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Abstract
Pulsating hot B subdwarfs (sdB) have become one of the showcases of asteroseismology. Thanks to the combination of rich

observed pulsation spectra and state-of-the-art modeling tools it is possible to tightly constrain fundamental parameters such

as the stellar mass for these compact, evolved objects in the core He-burning phase of evolution. In comparison, the exploitation

of sdO pulsators - hotter stars thought to be in a more advanced evolutionary stage - is still in its infancy. While a small number

have been identi�ed in Globular Clusters (GCs), they are extremely rare among the �eld population. It was recently suggested

that PB8783, one of the very �rst sdB pulsators discovered in 1997, may in fact be an unrecognized hot sdO star with very

similar properties to the GC sdO pulsators. Here, we present new very high-quality spectroscopy as well as an asteroseismic

analysis of this star with the aim of solving the mystery of its nature.

1 Introduction to sdB and sdO stars
Hot subdwarfs of the B (sdB) and O (sdO) types form the

bluer extension of the horizontal branch, also referred to as

the extreme horizontal branch (EHB) in the Hertzsprung-

Russell diagram. While sdB stars (22 000 K . Teff . 38 000

K) correspond to core He-burning objects, their hotter sdO

counterparts (38 000 K . Teff . 100 000 K) correspond to

various evolutionary channels. Some sdOs are believed to

be the direct progeny of sdB stars evolving through a short-

lived phase of He-shell burning on their way towards the

white dwarf cooling sequence. The H-rich envelope of sdB

and sdO stars is indeed too thin to sustain signi�cant H-shell

burning, thus these stars do not reach the Asymptotic Giant

Branch (AGB). For an extensive review on sdB and sdO stars,

see Heber (2016).

The EHB hosts various classes of pulsating stars. The

sdBV class is the oldest, largest (about 100 sdBVs are known

at the time of writing, just before the TESS era) and best stud-

ied class, and can be subdivided into the short-period pul-

sators (sdBVr , discovered in 1997) and the long-period pul-

sators (the sdBVs, discovered in 2003). The short-period pul-

sations (80-600 s) usually correspond to low- order p-modes,

while long-period pulsations (30 min - 3h) are generally mid-

to high-order g-modes. Many sdB pulsators are actually hy-

brid pulsators (as revealed by Kepler), with predominantly

short-period oscillations, or predominantly long-period os-

cillations. Their pulsating sdO (sdOV) �eld counterparts are

rare, and have been somewhat desperately searched for over

the years (see, e.g., Rodríguez-López et al. 2007; Johnson et al.
2014), following the discovery of the �rst sdOV by Woudt

et al. (2006). It is only recently, twenty years after his dis-

covery of the �rst sdB pulsator in 1997, that Kilkenny et al.
(2017) announced the second bona-�de �eld sdO pulsator. In

the meantime, a survey dedicated to the search of pulsating

EHB stars in the Globular Cluster (GC)ω Centauri uncovered

�ve pulsating objects, which spectroscopic follow-up obser-

vations revealed to be all hot sdO-type subdwarfs (Randall

et al., 2016). Interestingly, no sdB stars have yet been con-

�rmed to pulsate in GCs
1
.

To date, 15 sdB pulsators have been modeled by asteroseis-

mology (Fontaine et al., 2012). Thanks to a forward modeling

approach (see Sect. 3.2), asteroseismology allows us to ac-

cess the global (M∗, log g,R∗, etc.) and structural parameters

(Menv, Mcore, core composition, etc.) of an individual star. It

notably helps to clarify the question of the origin of sdB stars,

e.g. through their mass distribution that is strongly peaked

at ∼ 0.47 M�. This compares qualitatively very well with

the expectation that the majority of sdB stars are post-RBG

objects having lost almost all of their H-envelope through bi-

nary interaction with stellar, substellar, or maybe planetary

companions (Van Grootel et al., 2014a). In contrast, none of

the known sdO pulsators have been modeled by asteroseis-

mology so far. This is partly due to the fact that it is extremely

challenging to obtain the high-quality photometry necessary

for seismic modeling for the sdO pulsators known in GCs.

In addition, the accurate spectroscopic parameters (such as

Teff ) needed to guide any asteroseismic modeling are di�-

cult to obtain for sdO stars, especially if they are faint (like

the ω Cen pulsators). Space-based UV spectroscopy can be

helpful for constraining the e�ective temperature of hot sdO

stars by using the ionization equilibrium of metal lines (see,

e.g., Dixon et al. 2017), but such observations are notoriously

di�cult to obtain and their analyses can be hampered by se-

vere crowding of the spectral lines (Latour et al., 2017).

PB 8783 is a binary star consisting of a pulsating subd-

warf and a main sequence F-type companion. It was actually

one of the very �rst pulsating subdwarfs discovered (Koen

et al., 1997) and was thought to be a bona�de sdBVr pul-

sator for years. However, since the F-companion dominates

1
Six pulsating EHB stars have been discovered in NGC 2808 by Brown

et al. (2013) but unfortunately their spectral type remain uncertain due to a

lack of spectroscopic information.
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the �ux in the optical, it is in fact extremely di�cult to de-

termine the exact nature (sdB or sdO) of the hot subdwarf

component. Based on the detection of the He ii line at 4686

Å, Østensen (2012) realized that the subdwarf component of

PB 8783 must be hotter than previously believed. However,

Østensen (2012) could not provide accurate estimates of the

star’s atmospheric parameters (he proposed Teff & 50 000 K

and log g ∼ 6.05, without quoting uncertainties). The hy-

pothesis of a sdO star was tested in preliminary asteroseis-

mic analyses by Van Grootel et al. (2014b), who concluded

that although an sdB nature cannot be excluded, the pulsa-

tion modes observed in PB 8783 are indeed better recovered

by an sdO model. PB 8783 is the brightest sdOV candidate

and the one that has been most extensively observed in terms

of light curves. If its atmospheric parameters can be con-

strained, and its sdO nature con�rmed, PB 8783 will become

a prime target for performing the �rst seismic analysis of an

sdO star and thereby probing the properties of this evolved

evolutionary stage.

In this proceedings devoted to PB 8783, we present in Sect.

2 new high-resolution spectroscopic observations of the star

that allow us to settle the question as to the nature of the hot

subdwarf. Section 3 presents the pulsation properties of PB

8783 and our improved asteroseismic modeling based on the

updated atmospheric parameters. We stress that the spectro-

scopic and subsequent asteroseismic analyses presented here

are work in progress. Section 4 presents our current conclu-

sions and perspectives for coming work.

2 PB 8783: sdB or sdO?
2.1 The context

The main sequence F-type component of PB 8783 actually

dominates any spectroscopic observations in optical, and a

"de-pollution" procedure is needed to obtain the atmospheric

parameters of the subdwarf. Various methods are available in

spectroscopy, but none is easy to apply or fully satisfactory

in the present case.

Our �rst attempts included subtraction of the composite

spectra by template spectra of the F-type (F0 to F4), in order

to obtain cleaned spectra of the hot subdwarf component (for

details, see Van Grootel et al. 2014b). Analyzed in our usual

way (grid of NLTE, H/He model atmospheres), these cleaned

spectra gave e�ective temperature and surface gravity esti-

mates typical for a subdwarf of the B type (sdB star). How-

ever, a small problem already attracted our attention, even

in our low-resolution spectra: He I lines are almost absent

(while predicted by the model), and strong He II lines (not

predicted by the model) are present. This is more typical of

a sdO star, i.e. a much higher e�ective temperature.

2.2 This work: spectral analysis with XTgrid

In this work, we analyze two very high-quality spectra: a

low-resolution (9Å), very high S/N ratio spectra obtained at

the Bok telescope in Arizona (Fig. 1), and a high S/N, very

high-resolution (about 0.1 Å) spectra obtained in 2017 with

UVES@VLT (Fig. 2). The deconvolution procedure imple-

mented in XTgrid (Németh et al., 2012) uses a linear combina-

tion of synthetic sdO and F spectra and �ts the observed com-

posite spectrum with this combined spectrum. The contribu-

tion of each spectrum component (Teff , log g, [Fe/H], v sin i)
is changed iteratively in a direction which improves the

goodness of �t for as long as the χ2
decreases. The non-LTE

sdO models are calculated with Tlusty/Synspec (Hubeny &

Lanz, 2017) and the LTE models for the F-type companion are

extracted from the BOSZ spectral library (Bohlin et al., 2017).

The deconvolution of binaries consisting of very di�erent

types of components is usually an easy task. The distinct

spectral features allow a precise separation of the stars even

from a single observation. However, in the case of PB 8783

the F-type star dominates the �ux above 4000 Å and no clean

lines of the sdO star are seen. The severe blending makes the

Balmer series unreliable as an indicator of Teff /log g. Metal

absorption lines can help the spectral analysis and allow for

a precise radial velocity and �ux contribution measurement,

but unfortunately none were found for the sdO star. There-

fore we exploited the two sets of observations in tandem, us-

ing the low resolution Bok data to �t the slope of the com-

posite continuum and the high resolution VLT spectrum to

�t the pro�les of the individual lines of both components.

From this exercise we obtained Teff ∼ 52 000 K and log

g ∼ 5.85 cm s
−2

. The associated errors are di�cult to esti-

mate due to strong correlations. We tentatively estimate ±
3500 K and ± 0.15 cm s

−2
. This clearly places the subdwarf

component of PB 8783 in the sdO regime, as proposed by

Østensen (2012).

Another intriguing result of the new analysis is the need

for extra line broadening to consistently �t the helium lines

of the sdO star. The broadening corresponds to a projected

rotational velocity of about 50 km s
−1

and it is likely due to

pulsations (see Sect. 3). The broadening is large enough to

smear weak metal lines into the continuum.

3 Pulsations in PB 8783
3.1 Photometric observations of PB 8783

PB 8783 was the second subdwarf pulsator ever found

(Koen et al., 1997). Thanks to its brightness (V = 12.6,

one of the brightest subdwarf pulsators), it was frequently

re-observed over the years to study its pulsations (e.g.

O’Donoghue et al., 1998; Je�ery & Pollacco, 2000; Vučković

et al., 2010; Fontaine et al., 2014). And in contrast to many

other sdB pulsators, PB 8783 has exhibited a relatively stable

pulsation spectrum over the years (Table 1).

In this work, we used the frequencies extracted from our

photometric campaign carried at Mt Bigelow (Arizona, USA)

during 182.5h in 2007 (Fontaine et al., 2014). Details on the

obtained pulsation spectrum can be found in Van Grootel

et al. (2014b), only the more important features are recalled

here. We detected eight independent pulsation modes with

amplitudes above 6σ that were identi�ed in almost all pre-

vious PB 8783 campaigns (Table 1). The Bigelow data also

revealed 12 additional independent periods with amplitudes

between 4.5 and 6σ (we will not consider modes with lower

amplitudes for the seismic modeling here). Finally, �ve of

the eight basic pulsation modes exhibit some form of multi-

plet structure: 4 peaks around 116.43 s (i.e. an l ≥ 2 mode),

a doublet at 122.68 s (at least l = 1), 4 peaks including the

dominant mode at 123.63 s (therefore l ≥ 2), 7 distinct peaks

around 127.04 s (which favors l = 4), and a beautiful com-

plete quintuplet at 134.17 s (l ≥ 2, but most probably l = 2).

These constraints on the mode identi�cation will be used in

the seismic analyses. These multiplet structures are most

likely caused by the rotation of the star in principle allow

us to access the internal rotation of the subdwarf (see, for

example, Giammichele et al. 2016). However, this has not yet

been explored in detail.

3.2 Models and Methods for sdB and sdO asteroseis-
mic modeling

Second-generation (2G) models are used to model PB 8783

in terms of an sdO, post-EHB pulsator. Our more recent 3G

2 Zenodo, 2018
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Figure 1: Low resolution PB 8783 spectrum (black) obtained with the Bok telescope. The synthetic composite model is the sum

(grey) of the sdO type hot subdwarf model (blue) and the F0 type main sequence model (red). The composite model is shifted

for clarity and �ts the observation reasonably well.

Figure 2: Same as Fig 1, but for the high resolution PB 8783 spectrum obtained with the VLT/UVES. The insets show the pro�les

of the He I 4471 and 5875 Å lines and the He II 4686 Å line.

Zenodo, 2018 3
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O’Donoghue (1998) Je�ery & Pollacco (2000) Vuckovic et al. (2010) Fontaine et al. (2014) Rank

94.133 94.118 94.13 94.165 f9
94.454 ... ... 94.452 f10
116.418 116.809 116.417 <116.43> f11

<122.678> 122.835 122.692 <122.680> f2
123.578 ... 123.692 <123.630> f1,f5
127.060 127.275 126.983 <127.044> f4

<134.165> 134.120 134.187 <134.169> f3,f7
136.269 136.258 ... 136.273 f12

Table 1: Pulsation periods from the main photometric observations of PB 8783. Brackets <> indicates observed multiplets.

(Van Grootel et al., 2013) and 4G (Van Grootel et al., 2018)

models are complete structures only suitable for modelling

core-He burning objects. In contrast, the 2G models are static

envelope structures (the center is modeled as a hard ball),

well suited to accurately compute p-mode pulsation periods

(Charpinet et al., 2002). They incorporate the nonuniform

iron abundances obtained by equilibrium between radiative

levitation and gravitational settling, up to Teff = 70 000 K.

The input parameters of 2G models are the e�ective tem-

perature Teff , the surface gravity log g, the total mass of

the star M∗, and the mass contained in the H-rich envelope

log(Menv/M∗) ∼ D(H).

The forward modeling approach developed to perform

objective asteroseismic modeling of subdwarf pulsators has

been described in detail in Charpinet et al. (2008). We �t di-

rectly and simultaneously the eight independent pulsation

periods Pobs of PB 8783 with the theoretical Pth calculated

from subdwarf models, in order to minimize the merit func-

tion de�ned by

S2(a1, a2, ..., an) =

Nobs∑
i=1

(
Pobs,i − Pth,i

σi

)2

. (1)

The ai are the parameters of the stellar models, Nobs is the

number of observed independent periodicities, and σi repre-

sents the weight of each pair {Pobs,Pth}. We chose σ = 1 for

each of them. The method performs a double-optimization

procedure in order to �nd the minima of the merit function

that constitute potential asteroseismic solutions, while ad-

hering to external constraints from spectroscopy and from

mode identi�cation. We developed the e�cient genetic al-

gorithm LUCY that performs this optimization procedure by

growing a random population of potential solutions from

generation to generation (Charpinet et al., 2008).

3.3 Asteroseismic modeling of PB 8783

The optimization procedure is launched in a vast parame-

ter space where hot subdwarfs are found: 0.3 ≤ M∗/M� ≤
0.7, −10.0 ≤ D(H) ≤ −2.20 (Han et al., 2002, 2003). The

surface gravity log g is searched between 5.7 and 6.1 (see

Sect. 2). The e�ective temperature is �xed to its spectro-

scopic value, since H/He lines are much more sensitive to

the e�ective temperature than the p-modes are (Charpinet

et al., 2005). The main di�erence to the preliminary seismic

analysis presented in Van Grootel et al. (2014b) is that the

parameter space is now much more exhaustively explored,

with increased computational capacities. While we previ-

ously searched for solutions with a population of 100 in-

dividuals over 100 generations, we now typically grow 200

individuals over 500 generations. We also developed the

computation of Probability Density Functions (PDFs) for the

parameters to estimate realistic uncertainties (Van Grootel

et al., 2013), rather than focusing on the optimal solution and

its surroundings (in the preliminary seismic analysis of Van

Grootel et al. 2014b, we did not compute the uncertainties).

Fig. 3 presents the PDFs obtained for the 3 parameters

explored here: M∗, log g, and D(H). It is evident that we

obtained several seismic solutions, with similar minima for

their merit functions (this is particularly obvious on the map

log g − D(H) on Fig. 4). These minima have period �ts

of ∆X/X ∼ 0.4%, which corresponds to ∆P ∼ 0.4 s.

Only the stellar mass seems relatively well constrained, with

0.42 ± 0.03 M� (Fig. 3). Somewhat surprisingly, the mode

identi�cation revealed that while the shortest, low-degree

(l = 0, 1) pulsations are associated with p-modes, the longest

and higher degree (l = 2, 4) pulsations are associated with

mixed modes. For example, the quintuplet at 134.17s has

(l, k) = (2,−8).

This multiplicity of asteroseismic solutions is partly ex-

plained by the relatively poor constraint on surface gravity

log g from spectroscopy. We also think that the presence of

mixed modes reveals the limits of using 2G envelope models

(where the central parts are missing) to model sdO, post-EHB

stars that are likely in a phase of He-shell burning.

4 Conclusions and Prospects
PB 8783 is an old but mysterious friend, consisting of a

pulsating subdwarf and a F-type main sequence companion.

After many years (1997-2012) of being identi�ed as an sdBVr

pulsator, followed by years (2012-2018) of uncertainty about

the exact nature of the subdwarf component (sdB or sdO),

we �nally obtained very high-quality spectroscopy to resolve

the issue: the subdwarf pulsator in PB 8783 is de�nitely an

sdO star, with Teff ∼ 52 000 K and log g ∼ 5.85 cm s
−2

.

This is already an important conclusion, on the one hand

because PB 8783 is one of the best observed subdwarf pul-

sators, and on the other hand because the sdO pulsators are

rare and extremely di�cult to study, both from a photometric

and spectroscopic point of view, in the �eld as well as GCs.

From this point of view, we can say that PB 8783 is the �rst

sdO star identi�ed as suitable for asteroseismic modeling.

However, we still face two challenges. The �rst is that the

deconvolution procedure to disentangle the contributions of

the two components is particularly di�cult, and strong cor-

relations exist between spectroscopic parameters. Precise at-

mospheric parameters are therefore very hard to obtain. The

second issue is that we have at our disposal only the 2G mod-

els to model sdO stars, which are post-EHB stars most likely

in a He-shell burning phase (3G and 4G models are by con-

struction limited to core-He burning objects). These 2G en-

velope models, where the central parts are missing, are prob-

ably not suitable for quantitatively modelling the pulsation

periods of PB 8783, as evidenced by the fact that some of the

observed periods are associated with mixed modes in our �ts.

To progress on the spectroscopic side, space-based UV

spectroscopy would be helpful, however such observations

4 Zenodo, 2018
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Figure 3: Probability density functions derived from astero-

seismology for the 3 parameters of the 2G models: M∗, log g,

and D(H) ≡ log q(H). The red-hatched region between

the two vertical solid red lines gives the 1σ range contain-

ing 68.3% of the distribution.

-2.20

-3.18

-4.15

-5.13

-6.10

-7.08

-8.05

-9.03

-10.00
5.75 5.79 5.83 5.86 5.90 5.94 5.98 6.01 6.05

70

69

68

67

66

65

64

63

62

61

60

59

57

56

55

54

53

52

51

50

49

48

47

46

45
44

43

42

41

40

39

38
37

36

35

34 33

32

31
29

28

27

26

2524

23

22
21

20

1918

17

1615141312

11

10

9

8

7

6

5

4

3

2

1

2.00

1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Figure 4: Map of the projected merit function S2
(on a loga-

rithmic scale) in the log g−D(H) plane. Best-�t models are

identi�ed by their rank (1 for the lowest merit function, etc).

White contours show regions where the period �ts have S2
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the best-�t solution.
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are notoriously di�cult to obtain. To progress on the model-

ing side, "special" complete models for post-EHB stars must

be built, which is not a trivial task in our parameterized ap-

proach. The new GAIA DR3 distance and orbital motion res-

olution will de�nitely be of help for constraining our results.

These are the avenues to progress on our understanding of

PB 8783 in the coming years, and to make it the �rst sdO

star modeled by asteroseismology, unveiling the properties

of this advanced evolutionary stage.
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