proof of them.

13. Theorem 1 has an interesting application to the problem of the
multiplication of series. It is easy to prove that if 2a,, and 26,, arc
summable {B), and n / 1 J , 7 n / 1 / x

«„. = 0(1 jn), b,, — O(l/n),
then the product series 2cu, formed in accordance ivith Caucln/s rxde, is
also swim-able (B). Bat it is evident that

cn = 0 (log n/n) = o (1/^/n),

and therefore, by Theorem 1, 2c(l is convergent. We thus obtain a
simple proof of a known theorem. +

* If a < i, e-z 1eih" -" ~ eir" ,
n !

while, if a -* £-, the left-hand side tends exponentially to zero (see §§ 10, 11). In the critical
case we obtain a result resembling the first, but differing owing to the presence of tha factor
e->H. The correspondence between the oscillations of the original series and of Borel's integral
is not so precise in this case as it is shown to be, when a < £, by the formula at the end of
§11. For an illustration of the corresponding phenomenon in connection with Tauber's
theorem, see Littlewood, I.e. supra, p. 436: in the formulae there given si constant term
((1 + ai) is omitted, but the insertion of this term does not affect the argument.

t Hardy, Proc. London Math. Soc, Ser. 2. Vol. 6, p. 410. We have obtained a number
of further results on this subject, to which we hope to return shortly. In particular we have
proved that any convergent series for which a,, = O(l/n)—and therefore any such series
summable by any of Ces&ro's means—is summable (C, —1 + 5) for any positive 5. We are thus
able, by the use of Mr. Chapman's negative indices of summability, to deduce the multiplica-
tion theorem referred to above from the theorem that a series of this type cannot be
summable (C) without being convergent.


